1
|
Liu L, Li F, Zhang L, Cheng Y, Wu L, Tie R, Jiang X, Gao W, Liu B, Wei Y, Chang P, Xu J, Zhao H, Zhang L. Cysteine and glycine-rich protein 2 is crucial for maintaining the malignant phenotypes of gliomas through its action on Notch signalling cascade. Toxicol Appl Pharmacol 2024; 487:116969. [PMID: 38744347 DOI: 10.1016/j.taap.2024.116969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Cysteine and glycine-rich protein 2 (CSRP2) is expressed differently in numerous cancers and plays a key role in carcinogenesis. However, the role of CSRP2 in glioma is unknown. This study sought to determine the expression profile and clinical significance of CSRP2 in glioma and explore its biological functions and mechanisms via lentivirus-mediated CSRP2 silencing experiments. Increased CSRP2 was frequently observed in gliomas, which was associated with clinicopathological characteristics and an unfavourable prognosis. Decreasing CSRP2 led to the suppression of malignant proliferation, metastasis and stemness in glioma cells while causing hypersensitivity to chemotherapeutic drugs. Mechanistic investigations revealed that CSRP2 plays a role in mediating the Notch signalling cascade. Silencing CSRP2 decreased the levels of Notch1, cleaved Notch1, HES1 and HEY1, suppressing the Notch signalling cascade. Reactivation of Notch markedly diminished the tumour-inhibiting effects of CSRP2 silencing on the malignant phenotypes of glioma cells. Notably, CSRP2-silencing glioma cells exhibited reduced potential in the formation of xenografts in nude mice in vivo, which was associated with an impaired Notch signalling cascade. These results showed that CSRP2 is overexpressed in glioma and has a crucial role in sustaining the malignant phenotypes of glioma, suggesting that targeting CSRP2 could be a promising strategy for glioma treatment.
Collapse
Affiliation(s)
- Lingtong Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu 610072, China
| | - Fei Li
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Lingxue Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Yingying Cheng
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Lin Wu
- Central Laboratory, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Ru Tie
- Central Laboratory, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Wenwen Gao
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Bochuan Liu
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Yao Wei
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Pan Chang
- Central Laboratory, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China
| | - Jun Xu
- Department of Neurosurgery, Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an 710016, China
| | - Haikang Zhao
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China.
| | - Liang Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an 710038, China; Department of Neurosurgery, Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an 710016, China; Northwest University, No. 1 Xuefu Street, Guodu Education and Technology Industrial Zone, Chang'an District, Xi'an 710127, China.
| |
Collapse
|
2
|
Castillo C, Grieco M, D'Amone S, Lolli MG, Ursini O, Cortese B. Hypoxia effects on glioblastoma progression through YAP/TAZ pathway regulation. Cancer Lett 2024; 588:216792. [PMID: 38453044 DOI: 10.1016/j.canlet.2024.216792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
The resistance of glioblastomas (GBM) to standard therapies poses a clinical challenge with limited survival despite interventions. The tumor microenvironment (TME) orchestrates GBM progression, comprising stromal and immune cells and is characterized by extensive hypoxic regions. Hypoxia activates the hypoxia-inducible factor 1 alpha (HIF-1α) pathway, interacting with the Hippo pathway (YAP/TAZ) in crucial cellular processes. We discuss here the related signaling crosstalk between YAP/TAZ and regions of hypoxia in the TME with particular attention on the MST1/2 and LATS1/2-regulated YAP/TAZ activation, impacting cell proliferation, invasion, and stemness. Moreover, the hypoxia-YAP/TAZ axis influence on angiogenesis, stem cells, and metabolic regulators is defined. By reviewing extracellular matrix alterations activation of YAP/TAZ, modulation of signaling pathways we also discuss the significance of spatial constraints and epigenetic modifications contribution to GBM progression, with potential therapeutic targets in YAP/TAZ-mediated gene regulation. Comprehensive understanding of the hypoxia-Hippo pathway-TME interplay offers insights for novel therapeutic strategies, aiming to provide new directions for treatment.
