1
|
Song L, Zhang Q, Min L, Guo X, Gao W, Cui L, Zhang CY. Electrochemiluminescence enhanced by isolating ACQphores in imine-linked covalent organic framework for organophosphorus pesticide assay. Talanta 2024; 266:124964. [PMID: 37481885 DOI: 10.1016/j.talanta.2023.124964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Most of covalent organic frameworks (COFs) are non or weakly emissive due to either the molecular thermal motion-mediated energy dissipation or the aggregation-caused quenching (ACQ) effect. Herein, we synthesize an imine-linked COF (TFPPy-TPh-COF) with high electrochemiluminescence (ECL) emission and the capability of eliminating the ACQ effect and further construct an ECL sensor for malathion detection. The imine-linked COF is obtained by the condensation reaction of (1,1':3',1″-terphenyl)-4,4″-diamine (TPh) and 1,3,6,8-tetrakis(p-formylphenyl)pyrene (TFPPy), and it has higher ECL efficiency than TFPPy aggregates due to the separation of ACQ luminophores (i.e., TFPPy) from each other by TPh and the restriction of intramolecular motions of TFPPy and TPh to reduce the nonradiative decay. The efficient quenching of ECL is achieved by electrochemiluminescence resonance energy transfer (ERET) from the excited state of the TFPPy-TPh-COF to zeolite imidazolate framework-8 (ZIF-8) and the steric hindrance of ZIF-8. Acetylcholinesterase (AChE) can enzymatically hydrolyze acetylcholine (ACh) to generate acetic acid. The resultant acetic acid can trigger the dissolution of ZIF-8 to produce an enhanced ECL signal. Malathion as an organophosphorus pesticide serves as an AChE inhibitor to prevent the production of acetic acid, inducing the decrease of ECL signal. This sensor displays a limit of detection (LOD) of 2.44 pg/mL and a wide dynamic detection range of 0.01-1000 ng/mL. Furthermore, it can be used to detect other organophosphates pesticides (e.g., methidathion, chlorpyrifos, and paraoxon) and measure malathion in real samples (i.e., pakchoi, lettuce, and apples).
Collapse
Affiliation(s)
- Linlin Song
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Lei Min
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Xinyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
2
|
Zhao H, Li R, Zhang T, Zhou L, Wang L, Han Z, Liu S, Zhang J. Platinum nanoflowers stabilized with aloe polysaccharides for detection of organophosphorus pesticides in food. Int J Biol Macromol 2023; 253:126552. [PMID: 37660849 DOI: 10.1016/j.ijbiomac.2023.126552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
Organophosphorus pesticides can inhibit the activity of acetylcholinesterase and cause neurological diseases. Therefore, it is crucial to establish an efficient and sensitive platform for organophosphorus pesticide detection. In this work, we extracted aloe polysaccharide (AP) from aloe vera with the number average molecular weight of 27760 Da and investigated its reducing property. We prepared aloe polysaccharide stabilized platinum nanoflowers (AP-Ptn NFs), their particle size ranges were 29.4-67.3 nm. Furthermore, AP-Ptn NFs exhibited excellent oxidase-like activity and the catalytic kinetics followed the typical Michaelis-Menten equation. They showed strong affinity for 3,3',5,5'-tetramethylbenzidine substrates. More importantly, we developed a simple and effective strategy for the sensitive colorimetric detection of organophosphorus pesticides in food using biocompatible AP-Ptn NFs. The detection range was 0.5 μg/L - 140 mg/L, which was wider than many previously reported nanozyme detection systems. This colorimetric biosensor had good selectivity and good promise for bioassay analysis.
