1
|
Fang Z, Yao Y, Cao L, Gao J, Li Q, Nie Z, Sun Y, Xu G, Du J. Integration of metabolomics and transcriptomics reveals the toxicological mechanism of deltamethrin exposure in Chinese mitten crab Eriocheir sinensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176975. [PMID: 39454792 DOI: 10.1016/j.scitotenv.2024.176975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
This study investigated the toxicological mechanism of deltamethrin on Chinese mitten crab Eriocheir sinensis juveniles in fresh water. We first conducted an acute toxicity test, followed by laboratory methods to detect changes in immune-related indices in terms of antioxidant enzyme markers, lipid metabolism-related genes, and autophagy-related and apoptosis genes. The acute toxicity (96-h LC50) of deltamethrin to E. sinensis was 7.195 μg/L. After 48 h of exposure, serum showed elevated immune-related indices (P < 0.05) for alkaline phosphatase (AKP), acid phosphatase (ACP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), complement components C3 and C4, and the key pro-inflammatory cytokines interleukin-6, interleukin-1β, and tumor necrosis factor alpha (TNF-α). In hepatopancreas at 48 h, indicators related to the antioxidant system, namely superoxide dismutase (SOD) and glutathione (GSH), were significantly elevated, whereas nitric oxide and total antioxidant capacity (T-AOC) were decreased (P < 0.05). In contrast, lipid metabolism indices for triglyceride (TG), total cholesterol (TC), and malondialdehyde (MDA) were increased (P < 0.05). Transcriptomics and metabolomics revealed that exposure to deltamethrin disrupted the lipid metabolic process in the hepatopancreas mainly by altering fatty acid synthesis, amino acid metabolism, immune signaling, and autophagy activation, while the exposure increased the content of phospholipids and cholesterol but decreased the levels of amino acids and palmitoleic acid. Quantitative genetics revealed significantly aberrantly expressed (P < 0.05) lipid metabolism-related genes, including acc1, fasn, scd1, and pnpla2, all key genes involved in lipid accumulation. Deltamethrin exposure also significantly altered (P < 0.05) gene expression levels for Toll-like receptor (tlr), myeloid differentiation factor 88 (myd88), crustin1, anti-lipopolysaccharide factor isoform 3 (alf3), tumor necrosis factor alpha (tnf-α), and NF-κB transcription factor relish. Furthermore, deltamethrin activated the toll-like receptor/major myeloid differentiation response gene 88/nuclear factor kappa-light-chain-enhancer of activated B cells (TLR/MyD88/NF-kB) signaling pathway, which activates a nonspecific immune response in E. sinensis. Additionally, carnitine palmitoyltransferase 1 A (cpt1a), cytochrome c (cyt-c), adenosine 5'-monophosphate (amp)-activated protein kinase (ampk), the autophagosomal protein microtubule-associated protein 1 light chain 3c (lc3c), and the autophagy-related proteins beclin1, atg5, atg12 were significantly induced (P < 0.05) in the adenosine monophosphate-activated protein kinase/rapamycin (AMPK/mTOR) signaling pathway. These changes resulted in excess free radicals, causing oxidative stress in the mitochondrial membrane, promoting mitochondrial autophagy. The results confirm that deltamethrin exposure can induce hepatopancreatic injury by promoting mitochondrial autophagy, activating an immune response, and inhibiting lipid metabolism. Overall, this study provides multi-level information to reveal the toxic effects of deltamethrin on E. sinensis.
