1
|
Musicò A, Bergamaschi G, Strada A, Frigerio R, Gagni P, Cretich M, Gori A. Hybrid Peptide-Agarose Hydrogels for 3D Immunoassays. Methods Mol Biol 2023; 2578:53-62. [PMID: 36152280 DOI: 10.1007/978-1-0716-2732-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent advances in biosensing analytical platforms have brought relevant outcomes for novel diagnostic and therapy-oriented applications. In this context, 3D droplet microarrays, where hydrogels are used as matrices to stably entrap biomolecules onto analytical surfaces, potentially provide relevant advantages over conventional 2D assays, such as increased loading capacity, lower nonspecific binding, and enhanced signal-to-noise ratio. Here, we describe a hybrid hydrogel composed of a self-assembling peptide and commercial agarose (AG) as a suitable matrix for 3D microarray bioassays. The hybrid hydrogel is printable and self-adhesive and allows analyte diffusion. As a showcase example, we describe its application in a diagnostic immunoassay for the detection of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Angelo Musicò
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC-CNR), Milan, Italy.
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Greta Bergamaschi
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC-CNR), Milan, Italy
| | - Alessandro Strada
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC-CNR), Milan, Italy
| | - Roberto Frigerio
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC-CNR), Milan, Italy
| | - Paola Gagni
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC-CNR), Milan, Italy
| | - Marina Cretich
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC-CNR), Milan, Italy
| | - Alessandro Gori
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC-CNR), Milan, Italy
| |
Collapse
|
2
|
Damin F, Galbiati S, Ferrari M, Chiari M. DNA microarray-based solid-phase PCR on copoly (DMA-NAS-MAPS) silicon coated slides: An example of relevant clinical application. Biosens Bioelectron 2015; 78:367-373. [PMID: 26655175 DOI: 10.1016/j.bios.2015.11.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
In a previous study we developed a highly sensitive DNA microarray for the detection of common KRAS oncogenic mutations, which has been proven to be highly specific in assigning the correct genotype without any enrichment strategy even in the presence of minority mutated alleles. However, in this approach, the need of a spotter for the deposition of the purified PCR products on the substrates and the purification step of the conventional PCR are serious drawbacks. To overcome these limitations we have introduced the solid-phase polymerase chain reaction (SP-PCR) to form the array of PCR products starting from the oligonucleotide primers. This work was possible thanks to the great thermal stability of the copoly (DMA-NAS-MAPS) coating which withstands PCR thermal cycling temperatures. As an example of the application of this platform we performed the analysis of six common mutations in the codon 12 of KRAS gene (G12A, G12C, G12D, G12R, G12S, and G12V). In conclusion solid-phase PCR, combined with dual-color hybridization, allows mutation analysis in a shorter time span and is more suitable for automation.
Collapse
Affiliation(s)
- Francesco Damin
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco, 9, 20131 Milano, Italy.
| | - Silvia Galbiati
- Unit of Genomic for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maurizio Ferrari
- Unit of Genomic for the Diagnosis of Human Pathologies, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Laboratory of Clinical Molecular Biology, IRCCS Ospedale San Raffaele, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Marcella Chiari
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco, 9, 20131 Milano, Italy
| |
Collapse
|
3
|
Krizkova S, Heger Z, Zalewska M, Moulick A, Adam V, Kizek R. Nanotechnologies in protein microarrays. Nanomedicine (Lond) 2015; 10:2743-55. [PMID: 26039143 DOI: 10.2217/nnm.15.81] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein microarray technology became an important research tool for study and detection of proteins, protein-protein interactions and a number of other applications. The utilization of nanoparticle-based materials and nanotechnology-based techniques for immobilization allows us not only to extend the surface for biomolecule immobilization resulting in enhanced substrate binding properties, decreased background signals and enhanced reporter systems for more sensitive assays. Generally in contemporarily developed microarray systems, multiple nanotechnology-based techniques are combined. In this review, applications of nanoparticles and nanotechnologies in creating protein microarrays, proteins immobilization and detection are summarized. We anticipate that advanced nanotechnologies can be exploited to expand promising fields of proteins identification, monitoring of protein-protein or drug-protein interactions, or proteins structures.
