1
|
Briki M, Zhu Y, Gao Y, Shao M, Ding H, Ji H. Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:458. [PMID: 28823066 DOI: 10.1007/s10661-017-6153-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Mining and smelting areas in Hezhang have generated a large amount of heavy metals into the environment. For that cause, an evaluative study on human exposure to heavy metals including Co, Ni, Cu, Zn, Cr, As, Cd, Pb, Sb, Bi, Be, and Hg in hair and urine was conducted for their concentrations and correlations. Daily exposure and non-carcinogenic and carcinogenic risk were estimated. Sixty-eight scalp hair and 66 urine samples were taken from participants of different ages (6-17, 18-40, 41-60, and ≥ 65 years) living in the vicinity of an agricultural soil near mine and smelting areas. The results compared to the earlier studies showed an elevated concentration of Pb, Be, Bi, Co, Cr, Ni, Sb, and Zn in hair and urine. These heavy metals were more elevated in mining than in smelting. Considering gender differences, females were likely to be more affected than male. By investigating age differences in this area, high heavy metal concentrations in male's hair and urine existed in age of 18-40 and ≥ 66, respectively. However, females did not present homogeneous age distribution. Hair and urine showed a different distribution of heavy metals in different age and gender. In some cases, significant correlation was found between heavy metals in hair and urine (P > 0.05 and P > 0.01) in mining area. The estimated average daily intake of heavy metals in vegetables showed a great contribution compared to the soil and water. Non-carcinogenic and carcinogenic risk values of total pathways in mining and smelting areas were higher than 1 and exceeded the acceptable levels. Thus, the obtained data might be useful for further studies. They can serve as a basis of comparison and assessing the effect of simultaneous exposure from heavy metals in mining and smelting areas, and potential health risks from exposure to heavy metals in vegetables need more consideration.
Collapse
Affiliation(s)
- Meryem Briki
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Haidian District, Beijing, 100083, People's Republic of China
| | - Yi Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yang Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Haidian District, Beijing, 100083, People's Republic of China
| | - Mengmeng Shao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huaijian Ding
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Haidian District, Beijing, 100083, People's Republic of China
| | - Hongbing Ji
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Xueyuan Road No. 30, Haidian District, Beijing, 100083, People's Republic of China.
| |
Collapse
|
2
|
Cloud point extraction utilizable for separation and preconcentration of (ultra)trace elements in biological fluids before their determination by spectrometric methods: a brief review. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0014-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
3
|
Tian J, Zhang Q, Liu S, Yang J, Teng P, Zhu J, Qiao M, Shi Y, Duan R, Hu X. Study on erythrosine-phen-Cd(II) systems by resonance Rayleigh scattering, absorption spectra and their analytical applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 140:15-20. [PMID: 25579798 DOI: 10.1016/j.saa.2014.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
In pH 7.0-8.0 KH2PO4-Na2HPO4 buffer solution, Cd(II) reacted with 1,10-phenanthroline to form chelate cation [Cd(phen)3]2+, which further reacted with anion of erythrosine to form ternary ion-association complex through electrostatic attraction and hydrophobic effect. This process could result in remarkable absorption spectra change and produce obvious fading reaction at 528 nm. Absorbance change (ΔA) of system was directly proportional to the concentration of Cd(II). Hereby, a highly sensitive spectrophotometric method for the determination of Cd(II) was established. The molar absorption coefficient was 2.29×10(5) L mol(-1) cm(-1) and the detection limit of Cd(II) was 26.5 ng mL(-1). Furthermore, the resonance Rayleigh scattering (RRS) of this system with two peaks located at 371 and 590 nm enhanced significantly, and second-order scattering (SOS) and frequence doubling scattering (FDS) of this system changed notably at 640 and 350 nm, respectively. Under the optimum conditions, the scattering intensities (ΔIRRS, ΔIDWO-RRS, ΔISOS and ΔIFDS) had good linear relationship with the concentration of Cd(II) in certain ranges. The detection limits of Cd(II) were 1.27 ng mL(-1), 1.39 ng mL(-1), 4.03 ng mL(-1), 5.92 ng mL(-1) and 14.7 ng mL(-1) for dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS), RRS (371 nm), RRS (590 nm), SOS and FDS, respectively. In addition, the suitable reaction conditions and effects of coexisting substances were investigated. The methods had been successfully applied to the determination of Cd(II) in environmental water samples. The recovery range was between 93.0% and 103.0% and the relative standard deviation (RSD) was between 2.5% and 4.3%. The results were in agreement with those obtained from atomic absorption spectroscopy.