Collapse
Affiliation(s)
- Zhiruo Fang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Yao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Liping Cao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhijuan Nie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jinliang Du
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
2
|
Xie R, Xie H, Gao H, Xie C, Yuan H, Feng Z. Mitochondrial proteins as therapeutic targets in diabetic ketoacidosis: evidence from Mendelian randomization analysis. Front Pharmacol 2024; 15:1448505. [PMID: 39469619 PMCID: PMC11513349 DOI: 10.3389/fphar.2024.1448505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Diabetic ketoacidosis (DKA) is a severe and potentially fatal acute complication in diabetic patients, commonly occurring in type 1 diabetes (T1D) but also seen in type 2 diabetes (T2D). The pathogenesis of DKA involves complex physiological processes that are not fully understood, especially the role of mitochondria. Mitochondria, known as the powerhouse of cells, plays a crucial role in oxidative phosphorylation and ATP production, which is vital in various metabolic diseases, including diabetes. However, the exact causal relationship between mitochondrial dysfunction and DKA remains unclear. Methods This study employed Mendelian randomization (MR) analysis and protein-protein interaction (PPI) networks to systematically explore the causal relationships between mitochondrial DNA copy number (mtDNA-CN) and specific mitochondrial proteins with DKA. We used bidirectional MR analysis and genome-wide association study (GWAS) data from openGWAS database to investigate the causal effects of mtDNA-CN and 64 mitochondrial-related proteins on DKA and its subtypes (T1DKA, T2DKA, unspecified-DKA). Results The study revealed that increased mtDNA-CN significantly reduces the risk of DKA, whereas the effect of DKA on mtDNA-CN was not significant. Mitochondrial-related proteins such as MRPL32, MRPL33, COX5B, DNAJC19, and NDUFB8 showed a negative causal relationship with DKA, indicating their potential protective roles. Conversely, ATP5F1B and COX4I2 have a positive causal relationship with DKA, indicating that excessive ATP production in diabetic patients may be detrimental to health and increase the risk of severe complications such as DKA. Discussion The results emphasize the necessity of protecting mitochondrial function in order to reduce the risk of DKA. The study offers novel perspectives on the molecular pathways involved in DKA, emphasizing the critical functions of mt-DNA and distinct proteins. These evidences not only enhance our comprehension of the implications of mitochondrial dysfunction in diabetes-related complications but also identify potential therapeutic targets for individualized treatment approaches, thereby making a substantial contribution to clinical care and public health initiatives.
Collapse
Affiliation(s)
- Ruiqiang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Haipo Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhijun Feng
- Jiangmen Central Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Jiangmen, Guangdong, China
| |
Collapse
|
3
|
Cheng Q, Liu QQ, Lu CA. A state-of-the-science review of using mitochondrial DNA copy number as a biomarker for environmental exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123642. [PMID: 38402934 DOI: 10.1016/j.envpol.2024.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles in eukaryotes, and contain their own genomes, mitochondrial DNA (mtDNA), to supply energy to cells by generating ATP via oxidative phosphorylation. Therefore, the threat to mitochondria' integrity and health resulting from environmental exposure could induce adverse health effects in organisms. In this review, we summarized the association between mtDNA copy number (mtDNAcn), and environmental exposures as reported in the literature. We conducted a literature search in the Web of Science using [Mitochondrial DNA copy number] and [Exposure] as two keywords and employed three selection criteria for the final inclusion of 97 papers for review. The consensus of data was that mtDNAcn could be used as a plausible biomarker for cumulative exposures to environmental chemical and physical agents. In order to furtherly expand the application of mtDNAcn in ecological and environmental health research, we suggested a series of algorithms aiming to standardize the calculation of mtDNAcn based on the PCR results in this review. We also discussed the pitfalls of using whole blood/plasma samples for mtDNAcn measurements and regard buccal cells a plausible and practical alternative. Finally, we recognized the importance of better understanding the mechanistic analysis and regulatory mechanism of mtDNAcn, in particular the signals release and regulation pathways. We believe that the development of using mtDNAcn as an exposure biomarker will revolutionize the evaluation of chronic sub-lethal toxicity of chemicals to organisms in ecological and environmental health research that has not yet been implemented.