1
|
Thierry S, Jaulin F, Starck C, Ariès P, Schmitz J, Kerkhoff S, Bernard CI, Komorowski M, Warnecke T, Hinkelbein J. Evaluation of free-floating tracheal intubation in weightlessness via ice-pick position with a direct laryngoscopy and classic approach with indirect videolaryngoscopy. NPJ Microgravity 2023; 9:73. [PMID: 37684267 PMCID: PMC10491756 DOI: 10.1038/s41526-023-00314-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/02/2023] [Indexed: 09/10/2023] Open
Abstract
Long duration spaceflights to the Moon or Mars are at risk for emergency medical events. Managing a hypoxemic distress and performing an advanced airway procedure such as oro-tracheal intubation may be complicated under weightlessness due to ergonomic constraints. An emergency free-floating intubation would be dangerous because of high failure rates due to stabilization issues that prohibits its implementation in a space environment. Nevertheless, we hypothesized that two configurations could lead to a high first-pass success score for intubation performed by a free-floating operator. In a non-randomized, controlled, cross-over simulation study during a parabolic flight campaign, we evaluated and compared the intubation performance of free-floating trained operators, using either a conventional direct laryngoscope in an ice-pick position or an indirect laryngoscopy with a video-laryngoscope in a classic position at the head of a high-fidelity simulation manikin, in weightlessness and in normogravity. Neither of the two tested conditions reached the minimal terrestrial ILCOR recommendations (95% first-pass success) and therefore could not be recommended for general implementation under weightlessness conditions. Free-floating video laryngoscopy at the head of the manikin had a significant better success score than conventional direct laryngoscopy in an ice-pick position. Our results, combined with the preexisting literature, emphasis the difficulties of performing oro-tracheal intubation, even for experts using modern airway devices, under postural instability in weightlessness. ClinicalTrials registration number NCT05303948.
Collapse
Affiliation(s)
- Séamus Thierry
- Anaesthesiology Department, South Brittany General Hospital, 56100, Lorient, France.
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.
- Medical Simulation Centre B3S, 56100, Lorient, France.
- Laboratoire Psychologie, Cognition, Communication, Comportement, Université Bretagne Sud, 56000, Vannes, France.
| | - François Jaulin
- Sorbonne Medical University, Assistance Publique des Hôpitaux de Paris, Paris, France
- Human Factor in Healthcare Association, Group FHS, Paris, France
| | - Clément Starck
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany
- Anaesthesiology and Intensive Care Department, University Hospital of Brest, 29200, Brest, France
| | - Philippe Ariès
- Anaesthesiology and Intensive Care Department, University Hospital of Brest, 29200, Brest, France
| | - Jan Schmitz
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital and Medical Faculty, Cologne, Germany
- German Society of Aerospace Medicine (DGLRM), Munich, Germany
| | - Steffen Kerkhoff
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital and Medical Faculty, Cologne, Germany
- German Society of Aerospace Medicine (DGLRM), Munich, Germany
| | - Cécile Isabelle Bernard
- Laboratoire Psychologie, Cognition, Communication, Comportement, Université Bretagne Sud, 56000, Vannes, France
| | - Matthieu Komorowski
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Tobias Warnecke
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany
- Department of Anaesthesiology, Critical Care, Emergency Medicine and Pain Therapy, Hospital of Oldenburg, Medical Campus University of Oldenburg, Oldenburg, Germany
| | - Jochen Hinkelbein
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital and Medical Faculty, Cologne, Germany
- German Society of Aerospace Medicine (DGLRM), Munich, Germany
| |
Collapse
|
2
|
Overbeek R, Schmitz J, Rehnberg L, Benyoucef Y, Dusse F, Russomano T, Hinkelbein J. Effectiveness of CPR in Hypogravity Conditions-A Systematic Review. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121958. [PMID: 36556323 PMCID: PMC9785883 DOI: 10.3390/life12121958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
(1) Background: Cardiopulmonary resuscitation (CPR), as a form of basic life support, is critical for maintaining cardiac and cerebral perfusion during cardiac arrest, a medical condition with high expected mortality. Current guidelines emphasize the importance of rapid recognition and prompt initiation of high-quality CPR, including appropriate cardiac compression depth and rate. As space agencies plan missions to the Moon or even to explore Mars, the duration of missions will increase and with it the chance of life-threatening conditions requiring CPR. The objective of this review was to examine the effectiveness and feasibility of chest compressions as part of CPR following current terrestrial guidelines under hypogravity conditions such as those encountered on planetary or lunar surfaces; (2) Methods: A systematic literature search was conducted