Collapse
Affiliation(s)
- Sona Krizkova
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Zbynek Heger
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Marta Zalewska
- Department of Biomedical & Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland, European Union
| | - Amitava Moulick
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Vojtech Adam
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| | - Rene Kizek
- Department of Chemistry & Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic, European Union.,Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic, European Union
| |
Collapse
|
4
|
Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem 2014; 406:5589-612. [DOI: 10.1007/s00216-014-7968-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/14/2014] [Accepted: 06/12/2014] [Indexed: 12/26/2022]
|
5
|
Development of a high-sensitivity immunoassay for amyloid-beta 1-42 using a silicon microarray platform. Biosens Bioelectron 2013; 47:490-5. [PMID: 23624018 DOI: 10.1016/j.bios.2013.03.077] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/29/2013] [Indexed: 12/25/2022]
Abstract
In this work, we present a highly sensitive immunoassay for the detection of the Alzheimer's disease (AD) biomarker amyloid-beta 1-42 (Aβ42) based on a label/label-free microarray platform that utilises silicon/silicon oxide (Si/SiO2) substrates. Due to constructive interference, Si/SiO2 layered slides allow enhancement of the fluorescence intensity on the surface with significant improvements in sensitivity of detection. The same substrate allows the label-free multiplexed detection of targets using the Interferometric Reflectance Imaging Sensor (IRIS), a platform amenable to high-throughput detection of mass changes on microarray substrates. Silicon chips are coated with copoly(DMA-NAS-MAPS), a ter-copolymer made from dimethylacrylamide (DMA), 3-(trimethoxysilyl)propyl methacrylate (MAPS) and N-Acryloyloxy succinimide (NAS). Aβ42 aggregation was studied by circular dichroism (CD), and an optimal antibody pair was selected based on specificity of recognition, binding yield and spot morphology of the capture antibody on the coated silicon surface as analysed by IRIS. Finally, incubation conditions were optimised, and an unprecedented Aβ42 detection sensitivity of 73pg/mL was achieved using an artificial cerebrospinal fluid (CSF) sample. Because of their multiplexing capability, low volume sample consumption and efficient sample-to-result time for population-wide screening, microarrays are ideal tools for the identification of individuals with preclinical AD who are still cognitively healthy. The high sensitivity of this assay format, potentially coupled to a pre-concentration step or signal-enhancing modifications, could lead to a non-invasive, inexpensive diagnostic tool for population-wide screening of AD biomarkers in biological fluids other than CSF, such as serum or plasma.
Collapse
|
6
|
Galbiati S, Damin F, Pinzani P, Mancini I, Vinci S, Chiari M, Orlando C, Cremonesi L, Ferrari M. A new microarray substrate for ultra-sensitive genotyping of KRAS and BRAF gene variants in colorectal cancer. PLoS One 2013; 8:e59939. [PMID: 23536897 PMCID: PMC3607556 DOI: 10.1371/journal.pone.0059939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 02/21/2013] [Indexed: 12/11/2022] Open
Abstract
Molecular diagnostics of human cancers may increase accuracy in prognosis, facilitate the selection of the optimal therapeutic regimen, improve patient outcome, reduce costs of treatment and favour development of personalized approaches to patient care. Moreover sensitivity and specificity are fundamental characteristics of any diagnostic method. We developed a highly sensitive microarray for the detection of common KRAS and BRAF oncogenic mutations. In colorectal cancer, KRAS and BRAF mutations have been shown to identify a cluster of patients that does not respond to anti-EGFR therapies; the identification of these mutations is therefore clinically extremely important. To verify the technical characteristics of the microarray system for the correct identification of the KRAS mutational status at the two hotspot codons 12 and 13 and of the BRAFV600E mutation in colorectal tumor, we selected 75 samples previously characterized by conventional and CO-amplification at Lower Denaturation temperature-PCR (COLD-PCR) followed by High Resolution Melting analysis and direct sequencing. Among these samples, 60 were collected during surgery and immediately steeped in RNAlater while the 15 remainders were formalin-fixed and paraffin-embedded (FFPE) tissues. The detection limit of the proposed method was different for the 7 KRAS mutations tested and for the V600E BRAF mutation. In particular, the microarray system has been able to detect a minimum of about 0.01% of mutated alleles in a background of wild-type DNA. A blind validation displayed complete concordance of results. The excellent agreement of the results showed that the new microarray substrate is highly specific in assigning the correct genotype without any enrichment strategy.
Collapse
Affiliation(s)
- Silvia Galbiati
- San Raffaele Scientific Institute, Genomic Unit for the Diagnosis of Human Pathologies, Center for Translational Genomics and Bioinformatics, Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Taitt CR, Shriver-Lake LC, Anderson GP, Ligler FS. Surface modification and biomolecule immobilization on polymer spheres for biosensing applications. Methods Mol Biol 2011; 726:77-94. [PMID: 21424444 DOI: 10.1007/978-1-61779-052-2_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Microspheres and nanospheres are being used in many of today's biosensing applications for automated sample processing, flow cytometry, signal amplification in microarrays, and labeling in multiplexed analyses. The surfaces of the spheres/particles need to be modified with proteins and other biomolecules to be used in these sensing applications. This chapter contains protocols to modify carboxyl- and amine-coated polymer spheres with proteins and peptides.