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; School of Public Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Hirano T, Ikenaka Y, Nomiyama K, Honda M, Suzuki N, Hoshi N, Tabuchi Y. An adverse outcome pathway-based approach to assess the neurotoxicity by combined exposure to current-use pesticides. Toxicology 2023; 500:153687. [PMID: 38040083 DOI: 10.1016/j.tox.2023.153687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Exposure to multiple pesticides in daily life has become an important public health concern. However, the combined effects of pesticide mixtures have not been fully elucidated by the conventional toxicological testing used for individual chemicals. Grouping of chemicals by mode of action using common key events (KEs) in the adverse outcome pathway (AOP) as endpoints could be applied for efficient risk assessment of combined exposure to multiple chemicals. The purpose of this study was to investigate whether exposure to multiple pesticides has synergistic neurotoxic effects on mammalian nervous systems. According to the AOP-based approach, we evaluated the effects of 10 current-use pesticides (4 neonicotinoids, 4 pyrethroids and 2 phenylpyrazoles) on the common KEs in AOPs for neurotoxicity, such as KEs involving mitochondrial and proteolytic functions, in a mammalian neuronal cell model. Our data showed that several pyrethroids and phenylpyrazoles partly shared the effects on several common KEs, including decreases in mitochondrial membrane potential and proteasome activity and increases in autophagy activity. Furthermore, we also found that combined exposure to a type-I pyrethroid permethrin or a type-II pyrethroid deltamethrin and the phenylpyrazole fipronil decreased the cell viability and the benchmark doses much more than either single exposure, indicating that the pair exhibited synergistic effects, since the combination indexes were less than 1. These findings revealed that novel pairs of different classes of pesticides with similar effects on common KEs exhibited synergistic neurotoxicity and provide new insights into the risk assessment of combined exposure to multiple chemicals.
Collapse
Affiliation(s)
- Tetsushi Hirano
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yoshinori Ikenaka
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; One Health Research Center, Hokkaido University,Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Masato Honda
- Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki Tabuchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
5
|
Wang F, Wan J, Liao Y, Liu S, Wei Y, Ouyang Z. Dendrobium species regulate energy homeostasis in neurodegenerative diseases: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Otçu S, Deveci E, Özgökçe Ç, Gürsoy GT, Tuncer MC. Protective effect of nebivolol on rat ovary exposed to deltamethrin toxicity. Acta Cir Bras 2023; 38:e385423. [PMID: 37878988 PMCID: PMC10629476 DOI: 10.1590/acb385423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 10/27/2023] Open
Abstract
PURPOSE We aimed to investigate the antioxidant activity of nebivolol against possible damage to the ovarian tissue due to the application of deltamethrin as a toxic agent, by evaluating histopathological proliferating cell nuclear antigen (PCNA) and tumor necrosis factor-alpha (TNF-α) signal molecules immunohistochemically. METHODS The animals were divided into three groups as control, deltamethrin and deltamethrin + nebivolol groups. Vaginal smears were taken after the animals were mated and detected on the first day of pregnancy. After the sixth day, deltamethrin (0.5 mL of 30 mg/kg BW undiluted ULV), and 2 mL of sterile nebivolol solution were administered intraperitoneally every day for 6-21 periods. After routine histopathological follow-up, the ovarian tissue was stained with hematoxylin and eosin stain. RESULTS Control group showed normal histology of ovarium. In deltamethrin group, hyperplasic cells, degenerative follicles, pyknotic nuclei, inflammation and hemorrhagic areas were observed. Nebivolol treatment restored these pathologies. Deltamethrin treatment increased TNF-α and PCNA reaction. However, nebivolol decreased the expression. CONCLUSIONS It was thought that deltamethrin toxicity adversely affected follicle development by inducing degeneration and apoptotic process in preantral and antra follicle cells, and nebivolol administration might reduce inflammation and slow down the apoptotic signal in the nuclear phase and regulate reorganization.
