1
|
Martin-Yken H. Yeast-Based Biosensors: Current Applications and New Developments. BIOSENSORS 2020; 10:E51. [PMID: 32413968 PMCID: PMC7277604 DOI: 10.3390/bios10050051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
Biosensors are regarded as a powerful tool to detect and monitor environmental contaminants, toxins, and, more generally, organic or chemical markers of potential threats to human health. They are basically composed of a sensor part made up of either live cells or biological active molecules coupled to a transducer/reporter technological element. Whole-cells biosensors may be based on animal tissues, bacteria, or eukaryotic microorganisms such as yeasts and microalgae. Although very resistant to adverse environmental conditions, yeasts can sense and respond to a wide variety of stimuli. As eukaryotes, they also constitute excellent cellular models to detect chemicals and organic contaminants that are harmful to animals. For these reasons, combined with their ease of culture and genetic modification, yeasts have been commonly used as biological elements of biosensors since the 1970s. This review aims first at giving a survey on the different types of yeast-based biosensors developed for the environmental and medical domains. We then present the technological developments currently undertaken by academic and corporate scientists to further drive yeasts biosensors into a new era where the biological element is optimized in a tailor-made fashion by in silico design and where the output signals can be recorded or followed on a smartphone.
Collapse
Affiliation(s)
- Helene Martin-Yken
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR 792 Toulouse Biotechnology Institute (TBI), 31400 Toulouse, France; ; Tel.: +689-89-52-31-88
- Institut de Recherche pour le Développement (IRD), Faa’a, 98702 Tahiti, French Polynesia
- Unite Mixte de Recherche n°241 Ecosystemes Insulaires et Oceaniens, Université de la Polynésie Française, Faa’a, 98702 Tahiti, French Polynesia
- Laboratoire de Recherche sur les Biotoxines Marines, Institut Louis Malardé, Papeete, 98713 Tahiti, French Polynesia
| |
Collapse
|
2
|
Liu C, Xu Y, Han X, Chang X. The fabrication and the use of immobilized cells as test organisms in a ferricyanide-based toxicity biosensor. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:329-335. [PMID: 28840945 DOI: 10.1002/etc.3959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/07/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Cell immobilization is an effective method to prolong the lifetime of a microorganism and has proven feasibility in some other biosensors. Thus, we studied the use of Escherichia coli immobilized by agar, gelatin, an agar/gelatin mixture, chitosan, and polyvinyl alcohol (PVA) to screen toxicity electrochemically. The E. coli immobilized by PVA gel showed the highest apparent bioactivity and the longest storage time in pH 7.0 phosphate-buffered saline solution. Furthermore, the E. coli immobilized by different gels was applied in the toxicity determination via a reported ferricyanide-mediated electrochemical method, where 3,5-dichlorophenol (DCP) was used as a model toxin. The E. coli immobilized by PVA showed the highest sensitivity to DCP, and the corresponding value of 50% inhibition concentration was 9.62 mg L-1 . Inhibition concentrations were in the range of 6.32 to 13.75% when the E. coli immobilized by PVA was challenged by wastewater, which were comparable with values obtained with the standard luminescent bacteria method (effective inhibition were in the range 7.96-25.42% for the same samples). Given the apparent bioactivity, storage ability, and sensitivity to toxin, PVA was the best polymer to confine cells among the polymers used in the present study. Environ Toxicol Chem 2018;37:329-335. © 2017 SETAC.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pharmacy, Jinzhou Medical University, Laoning, China
| | - Yingchao Xu
- Department of Pharmacy, Jinzhou Medical University, Laoning, China
| | - Xiao Han
- Department of Pharmacy, Jinzhou Medical University, Laoning, China
| | - Xiaojie Chang
- Department of Pharmacy, Jinzhou Medical University, Laoning, China
| |
Collapse
|
3
|
A Mediated BOD Biosensor Based on Immobilized B. Subtilis on Three-Dimensional Porous Graphene-Polypyrrole Composite. SENSORS 2017; 17:s17112594. [PMID: 29125543 PMCID: PMC5713028 DOI: 10.3390/s17112594] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/19/2017] [Accepted: 11/07/2017] [Indexed: 12/11/2022]
Abstract
We have developed a novel mediated biochemical oxygen demand (BOD) biosensor based on immobilized Bacillus subtilis (B. subtilis) on three-dimensional (3D) porous graphene-polypyrrole (rGO-PPy) composite. The 3D porous rGO-PPy composite was prepared using hydrothermal method following with electropolymerization. Then the 3D porous rGO-PPy composite was used as a support for immobilizing negatively charged B. subtilis denoted as rGO-PPy-B through coordination and electrostatic interaction. Further, the prepared rGO-PPy-B was used as a microbial biofilm for establishing a mediated BOD biosensor with ferricyanide as an electronic acceptor. The indirect determination of BOD was performed by electrochemical measuring ferrocyanide generated from a reduced ferricyanide mediator using interdigited ultramicroelectrode array (IUDA) as the working electrode. The experimental results suggested a good linear relationship between the amperometric responses and BOD standard concentrations from 4 to 60 mg/L, with a limit detection of 1.8 mg/L (S/N ≥ 3). The electrochemical measurement of real water samples showed a good agreement with the conventional BOD₅ method, and the good anti-interference as well as the long-term stability were well demonstrated, indicating that the proposed mediated BOD biosensor in this study holds a potential practical application of real water monitoring.