Collapse
Affiliation(s)
- Jing Tian
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Fuling Environmental Monitoring Center, Fuling, Chongqing 408000, China
| | - Qiqi Zhang
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shaopu Liu
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jidong Yang
- College of Chemical and Environmental Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404100, China
| | - Ping Teng
- Fuling Environmental Monitoring Center, Fuling, Chongqing 408000, China
| | - Jinghui Zhu
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Man Qiao
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ying Shi
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ruilin Duan
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaoli Hu
- Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Chemical modification in atomic emission: Determination of V in lubricant oils by tungsten coil atomic emission spectrometry. Microchem J 2014. [DOI: 10.1016/j.microc.2014.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
|
6
|
Chen P, Deng Y, Guo K, Jiang X, Zheng C, Hou X. Flow injection hydride generation for on-atomizer trapping: Highly sensitive determination of cadmium by tungsten coil atomic absorption spectrometry. Microchem J 2014. [DOI: 10.1016/j.microc.2013.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Virgilio A, Healy CK, Nóbrega JA, Jones BT, Donati GL. Evaluation of atomizer conditioning and pyrolysis and atomization temperature control to improve procedures based on tungsten coil atomic emission spectrometry. Microchem J 2013. [DOI: 10.1016/j.microc.2013.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Wen X, Zhao Y, Deng Q, Ji S, Zhao X, Guo J. Investigation of novel rapidly synergistic cloud point extraction pattern for bismuth in water and geological samples coupling with flame atomic absorption spectrometry determination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 89:1-6. [PMID: 22240230 DOI: 10.1016/j.saa.2011.12.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 05/31/2023]
Abstract
Rapidly synergistic cloud point extraction (RS-CPE) greatly simplified and accelerated the procedure of traditional cloud point extraction (CPE). In order to expand the application of RS-CPE, this work was carried out after the establishment of the improved extraction technique. The new established extraction method was firstly applied for bismuth extraction and determination coupled with flame atomic absorption spectrometry (FAAS) in this work. The improved RS-CPE was accomplished in the room temperature in 1 min. Non-ionic surfactant Triton X-100 (TX-100) was used as extractant. Octanol worked as cloud point revulsant and synergic reagent. TX-100 has a relatively high cloud point temperature (CPT), which limited its application in CPE. In this work, TX-100 accomplished the RS-CPE procedure in room temperature successfully. The factors influencing RS-CPE, such as concentrations of reagents, pH, conditions of phase separation, effect of environmental temperatures, salt effect and instrumental conditions, were studied systematically. Under the optimal conditions, the limit of detection (LOD) for bismuth was 4.0 μg L(-1), with sensitivity enhancement factor (EF) of 43. The proposed method greatly improved the sensitivity of FAAS for the determination of bismuth and was applied to the determination of trace bismuth in real and certified samples with satisfactory analytical results. The proposed method was rapid, simple, and sensitive.
Collapse
Affiliation(s)
- Xiaodong Wen
- College of Pharmacy and Chemistry, Dali University, Dali, Yunnan 671000, China.
| | | | | | | | | | | |
Collapse
|
9
|
Wen X, Deng Q, Ji S, Yang S, Peng L. Design of rapidly synergistic cloud point extraction of ultra-trace lead combined with flame atomic absorption spectrometry determination. Microchem J 2012. [DOI: 10.1016/j.microc.2011.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Zeng C, Hu Y, Luo J. Ionic liquid-based hollow fiber supported liquid membrane extraction combined with thermospray flame furnace AAS for the determination of cadmium. Mikrochim Acta 2011. [DOI: 10.1007/s00604-011-0748-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Wen X, Ye L, Deng Q, Peng L. Investigation of analytical performance for rapidly synergistic cloud point extraction of trace amounts of copper combined with spectrophotometric determination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 83:259-264. [PMID: 21917510 DOI: 10.1016/j.saa.2011.08.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 07/30/2011] [Accepted: 08/18/2011] [Indexed: 05/31/2023]
Abstract
In this work, an improved preconcentration method named as rapidly synergistic cloud point extraction (RS-CPE) was established for copper preconcentration and determination. Non-ionic surfactant Triton X-100 (TX-100) was used as extractant. Octanol worked as cloud point revulsant and synergic reagent, which successfully decreased the cloud point temperature (CPT) of TX-100 to realize the room temperature (about 20°C) CPE without heating. The established RS-CPE pretreatment was simple, rapid and effective. Compared with traditional CPE (about 40 min for heating, incubation and cooling), the extraction time of the proposed method was very short (1 min). The improved extraction technique RS-CPE was combined with traditional spectrophotometer to improve the analytical performance and expand the application of spectrophotometric determination. The influence factors relevant to RS-CPE, such as concentrations of TX-100 and octanol, concentration of chelating agent, pH, conditions of phase separation, salt effect, environmental temperature and instrumental conditions, were studied in detail. Under the optimal conditions, the limit of detection (LOD) for copper was 0.4 μg L(-1), with sensitivity enhancement factor (EF) of 18. The proposed method was applied to the determination of trace copper in real samples and certified samples with satisfactory analytical results.