Collapse
Affiliation(s)
- Serap Otçu
- Health Sciences University – Diyarbakır Gazi Yaşargil, Training and Research Hospital – Department of Obstetrics and Gynecology – Diyarbakır – Turkey
| | - Engin Deveci
- Dicle University – Medical School – Department of Histology and Embryology – Diyarbakır – Turkey
| | - Çağdaş Özgökçe
- Zeynep Kamil Hospital – Department of Obstetrics and Gynecology – Perinatology Department – Istanbul – Turkey
| | - Görkem Tutal Gürsoy
- Healt Ministry of Türkiye Republic – Ankara Bilkent City Hospital – Department of Neurology – Ankara –Turkey
| | - Mehmet Cudi Tuncer
- Dicle University – Medical School – Department of Anatomy – Diyarbakır – Turkey
| |
Collapse
|
7
|
Moyano P, Sola E, Naval MV, Guerra-Menéndez L, Fernández MDLC, del Pino J. Neurodegenerative Proteinopathies Induced by Environmental Pollutants: Heat Shock Proteins and Proteasome as Promising Therapeutic Tools. Pharmaceutics 2023; 15:2048. [PMID: 37631262 PMCID: PMC10458078 DOI: 10.3390/pharmaceutics15082048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Environmental pollutants' (EPs) amount and diversity have increased in recent years due to anthropogenic activity. Several neurodegenerative diseases (NDs) are theorized to be related to EPs, as their incidence has increased in a similar way to human EPs exposure and they reproduce the main ND hallmarks. EPs induce several neurotoxic effects, including accumulation and gradual deposition of misfolded toxic proteins, producing neuronal malfunction and cell death. Cells possess different mechanisms to eliminate these toxic proteins, including heat shock proteins (HSPs) and the proteasome system. The accumulation and deleterious effects of toxic proteins are induced through HSPs and disruption of proteasome proteins' homeostatic function by exposure to EPs. A therapeutic approach has been proposed to reduce accumulation of toxic proteins through treatment with recombinant HSPs/proteasome or the use of compounds that increase their expression or activity. Our aim is to review the current literature on NDs related to EP exposure and their relationship with the disruption of the proteasome system and HSPs, as well as to discuss the toxic effects of dysfunction of HSPs and proteasome and the contradictory effects described in the literature. Lastly, we cover the therapeutic use of developed drugs and recombinant proteasome/HSPs to eliminate toxic proteins and prevent/treat EP-induced neurodegeneration.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Bothanic, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Lucia Guerra-Menéndez
- Department of Physiology, Medicine School, San Pablo CEU University, 28003 Madrid, Spain
| | - Maria De la Cabeza Fernández
- Department of Chemistry and Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Javier del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
8
|
Iyer DR, Arige V, Ananthamohan K, Venkatasubramaniam S, Tokinoya K, Akoi K, Kurtz CL, Sethupathy P, Takekoshi K, Mahapatra NR. Cyclic-AMP response element binding protein (CREB) and microRNA miR-29b regulate renalase gene expression under catecholamine excess conditions. Life Sci 2023:121859. [PMID: 37315838 DOI: 10.1016/j.lfs.2023.121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023]
Abstract
AIMS Renalase, a key mediator of cross-talk between kidneys and sympathetic nervous system, exerts protective roles in various cardiovascular/renal disease states. However, molecular mechanisms underpinning renalase gene expression remain incompletely understood. Here, we sought to identify the key molecular regulators of renalase under basal/catecholamine-excess conditions. MATERIALS AND METHODS Identification of the core promoter domain of renalase was carried out by promoter-reporter assays in N2a/HEK-293/H9c2 cells. Computational analysis of the renalase core promoter domain, over-expression of cyclic-AMP-response-element-binding-protein (CREB)/dominant negative mutant of CREB, ChIP assays were performed to determine the role of CREB in transcription regulation. Role of the miR-29b-mediated-suppression of renalase was validated in-vivo by using locked-nucleic-acid-inhibitors of miR-29. qRT-PCR and Western-blot analyses measured the expression of renalase, CREB, miR-29b and normalization controls in cell lysates/ tissue samples under basal/epinephrine-treated conditions. KEY FINDINGS CREB, a downstream effector in epinephrine signaling, activated renalase expression via its binding to the