Collapse
Affiliation(s)
- Han Zhao
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Ruyu Li
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tingting Zhang
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lijie Zhou
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Longgang Wang
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| | - Zengsheng Han
- Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Sihang Liu
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jin Zhang
- Shanxi Datong University, College of Chemical and Environmental Engineering, Datong 037009, China
| |
Collapse
|
3
|
Yang H, Xia L, Zheng J, Xie Z, Zhou J, Wu Y. Screening and identification of a DNA aptamer to construct the label-free fluorescent aptasensor for ultrasensitive and selective detection of clothianidin residue in agricultural products. Talanta 2023; 262:124712. [PMID: 37244242 DOI: 10.1016/j.talanta.2023.124712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Clothianidin pesticide not only pollutes the ecological environment, but also poses a potential threat to human health. Thus, it is of great importance to develop efficient and accurate methods to recognize and detect clothianidin residues in agricultural products. Aptamer has the advantages of easy modification, high affinity and good stability, which is particularly suitable as a recognition biomolecule for pesticide detection. However, the aptamer against clothianidin has not been reported. Herein, the aptamer (named CLO-1) had good selectivity and strong affinity (Kd = 40.66 ± 3.47 nM) to clothianidin pesticide, which was screened for the first time by Capture-SELEX strategy. The binding effect of CLO-1 aptamer to clothianidin was further studied by circular dichroism (CD) spectroscopy and molecular docking technique. Finally, the CLO-1 aptamer was used as the recognition molecule to construct a label-free fluorescent aptasensor using GeneGreen dye as sensing signal for the highly sensitive detection of clothianidin pesticide. The constructed fluorescent aptasensor had the limit of detection (LOD) as low as 5.527 μg L-1 for clothianidin, and displayed good selectivity against other competitive pesticides. The aptasensor was applied to detect the clothianidin spiked in tomatoes, pears and cabbages, and the recovery rate was good in the range of 81.99%-106.64%. This study provides a good application prospect for the recognition and detection of clothianidin.
Collapse
Affiliation(s)
- Hongqin Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Lian Xia
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, Yibin, 644000, Sichuan Province, China
| | - Zhengmin Xie
- Wuliangye Yibin Co., Ltd, Yibin, 644000, Sichuan Province, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Yuangen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Guizhou University, Guiyang, 550025, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Mehta VN, Ghinaiya N, Rohit JV, Singhal RK, Basu H, Kailasa SK. Ligand chemistry of gold, silver and copper nanoparticles for visual read-out assay of pesticides: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Liu P, Zhao M, Zhu H, Zhang M, Li X, Wang M, Liu B, Pan J, Niu X. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127077. [PMID: 34482084 DOI: 10.1016/j.jhazmat.2021.127077] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The great threat of pesticide residues to the environment and human health has drawn widespread interest to explore approaches for pesticide monitoring. Compared to commonly developed single-signal pesticide assays, multi-mode detection with inherent self-validation and self-correction is expected to offer more reliable and anti-interference results. However, how to realize multi-mode analysis of pesticides still remains challenging. Herein, we propose a dual-mode fluorescence and colorimetric method for pesticide determination by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles (CPNs(Ⅳ)). The CPNs(Ⅳ) exhibit good oxidase-like activity of catalyzing the colorless 3,3',5,5'-tetramethylbenzidine (TMB) oxidation to its blue oxide, offering a visible color signal; by employing acid phosphatase (ACP) to hydrolyze ascorbic acid 2-phosphate (AAP), the generated ascorbic acid (AA) can chemically reduce the CPNs(Ⅳ) to CPNs(Ⅲ), which exhibit a remarkable fluorescence signal but lose the oxidase-mimicking ability to trigger the TMB chromogenic reaction; when pesticides exist, the enzymatic activity of ACP is restrained and the hydrolysis of AAP to AA is blocked, leading to the recovery of the catalytic TMB chromogenic reaction but the suppression of the fluorescence signal of CPNs(Ⅲ). According to this principle, by taking malathion as a pesticide model, dual-mode 'off-on-off' fluorescence and 'on-off-on' colorimetric detection of the pesticide with good sensitivity was realized. Excellent interference-tolerance and reliability were verified by applying it to analyze the target in real sample matrices. With good performance and practicability, the proposed dual-mode approach shows great potential in the facile and reliable monitoring of pesticide residues.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Menghao Zhao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hengjia Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingliang Zhang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Li
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mengzhu Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bangxiang Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Pan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangheng Niu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Functional Molecular Solids of Ministry of Education, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Umapathi R, Sonwal S, Lee MJ, Mohana Rani G, Lee ES, Jeon TJ, Kang SM, Oh MH, Huh YS. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214061] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Bhattu M, Verma M, Kathuria D. Recent advancements in the detection of organophosphate pesticides: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4390-4428. [PMID: 34486591 DOI: 10.1039/d1ay01186c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are generally utilized for the protection of crops from pests. Because the use of OPPs in various agricultural operations has expanded dramatically, precise monitoring of their concentration levels has become the critical issue, which will help in the protection of ecological systems and food supply. However, the World Health Organization (WHO) has classified them as extremely dangerous chemical compounds. Taking their immense use and toxicity into consideration, the development of easy, rapid and highly sensitive techniques is necessary. Despite the fact that there are numerous conventional ways for detecting OPPs, the development of portable sensors is required to make routine analysis considerably more convenient. Some of these advanced techniques include colorimetric sensors, fluorescence sensors, molecular imprinted polymer-based sensors, and surface plasmon resonance-based sensors. This review article specifically focuses on the colorimetric, fluorescence and electrochemical sensors. In this article, the sensing strategies of these developed sensors, analytical conditions and their respective limit of detection are compiled.