by two independent reviewers (PubMed, Cochrane Register of Controlled Trials, ResearchGate, National Aeronautics and Space Administration (NASA)). Only controlled trials conducting CPR following guidelines from 2010 and after with advised compression depths of 50 mm and above were included; (3) Results: Four different publications were identified. All studies examined CPR feasibility in 0.38 G simulating the gravitational force on Mars. Two studies also simulated hypogravity on the Moon with a force of 0.17 G/0,16 G. All CPR protocols consisted of chest compressions only without ventilation. A compression rate above 100/s could be maintained in all studies and hypogravity conditions. Two studies showed a significant reduction of compression depth in 0.38 G (-7.2 mm/-8.71 mm) and 0.17 G (-12.6 mm/-9.85 mm), respectively, with nearly similar heart rates, compared to 1 G conditions. In the other two studies, participants with higher body weight could maintain a nearly adequate mean depth while effort measured by heart rate (+23/+13.85 bpm) and VO2max (+5.4 mL·kg-1·min-1) increased significantly; (4) Conclusions: Adequate CPR quality in hypogravity can only be achieved under increased physical stress to compensate for functional weight loss. Without this extra effort, the depth of compression quickly falls below the guideline level, especially for light-weight rescuers. This means faster fatigue during resuscitation and the need for more frequent changes of the resuscitator than advised in terrestrial guidelines. Alternative techniques in the straddling position should be further investigated in hypogravity.
Collapse
Affiliation(s)
- Remco Overbeek
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence:
| | - Jan Schmitz
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- German Society of Aerospace Medicine (DGLRM), 80331 Munich, Germany
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), 51149 Cologne, Germany
| | - Lucas Rehnberg
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- InnovaSpace, London SE28 0LZ, UK
| | - Yacine Benyoucef
- Spacemedex, Valbonne Sophia-Antipolis, 06560 Valbonne, France
- Department of Physiatry and Nursing, Faculty of Health Sciences, IIS Aragon, University of Zaragoza, 50009 Zaragoza, Spain
| | - Fabian Dusse
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | | | - Jochen Hinkelbein
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- German Society of Aerospace Medicine (DGLRM), 80331 Munich, Germany
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), 51149 Cologne, Germany
- Department of Anesthesiology, Intensive Care Medicine and Emergency Medicine, Johannes-Wesling-Universitätsklinikum Minden, Ruhr-Universität Bochum, 32429 Minden, Germany
| |
Collapse
|
3
|
Hinkelbein J, Ahlbäck A, Antwerber C, Dauth L, DuCanto J, Fleischhammer E, Glatz C, Kerkhoff S, Mathes A, Russomano T, Schmitz J, Starck C, Thierry S, Warnecke T. Using supraglottic airways by paramedics for airway management in analogue microgravity increases speed and success of ventilation. Sci Rep 2021; 11:9286. [PMID: 33927212 PMCID: PMC8085007 DOI: 10.1038/s41598-021-88008-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/07/2021] [Indexed: 11/09/2022] Open
Abstract
In the next few years, the number of long-term space missions will significantly increase. Providing safe concepts for emergencies including airway management will be a highly challenging task. The aim of the present trial is to compare different airway management devices in simulated microgravity using a free-floating underwater scenario. Five different devices for airway management [laryngeal mask (LM), laryngeal tube (LT), I-GEL, direct laryngoscopy (DL), and video laryngoscopy (VL)] were compared by n = 20 paramedics holding a diving certificate in a randomized cross-over setting both under free-floating conditions in a submerged setting (pool, microgravity) and on ground (normogravity). The primary endpoint was the successful placement of the airway device. The secondary endpoints were the number of attempts and the time to ventilation. A total of 20 paramedics (3 female, 17 male) participated in this study. Success rate was highest for LM and LT and was 100% both during simulated microgravity and normogravity followed by the I-GEL (90% during microgravity and 95% during normogravity). However, the success rate was less for both DL (60% vs. 95%) and VL (20% vs. 60%). Fastest ventilation was performed with the LT both in normogravity (13.7 ± 5.3 s; n = 20) and microgravity (19.5 ± 6.1 s; n = 20). For the comparison of normogravity and microgravity, time to ventilation was shorter for all devices on the ground (normogravity) as compared underwater (microgravity). In the present study, airway management with supraglottic airways and laryngoscopy was shown to be feasible. Concerning the success rate and time to ventilation, the optimum were supraglottic airways (LT, LM, I-GEL) as their placement was faster and associated with a higher success rate. For future space missions, the use of supraglottic airways for airway management seems to be more promising as compared to tracheal intubation by DL or VL.