renalase-promoter. Physiological doses of epinephrine and isoproteronol enhanced renalase-promoter activity and endogenous renalase protein level while propranolol diminished the promoter activity and endogenous renalase protein level indicating a potential role of beta-adrenergic receptor in renalase gene regulation. Multiple animal models (acute exercise, genetically hypertensive/stroke-prone mice/rat) displayed directionally-concordant expression of CREB and renalase. Administration of miR-29b inhibitor in mice upregulated endogenous renalase expression. Moreover, epinephrine treatment down-regulated miR-29b promoter-activity/transcript levels. SIGNIFICANCE This study provides evidence for renalase gene regulation by concomitant transcriptional activation via CREB and post-transcriptional attenuation via miR-29b under excess epinephrine conditions. These findings have implications for disease states with dysregulated catecholamines.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vikas Arige
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Kalyani Ananthamohan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Venkatasubramaniam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Katsuyuki Tokinoya
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kai Akoi
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - C Lisa Kurtz
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Kazuhiro Takekoshi
- Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
9
|
Lesseur C, Kaur K, Kelly SD, Hermetz K, Williams R, Hao K, Marsit CJ, Caudle WM, Chen J. Effects of prenatal pesticide exposure on the fetal brain and placenta transcriptomes in a rodent model. Toxicology 2023; 490:153498. [PMID: 37019170 PMCID: PMC10152924 DOI: 10.1016/j.tox.2023.153498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Organophosphate and pyrethroid pesticides are among the most extensively used insecticides worldwide. Prenatal exposures to both classes of pesticides have been linked to a wide range of neurobehavioral deficits in the offspring. The placenta is a neuroendocrine organ and the crucial regulator of the intrauterine environment; early-life toxicant exposures could impact neurobehavior by disrupting placental processes. Female C57BL/6 J mice were exposed via oral gavage to an organophosphate, chlorpyrifos (CPF) at 5 mg/kg, a pyrethroid, deltamethrin (DM), at 3 mg/kg, or vehicle only control (CTL). Exposure began two weeks before breeding and continued every three days until euthanasia at gestational day 17. The transcriptomes of fetal brain (CTL n = 18, CPF n = 6, DM n = 8) and placenta (CTL n = 19, CPF n = 16, DM n = 12) were obtained through RNA sequencing, and resulting data was evaluated using weighted gene co-expression networks, differential expression, and pathway analyses. Fourteen brain gene co-expression modules were identified; CPF exposure disrupted the module related to ribosome and oxidative phosphorylation, whereas DM disrupted the modules related to extracellular matrix and calcium signaling. In the placenta, network analyses revealed 12 gene co-expression modules. While CPF exposure disrupted modules related to endocytosis, Notch and Mapk signaling, DM exposure dysregulated modules linked to spliceosome, lysosome and Mapk signaling pathways. Overall, in both tissues, CPF exposure impacted oxidative phosphorylation, while DM was linked to genes involved in spliceosome and cell cycle. The transcription factor Max involved in cell proliferation was overexpressed by both pesticides in both tissues. In summary, gestational exposure to two different classes of pesticide can induce similar pathway-level transcriptome changes in the placenta and the brain; further studies should investigate if these changes are linked to neurobehavioral impairments.
Collapse
Affiliation(s)
- Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, Box 1057, New York, NY 10029, USA
| | - Kirtan Kaur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, Box 1057, New York, NY 10029, USA
| | - Sean D Kelly
- Gangarosa Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322, USA
| | - Randy Williams
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, Box 1057, New York, NY 10029, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322, USA
| | - W Michael Caudle
- Gangarosa Department of Environmental Health, Rollins School of Public Health Emory University, Atlanta, GA 30322, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, Box 1057, New York, NY 10029, USA.