Collapse
Affiliation(s)
- Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| | - Deepika Kathuria
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Punjab 140413, India.
| |
Collapse
|
8
|
Wang W, You Y, Gunasekaran S. LSPR-based colorimetric biosensing for food quality and safety. Compr Rev Food Sci Food Saf 2021; 20:5829-5855. [PMID: 34601783 DOI: 10.1111/1541-4337.12843] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022]
Abstract
Ensuring consistently high quality and safety is paramount to food producers and consumers alike. Wet chemistry and microbiological methods provide accurate results, but those methods are not conducive to rapid, onsite testing needs. Hence, many efforts have focused on rapid testing for food quality and safety, including the development of various biosensors. Herein, we focus on a group of biosensors, which provide visually recognizable colorimetric signals within minutes and can be used onsite. Although there are different ways to achieve visual color-change signals, we restrict our focus on sensors that exploit the localized surface plasmon resonance (LSPR) phenomenon of metal nanoparticles, primarily gold and silver nanoparticles. The typical approach in the design of LSPR biosensors is to conjugate biorecognition ligands on the surface of metal nanoparticles and allow the ligands to specifically recognize and bind the target analyte. This ligand-target binding reaction leads to a change in color of the test sample and a concomitant shift in the ultraviolet-visual absorption peak. Various designs applying this and other signal generation schemes are reviewed with an emphasis on those applied for evaluating factors that compromise the quality and safety of food and agricultural products. The LSPR-based colorimetric biosensing platform is a promising technology for enhancing food quality and safety. Aided by the advances in nanotechnology, this sensing technique lends itself easily for further development on field-deployable platforms such as smartphones for onsite and end-user applications.
Collapse
Affiliation(s)
- Weizheng Wang
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Youngsang You
- Department of Food Engineering, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Sundaram Gunasekaran
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Yang Y, Tang Y, Wang C, Liu B, Wu Y. Selection and identification of a DNA aptamer for ultrasensitive and selective detection of λ-cyhalothrin residue in food. Anal Chim Acta 2021; 1179:338837. [PMID: 34535250 DOI: 10.1016/j.aca.2021.338837] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
Pyrethroid pesticides residues will not only pollute the environment, but also cause high toxicity to the human body. It is significant to establish an efficient and accurate method for pyrethroid detection in food. Considering that the common biomolecules like antibody is complicated and easy to inactivate, it is urgent to find a new type of biomolecule to specifically recognize pyrethroid pesticides. This study proposed the Capture-SELEX strategy to firstly select λ-cyhalothrin aptamer by immobilizing random ssDNA library. High-throughput sequencing was performed on the enriched ssDNA library through multiple Capture-SELEX rounds. Comprehensively inspecting structural similarity and homology, six sequences were chosen from five families for further analysis. The results showed that the aptamer (named LCT-1) could specifically recognize λ-cyhalothrin with the strongest affinity (Kd = 50.64 ± 4.33 nmol L-1). Molecular docking results revealed that the binding sites between λ-cyhalothrin and LCT-1 aptamer are mainly related to the bases A-5, C-6, C-28, A-29, C-30, G-31 and G-32. The LCT-1 aptamer was truncated to a shorter sequence (named as LCT-1-39) by removing other irrelevant bases, and its Kd value was determined as (10.27 ± 1.33) nmol·L-1 by Microscale Thermophoresis (MST). Both LCT-1 and LCT-1-39 aptamers were employed as recognition molecules to establish the colorimetric aptasensors for λ-cyhalothrin detection, which displayed good repeatability and reproducibility. The detection limit of the aptasensors were individually calculated as 0.0197 μg ml-1 and 0.0186 μg ml-1, and their recovery rate of λ-cyhalothrin in pear and cucumber samples was in the range of 82.93-95.50%. This article provides a promising application for the detection of λ-cyhalothrin.