Collapse
|
4
|
Wang J, Li Y, Bian C, Tong J, Fang Y, Xia S. Ultramicroelectrode array modified with magnetically labeled Bacillus subtilis, palladium nanoparticles and reduced carboxy graphene for amperometric determination of biochemical oxygen demand. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2055-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Liu L, Bai L, Yu D, Zhai J, Dong S. Biochemical oxygen demand measurement by mediator method in flow system. Talanta 2015; 138:36-39. [PMID: 25863368 DOI: 10.1016/j.talanta.2015.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 11/15/2022]
Abstract
Using mediator as electron acceptor for biochemical oxygen demand (BOD) measurement was developed in the last decade (BODMed). However, until now, no BOD(Med) in a flow system has been reported. This work for the first time describes a flow system of BOD(Med) method (BOD(Med)-FS) by using potassium ferricyanide as mediator and carbon fiber felt as substrate material for microbial immobilization. The system can determine the BOD value within 30 min and possesses a wider analytical linear range for measuring glucose-glutamic acid (GGA) standard solution from 2 up to 200 mg L(-1) without the need of dilution. The analytical performance of the BOD(Med)-FS is comparable or better than that of the previously reported BOD(Med) method, especially its superior long-term stability up to 2 months under continuous operation. Moreover, the BOD(Med)-FS has same determination accuracy with the conventional BOD5 method by measuring real samples from a local wastewater treatment plant (WWTP).
Collapse
Affiliation(s)
- Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lu Bai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Dengbin Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
6
|
Liu L, Zhai J, Zhu C, Gao Y, Wang Y, Han Y, Dong S. One-pot synthesis of 3-dimensional reduced graphene oxide-based hydrogel as support for microbe immobilization and BOD biosensor preparation. Biosens Bioelectron 2015; 63:483-489. [DOI: 10.1016/j.bios.2014.07.074] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 11/28/2022]
|
7
|
Gold nanoparticles decorated carbon fiber mat as a novel sensing platform for sensitive detection of Hg(II). Electrochem commun 2014. [DOI: 10.1016/j.elecom.2014.02.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Jordan MA, Welsh DT, Teasdale PR. Ubiquity of activated sludge ferricyanide-mediated BOD methods: a comparison of sludge seeds across wastewater treatment plants. Talanta 2014; 125:293-300. [PMID: 24840446 DOI: 10.1016/j.talanta.2014.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 10/25/2022]
Abstract
Many studies have described alternatives to the BOD5 standard method, with substantial decreases in incubation time observed. However, most of these have not maintained the features that make the BOD5 assay so relevant - a high level of substrate bio-oxidation and use of wastewater treatment plant (WWTP) sludge as the biocatalyst. Two recently described ferricyanide-mediated (FM)-BOD assays, one for trade wastes and one for WWTP influents and treated effluents, satisfy these criteria and were investigated further here for their suitability for use with diverse biocatalysts. Both FM-BOD assays responded proportionately to increasing substrate concentration with sludges from 11 different WWTPs and temporally (months to years) using sludges from a single WWTP, confirming the broad applicability of both assays. Sludges from four WWTPs were selected as biocatalysts for each FM-BOD assay to compare FM-BOD equivalent values with BOD5 (three different sludge seeds) measurements for 12 real wastewater samples (six per assay). Strong and significant relationships were established for both FM-BOD assays. This study has demonstrated that sludge sourced from many WWTPs may be used as the biocatalyst in either FM-BOD assay, as it is in the BOD5 assay. The industry potential of these findings is substantial given the widespread use of the BOD5 assay, the dramatically decreased incubation period (3-6h) and the superior analytical range of both assays compared to the standard BOD5 assay.
Collapse
Affiliation(s)
- Mark A Jordan
- Environmental Futures Centre, Griffith University, Gold Coast Campus, Qld 4222, Australia; School of Environment, Griffith University, Gold Coast Campus, Qld 4222, Australia
| | - David T Welsh
- Environmental Futures Centre, Griffith University, Gold Coast Campus, Qld 4222, Australia.