Collapse
Affiliation(s)
- Chris R Taitt
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | | | | | | |
Collapse
|
9
|
Liu Y, Guo CX, Hu W, Lu Z, Li CM. Sensitive protein microarray synergistically amplified by polymer brush-enhanced immobilizations of both probe and reporter. J Colloid Interface Sci 2011; 360:593-9. [PMID: 21640998 DOI: 10.1016/j.jcis.2011.05.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 05/09/2011] [Accepted: 05/10/2011] [Indexed: 01/28/2023]
Abstract
Great challenge remains to continuously improve sensitivity of protein microarrays for broad applications. A copolymer brush is in situ synthesized on both substrate and silica nanoparticle (SNP) surface to efficiently immobilize probe and reporter protein respectively for synergistic amplification of protein microarray signals. As a demonstration, sandwich immunoassay for a cancer biomarker carcinoembryonic antigen (CEA) detection is performed on microarray platform, showing a limit of detection (LOD) of 10 pg/ml and dynamic range of 10 pg/ml to 100 ng/ml. Two orders improvement of LOD is achieved in comparison to the small crosslinker-activated substrate. The improved sensitivity is attributed to not only the high immobilization amount of both probe and reporter but also the favorite protein binding orientations offered by the flexible brushes. This work provides a universal approach to inexpensively and significantly improve protein microarray sensitivity.
Collapse
Affiliation(s)
- Yingshuai Liu
- Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715, PR China
| | | | | | | | | |
Collapse
|
10
|
Protein arrays on high-surface-area plasma-nanotextured poly(dimethylsiloxane)-coated glass slides. Colloids Surf B Biointerfaces 2011; 83:270-6. [DOI: 10.1016/j.colsurfb.2010.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/18/2010] [Accepted: 11/23/2010] [Indexed: 11/23/2022]
|
11
|
Allergen microarrays on high-sensitivity silicon slides. Anal Bioanal Chem 2010; 398:1723-33. [PMID: 20730579 DOI: 10.1007/s00216-010-4077-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/30/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
We have recently introduced a silicon substrate for high-sensitivity microarrays, coated with a functional polymer named copoly(DMA-NAS-MAPS). The silicon dioxide thickness has been optimized to produce a fluorescence intensification due to the optical constructive interference between the incident and reflected lights of the fluorescent radiation. The polymeric coating efficiently suppresses aspecific interaction, making the low background a distinctive feature of these slides. Here, we used the new silicon microarray substrate for allergy diagnosis, in the detection of specific IgE in serum samples of subjects with sensitizations to inhalant allergens. We compared the performance of silicon versus glass substrates. Reproducibility data were measured. Moreover, receiver-operating characteristic (ROC) curves were plotted to discriminate between the allergy and no allergy status in 30 well-characterized serum samples. We found that reproducibility of the microarray on glass supports was not different from available data on allergen arrays, whereas the reproducibility on the silicon substrate was consistently better than on glass. Moreover, silicon significantly enhanced the performance of the allergen microarray as compared to glass in accurately identifying allergic patients spanning a wide range of specific IgE titers to the considered allergens.
Collapse
|
12
|
Liu Y, Hu W, Lu Z, Li CM. Photografted poly(methyl methacrylate)-based high performance protein microarray for hepatitis B virus biomarker detection in human serum. MEDCHEMCOMM 2010. [DOI: 10.1039/c0md00032a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
INOUE Y, NISHIWAKI M, KUDO Y, SEINO N, NAKAGAMA T, UCHIYAMA K. Preparation of Two-dimensionally Ordered Microbeads Structure Dispensed with an Ink-jet and Its Application to ELISA. ANAL SCI 2009; 25:235-9. [DOI: 10.2116/analsci.25.235] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yoriko INOUE
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| | - Moeka NISHIWAKI
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| | - Yuki KUDO
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| | - Nobuko SEINO
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| | - Tatsuro NAKAGAMA
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| | - Katsumi UCHIYAMA
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University
| |
Collapse
|
14
|
Filipponi L, Sawant PD, Fulga F, Nicolau DV. Microbeads on microposts: an inverted architecture for bead microarrays. Biosens Bioelectron 2008; 24:1850-7. [PMID: 18976898 DOI: 10.1016/j.bios.2008.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/08/2008] [Accepted: 09/11/2008] [Indexed: 12/18/2022]
Abstract
The rapid development of genomics and proteomics requires accelerated improvement of the microarrays density, multiplexing, readout capabilities and cost-effectiveness. The bead arrays are increasingly attractive because of their self-assembly-based fabrication, which alleviates many problems of top-down microfabrication. Here we present a simple, reliable, robust and modular technique for the fabrication of bead microarrays, which combines the directed assembling of beads in microstructures and PDMS-based replica molding. The beads are first self-assembled in pyramidal microwells fabricated by anisotropic etching of silicon substrates, then transferred on the apex of PDMS pyramids that replicate the silicon microstructures. The arrays are chemically and biochemically robust; they are spatially addressable and have the potential for being informationally addressable; and they appear to offer better readout capabilities than the classical microarrays.