Collapse
Affiliation(s)
- Jochen Hinkelbein
- Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany. .,Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany. .,German Society of Aerospace Medicine (DGLRM), Munich, Germany.
| | - Anton Ahlbäck
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,Department of Anaesthesiology and Intensive Care, Örebro University Hospital , Örebro, Sweden
| | - Christine Antwerber
- Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Lisa Dauth
- Department for Anaesthesiology and Intensive Care Medicine, St. Elisabeth Hospital, Cologne, Germany
| | - James DuCanto
- Department of Anaesthesiology, Medical College of Wisconsin, Aurora St. Luke's Medical Center, Milwaukee, USA
| | - Elisabeth Fleischhammer
- Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Carlos Glatz
- Department of Medicine, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Steffen Kerkhoff
- Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,German Society of Aerospace Medicine (DGLRM), Munich, Germany
| | - Alexander Mathes
- Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Thais Russomano
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, Kings College London, London, UK
| | - Jan Schmitz
- Department of Anaesthesiology and Intensive Care Medicine, Medical Faculty, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,German Society of Aerospace Medicine (DGLRM), Munich, Germany
| | - Clement Starck
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,Anaesthesiology and Intensive Care Department, University Hospital of Brest, Brest, France
| | - Seamus Thierry
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,Anaesthesiology Department, South Brittany General Hospital, Lorient, France
| | - Tobias Warnecke
- Department of Anaesthesiology, Critical Care, Emergency Medicine and Pain Therapy, Hospital of Oldenburg, Medical Campus University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
4
|
Sriharan S, Kay G, Lee JCY, Pollock RD, Russomano T. Cardiopulmonary Resuscitation in Hypogravity Simulation. Aerosp Med Hum Perform 2021; 92:106-112. [PMID: 33468291 DOI: 10.3357/amhp.5733.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND: Limited research exists into extraterrestrial CPR, despite the drive for interplanetary travel. This study investigated whether the terrestrial CPR method can provide quality external chest compressions (ECCs) in line with the 2015 UK resuscitation guidelines during ground-based hypogravity simulation. It also explored whether gender, weight, and fatigue influence CPR quality.METHODS: There were 21 subjects who performed continuous ECCs for 5 min during ground-based hypogravity simulations of Mars (0.38 G) and the Moon (0.16 G), with Earths gravity (1 G) as the control. Subjects were unloaded using a body suspension device (BSD). ECC depth and rate, heart rate (HR), ventilation (VE), oxygen uptake (Vo₂), and Borg scores were measured.RESULTS: ECC depth was lower in 0.38 G (42.9 9 mm) and 0.16 G (40.8 9 mm) compared to 1 G and did not meet current resuscitation guidelines. ECC rate was adequate in all gravity conditions. There were no differences in ECC depth and rate when comparing gender or weight. ECC depth trend showed a decrease by min 5 in 0.38 G and by min 2 in 0.16 G. Increases in HR, VE, and Vo₂ were observed from CPR min 1 to min 5.DISCUSSION: The terrestrial method of CPR provides a consistent ECC rate but does not provide adequate ECC depths in simulated hypogravities. The results suggest that a mixed-gender space crew of varying bodyweights may not influence ECC quality. Extraterrestrial-specific CPR guidelines are warranted. With a move to increasing ECC rate, permitting lower ECC depths and substituting rescuers after 1 min in lunar gravity and 4 min in Martian gravity is recommended.Sriharan S, Kay G, Lee JCY, Pollock RD, Russomano T. Cardiopulmonary resuscitation in hypogravity simulation. Aerosp Med Hum Perform. 2021; 92(2):106112.