Collapse
Affiliation(s)
- Carolina Castillo
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Maddalena Grieco
- National Research Council- Institute of Nanotechnology (CNR Nanotec), C/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Stefania D'Amone
- National Research Council- Institute of Nanotechnology (CNR Nanotec), C/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Maria Grazia Lolli
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Ornella Ursini
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Barbara Cortese
- National Research Council - Institute of Nanotechnology (CNR Nanotec), C/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
3
|
Li Y, Fujishita T, Mishiro‐Sato E, Kojima Y, Niu Y, Taketo MM, Urano Y, Sakai T, Enomoto A, Nishida Y, Aoki M. TGF-β signaling promotes desmoid tumor formation via CSRP2 upregulation. Cancer Sci 2024; 115:401-411. [PMID: 38041233 PMCID: PMC10859603 DOI: 10.1111/cas.16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/19/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
Desmoid tumors (DTs), also called desmoid-type fibromatoses, are locally aggressive tumors of mesenchymal origin. In the present study, we developed a novel mouse model of DTs by inducing a local mutation in the Ctnnb1 gene, encoding β-catenin in PDGFRA-positive stromal cells, by subcutaneous injection of 4-hydroxy-tamoxifen. Tumors in this model resembled histologically clinical samples from DT patients and showed strong phosphorylation of nuclear SMAD2. Knockout of SMAD4 in the model significantly suppressed tumor growth. Proteomic analysis revealed that SMAD4 knockout reduced the level of Cysteine-and-Glycine-Rich Protein 2 (CSRP2) in DTs, and treatment of DT-derived cells with a TGF-β receptor inhibitor reduced CSRP2 RNA levels. Knockdown of CSRP2 in DT cells significantly suppressed their proliferation. These results indicate that the TGF-β/CSRP2 axis is a potential therapeutic target for DTs downstream of TGF-β signaling.
Collapse
Affiliation(s)
- Yu Li
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
- Department of Plastic Reconstructive SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Teruaki Fujishita
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Emi Mishiro‐Sato
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
- Molecular Structure CenterInstitute of Transformative Bio‐Molecules (WPI‐ITbM), Nagoya UniversityNagoyaJapan
| | - Yasushi Kojima
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Yanqing Niu
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Makoto Mark Taketo
- Colon Cancer ProjectKyoto University Hospital‐iACT, Graduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Yuya Urano
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Tomohisa Sakai
- Department of Orthopedic SurgeryNagoya University Graduate School of MedicineNagoyaJapan
| | - Atsushi Enomoto
- Department of PathologyNagoya University Graduate School of MedicineNagoyaJapan
| | | | - Masahiro Aoki
- Division of PathophysiologyAichi Cancer Center Research InstituteNagoyaJapan
- Department of Cancer PhysiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
4
|
Wang W, Deng M, Li M, Liu L, Zou J, Qian Y. Exploring Corneal Neovascularization: An Integrated Approach Using Transcriptomics and Proteomics in an Alkali Burn Mouse Model. Invest Ophthalmol Vis Sci 2024; 65:21. [PMID: 38190126 PMCID: PMC10777872 DOI: 10.1167/iovs.65.1.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose Corneal neovascularization (CNV) impairs corneal transparency and visual acuity. The study aims to deepen our understanding of the molecules involved in CNV induced by alkali burns, facilitate a better grasp of CNV mechanisms, and uncover potential therapeutic targets. Methods Eighty-four mice were selected for establishing CNV models via alkali burns. On days 3, 7, and 14 after the burns, corneal observations and histological investigations were conducted. An integrated analysis of RNA sequencing (RNA-seq)-based transcriptomics and label-free quantitative proteomics was performed in both normal and burned corneas. Bioinformatics approaches, encompassing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, were applied to discern differentially expressed genes (DEGs) and crucial signaling pathways. Four potentially CNV-related genes were validated using quantitative real-time PCR (qRT-PCR) and Western blot. Results Significant CNV was observed on the seventh day. Forty-one genes were differentially expressed in neovascularized corneas, with 15 upregulated and 26 downregulated at both mRNA and protein levels. Bioinformatics analysis revealed that these DEGs participated in diverse biological processes, encompassing retinol and retinoic acid metabolism, neutrophil chemotaxis, and actin filament assembly, along with significant enrichment pathways like cytochrome P450, tyrosine, and phenylalanine metabolism. The upregulation of lymphocyte cytosolic protein 1 (LCP1) and cysteine and glycine-rich protein 2 (CSRP2) genes and the downregulation of transglutaminase 2 (TGM2) and transforming growth factor-beta-induced (TGFBI) genes were confirmed. Conclusions We analyzed gene expression differences in mouse corneas 7 days after alkali burns, finding 41 genes with altered expression. The exact role of these genes in CNV is not fully understood, but exploring angiogenesis-related molecules offers potential for CNV treatment or prevention.