| |
Collapse
|
10
|
Hao F, Bu Y, Huang S, Li W, Feng H, Wang Y. Effects of pyrethroids on the cerebellum and related mechanisms: a narrative review. Crit Rev Toxicol 2023; 53:229-243. [PMID: 37417402 DOI: 10.1080/10408444.2023.2229384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
Pyrethroids (PYRs) are a group of synthetic organic chemicals that mimic natural pyrethrins. Due to their low toxicity and persistence in mammals, they are widely used today. PYRs exhibit higher lipophilicity than other insecticides, which allows them to easily penetrate the blood-brain barrier and directly induce toxic effects on the central nervous system. Several studies have shown that the cerebellum appears to be one of the regions with the largest changes in biomarkers. The cerebellum, which is extremely responsive to PYRs, functions as a crucial region for storing motor learning memories. Exposure to low doses of various types of PYRs during rat development resulted in diverse long-term effects on motor activity and coordination functions. Reduced motor activity may result from developmental exposure to PYRs in rats, as indicated by delayed cerebellar morphogenesis and maturation. PYRs also caused adverse histopathological and biochemical changes in the cerebellum of mothers and their offspring. By some studies, PYRs may affect granule cells and Purkinje cells, causing damage to cerebellar structures. Destruction of cerebellar structures and morphological defects in Purkinje cells are known to be directly related to functional impairment of motor coordination. Although numerous data support that PYRs cause damage to cerebellar structures, function and development, the mechanisms are not completely understood and require further in-depth studies. This paper reviews the available evidence on the relationship between the use of PYRs and cerebellar damage and discusses the mechanisms of PYRs.
Collapse
Affiliation(s)
- Fei Hao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Ye Bu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Shasha Huang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Wanqi Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Huiwen Feng
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, P.R. China
| | - Yuan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education, China Medical University, Shenyang, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, P.R. China
| |
Collapse
|
11
|
Sivagurunathan N, Gnanasekaran P, Calivarathan L. Mitochondrial Toxicant-Induced Neuronal Apoptosis in Parkinson's Disease: What We Know so Far. Degener Neurol Neuromuscul Dis 2023; 13:1-13. [PMID: 36726995 PMCID: PMC9885882 DOI: 10.2147/dnnd.s361526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common progressive neurodegenerative diseases caused by the loss of dopamine-producing neuronal cells in the region of substantia nigra pars compacta of the brain. During biological aging, neuronal cells slowly undergo degeneration, but the rate of cell death increases tremendously under some pathological conditions, leading to irreversible neurodegenerative diseases. By the time symptoms of PD usually appear, more than 50 to 60% of neuronal cells have already been destroyed. PD symptoms often start with tremors, followed by slow movement, stiffness, and postural imbalance. The etiology of PD is still unknown; however, besides genetics, several factors contribute to neurodegenerative disease, including exposure to pesticides, environmental chemicals, solvents, and heavy metals. Postmortem brain tissues of patients with PD show mitochondrial abnormalities, including dysfunction of the electron transport chain. Most chemicals present in our environment have been shown to target the mitochondria; remarkably, patients with PD show a mild deficiency in NADH dehydrogenase activity, signifying a possible link between PD and mitochondrial dysfunction. Inhibition of electron transport complexes generates free radicals that further attack the macromolecules leading to neuropathological conditions. Apart from that, oxidative stress also causes neuroinflammation-mediated neurodegeneration due to the activation of microglial cells. However, the mechanism that causes mitochondrial dysfunction, especially the electron transport chain, in the pathogenesis of PD remains unclear. This review discusses the recent updates and explains the possible mechanisms of mitochondrial toxicant-induced neuroinflammation and neurodegeneration in PD.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Priyadharshini Gnanasekaran
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India,Correspondence: Latchoumycandane Calivarathan, Molecular Pharmacology and Toxicology Laboratory, Department of Biotechnology (Sponsored by DST-FIST), School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, India, Tel +91-6381989116, Email