Collapse
|
5
|
Hinkelbein J, Kerkhoff S, Adler C, Ahlbäck A, Braunecker S, Burgard D, Cirillo F, De Robertis E, Glaser E, Haidl TK, Hodkinson P, Iovino IZ, Jansen S, Johnson KVL, Jünger S, Komorowski M, Leary M, Mackaill C, Nagrebetsky A, Neuhaus C, Rehnberg L, Romano GM, Russomano T, Schmitz J, Spelten O, Starck C, Thierry S, Velho R, Warnecke T. Cardiopulmonary resuscitation (CPR) during spaceflight - a guideline for CPR in microgravity from the German Society of Aerospace Medicine (DGLRM) and the European Society of Aerospace Medicine Space Medicine Group (ESAM-SMG). Scand J Trauma Resusc Emerg Med 2020; 28:108. [PMID: 33138865 PMCID: PMC7607644 DOI: 10.1186/s13049-020-00793-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With the "Artemis"-mission mankind will return to the Moon by 2024. Prolonged periods in space will not only present physical and psychological challenges to the astronauts, but also pose risks concerning the medical treatment capabilities of the crew. So far, no guideline exists for the treatment of severe medical emergencies in microgravity. We, as a international group of researchers related to the field of aerospace medicine and critical care, took on the challenge and developed a an evidence-based guideline for the arguably most severe medical emergency - cardiac arrest. METHODS After the creation of said international group, PICO questions regarding the topic cardiopulmonary resuscitation in microgravity were developed to guide the systematic literature research. Afterwards a precise search strategy was compiled which was then applied to "MEDLINE". Four thousand one hundred sixty-five findings were retrieved and consecutively screened by at least 2 reviewers. This led to 88 original publications that were acquired in full-text version and then critically appraised using the GRADE methodology. Those studies formed to basis for the guideline recommendations that were designed by at least 2 experts on the given field. Afterwards those recommendations were subject to a consensus finding process according to the DELPHI-methodology. RESULTS We recommend a differentiated approach to CPR in microgravity with a division into basic life support (BLS) and advanced life support (ALS) similar to the Earth-based guidelines. In immediate BLS, the chest compression method of choice is the Evetts-Russomano method (ER), whereas in an ALS scenario, with the patient being restrained on the Crew Medical Restraint System, the handstand method (HS) should be applied. Airway management should only be performed if at least two rescuers are present and the patient has been restrained. A supraglottic airway device should be used for airway management where crew members untrained in tracheal intubation (TI) are involved. DISCUSSION CPR in microgravity is feasible and should be applied according to the Earth-based guidelines of the AHA/ERC in relation to fundamental statements, like urgent recognition and action, focus on high-quality chest compressions, compression depth and compression-ventilation ratio. However, the special circumstances presented by microgravity and spaceflight must be considered concerning central points such as rescuer position and methods for the performance of chest compressions, airway management and defibrillation.
Collapse
Affiliation(s)
- Jochen Hinkelbein
- German Society of Aviation and Space Medicine (DGLRM), Munich, Germany. .,Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, 50937, Cologne, Germany. .,Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.