Collapse
Affiliation(s)
- Yuxia Yang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yue Tang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Chunxiao Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Bangyan Liu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, Guizhou University, Huaxi District, Guiyang, 550025, China; Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin, 644000, China.
| |
Collapse
|
10
|
Liu DM, Xu B, Dong C. Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Sharma P, Pandey V, Sharma MMM, Patra A, Singh B, Mehta S, Husen A. A Review on Biosensors and Nanosensors Application in Agroecosystems. NANOSCALE RESEARCH LETTERS 2021; 16:136. [PMID: 34460019 PMCID: PMC8405745 DOI: 10.1186/s11671-021-03593-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/14/2021] [Indexed: 05/19/2023]
Abstract
Previous decades have witnessed a lot of challenges that have provoked a dire need of ensuring global food security. The process of augmenting food production has made the agricultural ecosystems to face a lot of challenges like the persistence of residual particles of different pesticides, accretion of heavy metals, and contamination with toxic elemental particles which have negatively influenced the agricultural environment. The entry of such toxic elements into the human body via agricultural products engenders numerous health effects such as nerve and bone marrow disorders, metabolic disorders, infertility, disruption of biological functions at the cellular level, and respiratory and immunological diseases. The exigency for monitoring the agroecosystems can be appreciated by contemplating the reported 220,000 annual deaths due to toxic effects of residual pesticidal particles. The present practices employed for monitoring agroecosystems rely on techniques like gas chromatography, high-performance liquid chromatography, mass spectroscopy, etc. which have multiple constraints, being expensive, tedious with cumbersome protocol, demanding sophisticated appliances along with skilled personnel. The past couple of decades have witnessed a great expansion of the science of nanotechnology and this development has largely facilitated the development of modest, quick, and economically viable bio and nanosensors for detecting different entities contaminating the natural agroecosystems with an advantage of being innocuous to human health. The growth of nanotechnology has offered rapid development of bio and nanosensors for the detection of several composites which range from several metal ions, proteins, pesticides, to the detection of complete microorganisms. Therefore, the present review focuses on different bio and nanosensors employed for monitoring agricultural ecosystems and also trying to highlight the factor affecting their implementation from proof-of-concept to the commercialization stage.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Vimal Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Mayur Mukut Murlidhar Sharma
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Anupam Patra
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Azamal Husen
- Wolaita Sodo University, P.O. Box: 138, Wolaita, Ethiopia
| |
Collapse
|
12
|
Zhai R, Chen G, Liu G, Huang X, Xu X, Li L, Zhang Y, Wang J, Jin M, Xu D, Abd El-Aty A. Enzyme inhibition methods based on Au nanomaterials for rapid detection of organophosphorus pesticides in agricultural and environmental samples: A review. J Adv Res 2021; 37:61-74. [PMID: 35499055 PMCID: PMC9039737 DOI: 10.1016/j.jare.2021.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023] Open
Abstract
The review systematically and completely collated the enzyme inhibition method based on Au nanomaterials for organophosphorus pesticide detection method in the last 20 years. The significance of the optical properties of Au nanomaterials is outlined with different shapes, sizes, and surface modifiers in enzyme inhibition methods. The principles, classification and application of enzyme inhibition methods based on Au nanomaterials are comprehensively summarized from a new perspective in agricultural and environmental samples, including colorimetric method, fluorometric method, electrochemical biosensor method. Unlike traditional enzyme inhibition method, the merits of enzyme inhibition method based on Au nanomaterials were elaborated in this review. Combined with the research progress of enzyme inhibition method, this review predicts the future research direction of enzyme inhibition method, providing a theoretical reference for researchers.