Collapse
Affiliation(s)
- Wei Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Manli Deng
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lin Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Zou
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiyong Qian
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Wang H, Zhang Y, Zhong B, Geng Y, Hao J, Jin Q, Hou W. Cysteine and glycine-rich protein 2 retards platelet-derived growth factor-BB-evoked phenotypic transition of airway smooth muscle cells by decreasing YAP/TAZ activity. Cell Biochem Funct 2024; 42:e3896. [PMID: 38081793 DOI: 10.1002/cbf.3896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
Cysteine and glycine-rich protein 2 (Csrp2) has emerged as a key factor in controlling the phenotypic modulation of smooth muscle cells. The phenotypic transition of airway smooth muscle cells (ASMCs) is a pivotal step in developing airway remodeling during the onset of asthma. However, whether Csrp2 mediates the phenotypic transition of ASMCs in airway remodeling during asthma onset is undetermined. This work aimed to address the link between Csrp2 and the phenotypic transition of ASMCs evoked by platelet-derived growth factor (PDGF)-BB in vitro. The overexpression or silencing of Csrp2 in ASMCs was achieved through adenovirus-mediated gene transfer. The expression of mRNA was measured by quantitative real-time-PCR. Protein levels were determined through Western blot analysis. Cell proliferation was detected by EdU assay and Calcein AM assays. Cell cycle distribution was assessed via fluorescence-activated cell sorting assay. Cell migration was evaluated using the scratch-wound assay. The transcriptional activity of Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) was measured using the luciferase reporter assay. A decline in Csrp2 level occurred in PDGF-BB-stimulated ASMCs. Increasing Csrp2 expression repressed the PDGF-BB-evoked proliferation and migration of ASMCs. Moreover, increasing Csrp2 expression impeded the phenotypic change of PDGF-BB-stimulated ASMCs from a contractile phenotype into a synthetic/proliferative phenotype. On the contrary, the opposite effects were observed in Csrp2-silenced ASMCs. The activity of YAP/TAZ was elevated in PDGF-BB-stimulated ASMCs, which was weakened by Csrp2 overexpression or enhanced by Csrp2 silencing. The YAP/TAZ activator could reverse Csrp2-overexpression-mediated suppression of the PDGF-BB-evoked phenotypic switching of ASMCs, while the YAP/TAZ suppressor could dimmish Csrp2-silencing-mediated enhancement on PDGF-BB-evoked phenotypic switching of ASMCs. In summary, Csrp2 serves as a determinant for the phenotypic switching of ASMCs. Increasing Csrp2 is able to impede PDGF-BB-evoked phenotypic change of ASMCs from a synthetic phenotype into a synthetic/proliferative phenotype through the effects on YAP/TAZ. This work implies that Csrp2 may be a key player in airway remodeling during the onset of asthma.
Collapse
Affiliation(s)
- Huiyuan Wang
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Zhang
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Zhong
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Geng
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juanjuan Hao
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiaoyan Jin
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Hou
- Department of Pediatric, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|