Collapse
Affiliation(s)
- Luisa Filipponi
- BioNanoEngineering Labs, Faculty of Engineering and Industrial Science, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia
| | | | | | | |
Collapse
|
15
|
Seidel M, Niessner R. Automated analytical microarrays: a critical review. Anal Bioanal Chem 2008; 391:1521-44. [PMID: 18504563 PMCID: PMC7080066 DOI: 10.1007/s00216-008-2039-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/25/2008] [Accepted: 02/28/2008] [Indexed: 11/24/2022]
Abstract
Microarrays provide a powerful analytical tool for the simultaneous detection of multiple analytes in a single experiment. The specific affinity reaction of nucleic acids (hybridization) and antibodies towards antigens is the most common bioanalytical method for generating multiplexed quantitative results. Nucleic acid-based analysis is restricted to the detection of cells and viruses. Antibodies are more universal biomolecular receptors that selectively bind small molecules such as pesticides, small toxins, and pharmaceuticals and to biopolymers (e.g. toxins, allergens) and complex biological structures like bacterial cells and viruses. By producing an appropriate antibody, the corresponding antigenic analyte can be detected on a multiplexed immunoanalytical microarray. Food and water analysis along with clinical diagnostics constitute potential application fields for multiplexed analysis. Diverse fluorescence, chemiluminescence, electrochemical, and label-free microarray readout systems have been developed in the last decade. Some of them are constructed as flow-through microarrays by combination with a fluidic system. Microarrays have the potential to become widely accepted as a system for analytical applications, provided that robust and validated results on fully automated platforms are successfully generated. This review gives an overview of the current research on microarrays with the focus on automated systems and quantitative multiplexed applications.
Collapse
Affiliation(s)
- Michael Seidel
- Chair for Analytical Chemistry and Institute of Hydrochemistry, Technische Universität München, Marchioninistrasse 17, 81377, München, Germany.
| | | |
Collapse
|
16
|
Chiari M, Cretich M, Damin F, Di Carlo G, Oldani C. Advanced polymers for molecular recognition and sensing at the interface. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 866:89-103. [DOI: 10.1016/j.jchromb.2008.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 12/07/2007] [Accepted: 01/04/2008] [Indexed: 11/29/2022]
|
17
|
Heyries KA, Loughran MG, Hoffmann D, Homsy A, Blum LJ, Marquette CA. Microfluidic biochip for chemiluminescent detection of allergen-specific antibodies. Biosens Bioelectron 2008; 23:1812-8. [PMID: 18396032 DOI: 10.1016/j.bios.2008.02.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/01/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
Protein microarrays for allergen-specific antibodies detection were integrated in microfluidic chips, with imaging chemiluminescence as the analytical technique. This paper demonstrates the feasibility of miniaturized chemiluminescent ELISA by presenting rapid, reproducible and sensitive detection of protein antibodies using microfluidics. Three different proteins, beta-lactoglobulin, peanut lectin and human IgG were immobilized via a "macromolecules to polydimethylsiloxane elastomer (PDMS) transfer" protocol and used as capturing agent for the detection of specific antibodies. A convenient and reversible procedure was used to bond the PDMS microarray substrate to complimentary SU-8/glass microfluidic reaction chambers. The hydrodynamic behaviours of the three proteins interactions within the micro-chambers were investigated to select the most efficient flowing parameters (come to terms with the assay time and performances). The use of optimized conditions led to the concomitant detection of three specific antibodies at pM level in 300 microL and using 6 min sample incubation time. Finally, sera from allergic patients were assayed using the microfluidic device modified with apple hazelnut and pollen allergen. The results obtained compared favourably with those obtained with the classical Pharmacia CAP system.
Collapse
Affiliation(s)
- Kevin A Heyries
- Laboratoire de Génie Enzymatique et Biomoléculaire, Université Lyon 1, CNRS 5246 ICBMS, Bât CPE, Villeurbanne Cedex, France
| | | | | | | | | | | |
Collapse
|