1
|
Lan T, Li P, Zhang SJ, Liu SY, Zeng XX, Chai F, Tong YH, Mao ZJ, Wang SW. Paeoniflorin promotes PPARγ expression to suppress HSCs activation by inhibiting EZH2-mediated histone H3K27 trimethylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155477. [PMID: 38489890 DOI: 10.1016/j.phymed.2024.155477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND The alleviating effect of paeoniflorin (Pae) on liver fibrosis has been established; however, the molecular mechanism and specific target(s) underlying this effect remain elusive. PURPOSE This study was to investigate the molecular mechanism underlying the regulatory effect of Pae on hepatic stellate cells (HSCs) activation in liver fibrosis, with a specific focus on the role of Pae in modulating histone methylation modifications. METHODS The therapeutic effect of Pae was evaluated by establishing in vivo and in vitro models of carbon tetrachloride (CCl4)-induced mice and transforming growth factor β1 (TGF-β1)-induced LX-2 cells, respectively. Molecular docking, surface plasmon resonance (SPR), chromatin immunoprecipitation-quantitative real time PCR (ChIP-qPCR) and other molecular biological methods were used to clarify the molecular mechanism of Pae regulating HSCs activation. RESULTS Our study found that Pae inhibited HSCs activation and histone trimethylation modification in liver of CCl4-induced mice and LX-2 cells. We demonstrated that the inhibitory effect of Pae on the activation of HSCs was dependent on peroxisome proliferator-activated receptor γ (PPARγ) expression and enhancer of zeste homolog 2 (EZH2). Mechanistically, Pae directly binded to EZH2 to effectively suppress its enzymatic activity. This attenuation leaded to the suppression of histone H3K27 trimethylation in the PPARγ promoter region, which induced upregulation of PPARγ expression. CONCLUSION This investigative not only sheds new light on the precise targets that underlie the remission of hepatic fibrogenesis induced by Pae but also emphasizes the critical significance of EZH2-mediated H3K27 trimethylation in driving the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Tian Lan
- Laboratory Animal Resources Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100 Minjiang Road, Quzhou 324000, China; Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Ping Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Si-Jia Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Shi-Yu Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Xi-Xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Fang Chai
- Department of Orthopedics, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China
| | - Yu-Hua Tong
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Zhu-Jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Si-Wei Wang
- Laboratory Animal Resources Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100 Minjiang Road, Quzhou 324000, China; Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| |
Collapse
|
2
|
Jiang X, Yang L, Chen G, Feng X, Liu Y, Gao Q, Mai M, Chen CYC, Ye S, Yang Z. Discovery of Kinetin in inhibiting colorectal cancer progression via enhancing PSMB1-mediated RAB34 degradation. Cancer Lett 2024; 584:216600. [PMID: 38159835 DOI: 10.1016/j.canlet.2023.216600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide. Understanding the underlying mechanism driving CRC progression and identifying potential therapeutic drug targets are of utmost urgency. We previously utilized LC-MS-based proteomic profiling to identify proteins associated with postoperative progression in stage II/III CRC. Here, we revealed that proteasome subunit beta type-1 (PSMB1) is an independent predictor for postoperative progression in stage II/III CRC. Mechanistically, PSMB1 binds directly to onco-protein RAB34 and promotes its proteasome-dependent degradation, potentially leading to the inactivation of the MEK/ERK signaling pathway and inhibition of CRC progression. To further identify potential anticancer drugs, we screened a library of 2509 FDA-approved drugs using computer-aided drug design (CADD) and identified Kinetin as a potentiating agent for PSMB1. Functional assays confirmed that Kinetin enhanced the interaction between PSMB1 and RAB34, hence facilitated the degradation of RAB34 protein and decreased the MEK/ERK phosphorylation. Kinetin suppresses CRC progression in patient-derived xenograft (PDX) and liver metastasis models. Conclusively, our study identifies PSMB1 as a potential biomarker and therapeutic target for CRC, and Kinetin as an anticancer drug by enhancing proteasome-dependent onco-protein degradation.
Collapse
Affiliation(s)
- Xuefei Jiang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Lanlan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Guanxing Chen
- Artificial Intelligence Medical Research Center, School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 510275, China
| | - Xingzhi Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Yiting Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Qianling Gao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Mingru Mai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Calvin Yu-Chian Chen
- Department of AI for Science, School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Shubiao Ye
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China; Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510655, China.
| |
Collapse
|