| | - Peter R Teasdale
- Environmental Futures Centre, Griffith University, Gold Coast Campus, Qld 4222, Australia
| |
Collapse
|
9
|
Liu C, Zhao H, Ma Z, An T, Liu C, Zhao L, Yong D, Jia J, Li X, Dong S. Novel environmental analytical system based on combined biodegradation and photoelectrocatalytic detection principles for rapid determination of organic pollutants in wastewaters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1762-1768. [PMID: 24428671 DOI: 10.1021/es4031358] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work describes the development of a novel biofilm reactor-photoelectrocatalytic chemical oxygen demand (BFR-PeCOD) analytical system for rapid online determination of biodegradable organic matters (BOMs). A novel air bubble sample delivery approach was developed to dramatically enhance the BFR's biodegradation efficiency and extend analytical linear range. Because the air bubble sample delivery invalidates the BOD quantification via the determination of oxygen consumption using dissolved oxygen probe, the PeCOD technique was innovatively utilized to resolve the BOD quantification issue under air bubble sample delivery conditions. The BFR was employed to effectively and efficiently biodegrade organic pollutants under oxygen-rich environment provided by the air bubbles. The BOD quantification was achieved by measuring the COD change (Δ[COD]) of the original sample and the effluent from BFR using PeCOD technique. The measured Δ[COD] was found to be directly proportional to the BOD5 values of the original sample with a slope independent of types and concentrations of organics. The slope was used to convert Δ[COD] to BOD5. The demonstrated analytical performance by BFR-PeCOD system surpasses all reported systems in many aspects. It has demonstrated ability to near real-time, online determining the organic pollution levels of wide range wastewaters without the need for dilution and ongoing calibration. The system possesses the widest analytical liner range (up to 800 mg O2 L(-1)) for BOD analysis, superior long-term stability, high accuracy, reliability, and simplicity. It is an environmentally friendly analytical system that consumes little reagent and requires minimal operational maintenance.
Collapse
Affiliation(s)
- Changyu Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Arlyapov VA, Yudina NY, Asulyan LD, Alferov SV, Alferov VA, Reshetilov AN. BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly(vinyl alcohol) modified by N-vinylpyrrolidone. Enzyme Microb Technol 2013; 53:257-62. [PMID: 23931691 DOI: 10.1016/j.enzmictec.2013.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/04/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
An amperometric biosensor for assessing the biochemical oxygen demand (BOD) was formed by immobilizing Debaryomyces hansenii VKM Y-2482 yeast cells in poly(vinyl alcohol) modified by N-vinylpyrrolidone. Modification provided for a high sensitivity and stability of the bioreceptor. A high oxidative activity of the receptor element and the absence of any toxic effect of assayed compounds were shown for 34 substrates (alcohols, carbohydrates, carboxylic acids, amino acids, nitrophenols and surfactants) that may occur in wastewaters. Estimates of the measurement range and region of the linear dependence of signals on the BOD level, pH and temperature sensitivities, dependences of signals on concentrations of salts, stability, Michaelis kinetic constants and assay rates were obtained. The BOD values determined by the biosensor in assayed wastewater samples were shown to have a high correlation with those obtained by the standard dilution method.
Collapse
Affiliation(s)
- V A Arlyapov
- Federal State Budgetary Educational Institution of Higher Professional Education, Tula State University, Russia
| | | | | | | | | | | |
Collapse
|
11
|
Field application of a biofilm reactor based BOD prototype in Taihu Lake, China. Talanta 2013; 109:147-51. [DOI: 10.1016/j.talanta.2013.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 11/22/2022]
|
12
|
Jordan MA, Welsh DT, John R, Catterall K, Teasdale PR. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents. WATER RESEARCH 2013; 47:841-849. [PMID: 23200506 DOI: 10.1016/j.watres.2012.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/18/2012] [Accepted: 11/03/2012] [Indexed: 05/20/2023]
Abstract
Representative and fast monitoring of wastewater influent and effluent biochemical oxygen demand (BOD) is an elusive goal for the wastewater industry and regulatory bodies alike. The present study describes a suitable assay, which incorporates activated sludge as the biocatalyst and ferricyanide as the terminal electron acceptor for respiration. A number of different sludges and sludge treatments were investigated, primarily to improve the sensitivity of the assay. A limit of detection (LOD) (2.1 mg BOD₅ L⁻¹) very similar to that of the standard 5-day BOD₅ method was achieved in 4 h using raw influent sludge that had been cultured overnight as the biocatalyst. Reducing the microbial concentration was the most effective means to improve sensitivity and reduce the contribution of the sludge's endogenous respiration to total ferricyanide-mediated (FM) respiration. A strong and highly significant relationship was found (n = 33; R = 0.96; p < 0.001; slope = 0.94) between BOD₅ and FM-BOD equivalent values for a diverse range of samples including wastewater treatment plant (WWTP) influent and treated effluent, as well as several grey water samples. The activated sludge FM-BOD assay presented here is an exceptional surrogate method to the standard BOD₅ assay, providing representative, same-day BOD analysis of WWTP samples with a comparable detection limit, a 4-fold greater analytical range and much faster analysis time. The industry appeal of such an assay is tremendous given that ~90% of all BOD₅ analysis is dedicated to measurement of WWTP samples, for which this assay is specifically designed.
Collapse
Affiliation(s)
- Mark A Jordan
- Environmental Futures Centre, Griffith University, Gold Coast campus, Qld 4222, Australia
| | | | | | | | | |
Collapse
|
13
|
Liu L, Zhang S, Xing L, Zhao H, Dong S. A co-immobilized mediator and microorganism mediated method combined pretreatment by TiO2 nanotubes used for BOD measurement. Talanta 2012; 93:314-9. [DOI: 10.1016/j.talanta.2012.02.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 02/13/2012] [Accepted: 02/17/2012] [Indexed: 11/27/2022]
|