| | - Steffen Kerkhoff
- German Society of Aviation and Space Medicine (DGLRM), Munich, Germany.,Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, 50937, Cologne, Germany.,Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany
| | - Christoph Adler
- Department of Internal Medicine III, Heart Centre of the University of Cologne, Cologne, Germany.,Fire Department City of Cologne, Institute for Security Science and Rescue Technology, Cologne, Germany
| | - Anton Ahlbäck
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,Department of Anaesthesia and Intensive Care, Örebro University Hospital, Örebro, Sweden
| | - Stefan Braunecker
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,Department of Anesthesiology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Daniel Burgard
- Department of Cardiology and Angiology, Heart Center Duisburg, Evangelisches Klinikum Niederrhein, Duisburg, Germany
| | - Fabrizio Cirillo
- Department of Anaesthesia and Intensive Care, Santa Maria delle Grazie Hospital, Pozzuoli, Naples, Italy
| | - Edoardo De Robertis
- Division of Anaesthesia, Analgesia, and Intensive Care, Department of Surgical and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Eckard Glaser
- German Society of Aviation and Space Medicine (DGLRM), Munich, Germany.,Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,, Gerbrunn, Germany
| | - Theresa K Haidl
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Pete Hodkinson
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,Aerospace Medicine, Centre of Human and Applied Physiological Sciences, King's College, London, UK
| | - Ivan Zefiro Iovino
- Department of Anaesthesia and Intensive Care, Santa Maria delle Grazie Hospital, Pozzuoli, Naples, Italy
| | - Stefanie Jansen
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Cologne, 50937, Cologne, Germany
| | | | - Saskia Jünger
- Cologne Center for Ethics, Rights, Economics, and Social Sciences of Health (CERES), University of Cologne and University Hospital of Cologne, Cologne, Germany
| | - Matthieu Komorowski
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Exhibition road, London, SW7 2AZ, UK
| | - Marion Leary
- School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Christina Mackaill
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,Accident and Emergency Department, Queen Elizabeth University Hospital, Glasgow, Scotland
| | - Alexander Nagrebetsky
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Christopher Neuhaus
- German Society of Aviation and Space Medicine (DGLRM), Munich, Germany.,Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lucas Rehnberg
- University Hospital Southampton NHS Foundation Trust, Anaesthetic Department, Southampton, UK
| | | | - Thais Russomano
- Centre of Human and Applied Physiological Sciences, Kings College London, London, UK
| | - Jan Schmitz
- German Society of Aviation and Space Medicine (DGLRM), Munich, Germany.,Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, 50937, Cologne, Germany.,Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany
| | - Oliver Spelten
- Department of Anaesthesiology and Intensive Care Medicine, Schön Klinik Düsseldorf, Am Heerdter Krankenhaus 2, 40549, Düsseldorf, Germany
| | - Clément Starck
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,Anesthesiology Department, Brest University Hospital, Brest, France
| | - Seamus Thierry
- Space Medicine Group, European Society of Aerospace Medicine (ESAM), Cologne, Germany.,Anesthesiology Department, Bretagne Sud General Hospital, Lorient, France.,Medical and Maritime Simulation Center, Lorient, France.,Laboratory of Psychology, Cognition, Communication and Behavior, University of Bretagne Sud, Vannes, France
| | - Rochelle Velho
- Academic Department of Anaesthesia, Critical Care, Pain and Resuscitation, University Hospitals Birmingham, Heart of England NHS Foundation Trust, Birmingham, UK
| | - Tobias Warnecke
- University Department for Anesthesia, Intensive and Emergency Medicine and Pain Management, Hospital Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Hinkelbein J. Spaceflight: the final frontier for airway management? Br J Anaesth 2020; 125:e5-e6. [PMID: 31918846 DOI: 10.1016/j.bja.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Jochen Hinkelbein
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Cologne, Cologne, Germany; German Society of Aerospace Medicine (DGLRM), Munich, Germany; European Society of Aerospace Medicine (ESAM), Space Medicine Group, Cologne, Germany.
| |
Collapse
|
7
|
Resuscitation and Evacuation from Low Earth Orbit: A Systematic Review. Prehosp Disaster Med 2019; 34:521-531. [PMID: 31462335 DOI: 10.1017/s1049023x19004734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Provision of critical care and resuscitation was not practical during early missions into space. Given likely advancements in commercial spaceflight and increased human presence in low Earth orbit (LEO) in the coming decades, development of these capabilities should be considered as the likelihood of emergent medical evacuation increases. METHODS PubMed, Web of Science, Google Scholar, National Aeronautics and Space Administration (NASA) Technical Server, and Defense Technical Information Center were searched from inception to December 2018. Articles specifically addressing critical care and resuscitation during emergency medical evacuation from LEO were selected. Evidence was graded using Oxford Centre for Evidence-Based Medicine guidelines. RESULTS The search resulted in 109 articles included in the review with a total of 2,177 subjects. There were two Level I systematic reviews, 33 Level II prospective studies with 647 subjects, seven Level III retrospective studies with 1,455 subjects, and two Level IV case series with four subjects. There were two Level V case reports and 63 pertinent review articles. DISCUSSION The development of a medical evacuation capability is an important consideration for future missions. This review revealed potential hurdles in the design of a dedicated LEO evacuation spacecraft. The ability to provide critical care and resuscitation during transport is likely to be limited by mass, volume, cost, and re-entry forces. Stabilization and treatment of the patient should be performed prior to departure, if possible, and emphasis should be on a rapid and safe return to Earth for definitive care.
Collapse
|