| |
Collapse
|
12
|
Dong ZX, Tang QH, Li WL, Wang ZW, Li XJ, Fu CM, Li D, Qian K, Tian WL, Guo J. Honeybee (Apis mellifera) resistance to deltamethrin exposure by Modulating the gut microbiota and improving immunity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120340. [PMID: 36208825 DOI: 10.1016/j.envpol.2022.120340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Honeybees (Apis mellifera) are important economic insects and play important roles in pollination and maintenance of ecological balance. However, the use of pesticides has posed a substantial threat to bees in recent years, with the more widely used deltamethrin being the most harmful. In this study, we found that deltamethrin exposure significantly reduced bee survival in a dose-dependent manner (p = 0.025). In addition, metagenomic sequencing further revealed that DM exposure significantly reduced the diversity of the bee gut microbiota (Chao1, p < 0.0001; Shannon, p < 0.0001; Simpson, p < 0.0001) and decreased the relative abundance of core species of the gut microbiota. Importantly, in studies of GF-bees, we found that the colonization of important gut bacteria such as Gilliamella apicola and Lactobacillus kunkeei significantly increased bee resistance to DM (survival rate increased from 16.7 to 66.7%). Interestingly, we found that the immunity-genes Defensin-2 and Toll were significantly upregulated in bees after the colonization of gut bacteria. These results suggest that gut bacteria may protect against DM stress by improving host immunity. Our findings provide an important rationale for protecting honeybees from pollutants from the perspective of gut microbes.
Collapse
Affiliation(s)
- Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Wan-Li Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Zheng-Wei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Jinghong, 650000, China
| | - Xi-Jie Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chao-Min Fu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Dan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Kai Qian
- Department of Thoracic Surgery, Institute of the First People's Hospital of Yunnan Province, Kunming, China; Faculty of Life and Biotechnology, Kunming University of Science and Technology, Kunming, China
| | - Wen-Li Tian
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| |
Collapse
|
13
|
Peng Y, Gu T, Zhong T, Xiao Y, Sun Q. Endoplasmic Reticulum Stress in Metabolic Disorders: Opposite Roles of Phytochemicals and Food Contaminants. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Li S, Wu P, Han B, Yang Q, Wang X, Li J, Deng N, Han B, Liao Y, Liu Y, Zhang Z. Deltamethrin induces apoptosis in cerebrum neurons of quail via promoting endoplasmic reticulum stress and mitochondrial dysfunction. ENVIRONMENTAL TOXICOLOGY 2022; 37:2033-2043. [PMID: 35446475 DOI: 10.1002/tox.23548] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Deltamethrin (DLM) is a widely used and highly effective insecticide. DLM exposure is harmful to animal and human. Quail, as a bird model, has been widely used in the field of toxicology. However, there is little information available in the literature about quail cerebrum damage caused by DLM. Here, we investigated the effect of DLM on quail cerebrum neurons. Four groups of healthy quails were assigned (10 quails in each group), respectively given 0, 15, 30, and 45 mg/kg DLM by gavage for 12 weeks. Through the measurements of quail cerebrum, it was found that DLM exposure induced obvious histological changes, oxidative stress, and neurons apoptosis. To further explore the possible molecular mechanisms, we performed real-time quantitative PCR to detect the expression of endoplasmic reticulum (ER) stress-related mRNA such as glucose regulated protein 78 kD, activating transcription factor 6, inositol requiring enzyme, and protein kinase RNA (PKR)-like ER kinase. In addition, we detected ATP content in quail cerebrum to evaluate the functional status of mitochondria. The study showed that DLM exposure significantly increased the expression of ER stress-related mRNA and decreased ATP content in quail cerebrum tissues. These results suggest that chronic exposure to DLM induces apoptosis of quail cerebrum neurons via promoting ER stress and mitochondrial dysfunction. Furthermore, our results provide a novel explanation for DLM-induced apoptosis of avian cerebrum neurons.
Collapse
Affiliation(s)
- Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Bing Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Deng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Biqi Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuge Liao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- School of Life Sciences, Inner Mongolia Minzu University, Tongliao, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|