Collapse
Affiliation(s)
- Xiaodong Wen
- College of Pharmacy and Chemistry, Dali University, Dali, Yunnan, China.
| | | | | | | |
Collapse
|
12
|
Méndez JÁ, García JB, Crecente RMP, Martín SG, Latorre CH. A new flow injection preconcentration method based on multiwalled carbon nanotubes for the ETA-AAS determination of Cd in urine. Talanta 2011; 85:2361-7. [DOI: 10.1016/j.talanta.2011.07.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/15/2011] [Accepted: 07/23/2011] [Indexed: 10/17/2022]
|
13
|
Wu YJ, Fu XW, Yang H. Cloud point extraction with Triton X-114 for separation of metsulfuron-methyl, chlorsulfuron, and bensulfuron-methyl from water, soil, and rice and analysis by high-performance liquid chromatography. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 61:359-367. [PMID: 21127849 DOI: 10.1007/s00244-010-9626-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/12/2010] [Indexed: 05/30/2023]
Abstract
A new and efficient analytic methodology based on cloud point extraction (CPE) was developed for determination of pesticide residues of metsulfuron-methyl (MSM), chlorsulfuron (CS), and bensulfuron-methyl (BSM) in water, soil, and rice grain by high-performance liquid chromatography (HPLC). Multiple experimental conditions that affected CPE efficiency-including surfactant type and concentration, equilibration temperature and duration, ionic strength, and solution pH were identified. CPE conditions were optimized as follows: 1.5% Triton X-114 (w/v), 12% Na(2)SO(4) (w/v) solution (pH 2.0), and heat-assisted at 50 °C for 15 min. The calibration curves for all analytes were linear, ranging from 0.05 to 4.0 mg L(-1), with the correlation coefficients >0.9995 by HPLC-ultraviolet detector and were linear, ranging from 0.004 to 2.0 mg L(-1), with correlation coefficients >0.9983 by CPE-HPLC. The average recoveries at the three spiked levels using CPE ranged from 86.0% to 94.5% for water samples with relative SDs (RSDs) of 0.4% to approximately 7.8%; from 85.6% to 94.8% for soil samples with RSDs of 1.2% to approximately 9.5%; and from 81.9% to 91.3% for rice samples with RSDs of 1.7% to approximately 5.8%. The proposed CPE-HPLC method can be successfully used to analyze MSM, CS, and BSM residues from contaminated water, soil, and rice grain samples.
Collapse
Affiliation(s)
- Yan Jiao Wu
- Jiangsu Key Laboratory of Pesticide Science, College of Science, Nanjing Agricultural University, Nanjing 210095, China
| | | | | |
Collapse
|
14
|
Donati G, Wildman R, Jones B. A new atomization cell for trace metal determinations by tungsten coil atomic spectrometry. Anal Chim Acta 2011; 688:36-42. [DOI: 10.1016/j.aca.2010.12.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 11/26/2022]
|
15
|
Wang C, Wang Q, Yuan Z, Liu W, Gu J, Zhang L. Drug–protein-binding determination of stilbene glucoside using cloud-point extraction and comparison with ultrafiltration and equilibrium dialysis. Drug Dev Ind Pharm 2010. [DOI: 10.3109/03639040903154192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Donati GL, Nóbrega JA, Nascentes CC, Jones BT. Indirect determination of iodide by tungsten coil atomic emission spectrometry. Microchem J 2009. [DOI: 10.1016/j.microc.2009.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Wen X, Wu P, Chen L, Hou X. Determination of cadmium in rice and water by tungsten coil electrothermal vaporization-atomic fluorescence spectrometry and tungsten coil electrothermal atomic absorption spectrometry after cloud point extraction. Anal Chim Acta 2009; 650:33-8. [DOI: 10.1016/j.aca.2009.01.053] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 01/07/2009] [Accepted: 01/27/2009] [Indexed: 11/26/2022]
|
18
|
Ojeda CB, Rojas FS. Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview. Anal Bioanal Chem 2009; 394:759-82. [DOI: 10.1007/s00216-009-2660-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 01/27/2009] [Indexed: 11/28/2022]
|