Background Organophosphorus pesticides (OPs), as insecticides or acaricides, are widely used in agricultural products to ensure agricultural production. However, widespread use of OPs leads to environmental contamination and significant negative consequences on biodiversity, food security, and water resources. Therefore, developing a sensitive and rapid method to determine OPs residues in different matrices is necessary. Originally, the enzyme inhibition methods are often used as preliminary screens of OPs in crops. Many studies on the characteristic of Au nanomaterials have constantly been emerging in the past decade. Combined with anisotropic Au nanomaterials, enzyme inhibition methods have the advantages of high sensitivity, durability, and high stability. Aim of Review This review aims to summarize the principles and strategies of gold (Au) nanomaterials in enzyme inhibition methods, including colorimetric (dispersion, particle size of Au nanomaterials) and fluorometric (fluorescence energy transfer, internal filtration effect) detection, and electrochemical sensing system (shape of Au nanomaterials, Au nanomaterials combined with other nanomaterials). The application of enzyme inhibition in agricultural products and research progress was also outlined. Next, this review illustrates the advantages of Au nanomaterial-based enzyme inhibition methods compared with conventional enzyme inhibition methods. The detection limits and linear range of colorimetric and fluorometric detection and electrochemical biosensors have also been provided. At last, key perspectives, trends, gaps, and future research directions are proposed. Key Scientific Concepts of Review Herein, we introduced the technology of enzyme inhibition method based on Au nanomaterials for onsite and infield rapid detection of organophosphorus pesticide.
Collapse
Affiliation(s)
- Rongqi Zhai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
- Corresponding authors.
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - XiaoMin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Yanguo Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, PR China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, PR China
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing, 100081, PR China
- Corresponding authors.
| | - A.M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
13
|
Yang Y, Zhao Y, You T, Liu Q, Gao Y, Chen H, Yin P. A highly sensitive acetylcholinesterase electrochemical biosensor based on Au-Tb alloy nanospheres for determining organophosphate pesticides. NANOTECHNOLOGY 2021; 32:425501. [PMID: 34256363 DOI: 10.1088/1361-6528/ac13e8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Accurately detect the residues of organophosphate pesticides (OPs) in food and environment is critical to our daily lives. In this study, we developed a novel acetylcholinesterase (AChE) biosensor based on Au-Tb alloy nanospheres (NSs) for rapid and sensitive detection of OPs for the first time. Au-Tb alloy NSs that with good conductivity and biocompatibility were produced with a mild hydrothermal. Under optimal conditions, the AChE biosensor was obtained by a simple assembly process, with a big linear range (10-13-10-7M) and the limit of detection was 2.51 × 10-14M for the determination of methyl parathion. Moreover, the determination of methyl parathion with the prepared biosensor presented a high sensitivity, outstanding repeatability and superior stability compared with other reported biosensors. Through the determination of tap water and Yanming lake samples, it was proved that the modified biosensor with satisfactory recoveries (96.76%-108.6%), and are realizable in the determination of OPs in real samples.
Collapse
Affiliation(s)
- Yunxia Yang
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yisong Zhao
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Tingting You
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, People's Republic of China
| | - Qian Liu
- Key Laboratory of Applied Chemistry, Department of Applied Chemistry, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yukun Gao
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, People's Republic of China
| | - Huaxiang Chen
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, People's Republic of China
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, People's Republic of China
| |
Collapse
|
14
|
Yu H, Wang M, Cao J, She Y, Zhu Y, Ye J, Abd El-Aty AM, Hacımüftüoğlu A, Wang J, Lao S. Dual-mode detection of organophosphate pesticides in pear and Chinese cabbage based on fluorescence and AuNPs colorimetric assays. Food Chem 2021; 364:130326. [PMID: 34171812 DOI: 10.1016/j.foodchem.2021.130326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Herein, a dual-mode method based on fluorescent and colorimetric sensor was developed for determination of organophosphate pesticides (OPs). In this study, indoxyl acetate (IDA) was hydrolyzed by esterase into indophenol. Indophenol leads to changes in fluorescence signal and aggregation of gold nanoparticles (AuNPs); ultimately changing the color from red to blue. When OPs exist, the formation of indophenol was inhibited. With increasing the concentrations of OPs, the enhancement rate of fluorescence signal decreases, and the color change of AuNPs weakened gradually. The assay was applied for determination of dichlorvos, trichlorfon, and paraoxon, and the limits of detection (LODs) were 0.0032 mg/kg, 0.0096 mg/kg, and 0.0074 mg/kg (fluorometric assay), and 0.0120 mg/kg, 0.0224 mg/kg, and 0.0106 mg/kg (colorimetric assay), respectively. Finally, such a convenient and sensitive sensing assay was successfully applied for quantification of OPs in pear and Chinese cabbage with good recoveries ranged between 80.19 and 116.93%.
Collapse
Affiliation(s)
- He Yu
- Institute of Quality Standard & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100081 Beijing, China
| | - Miao Wang
- Institute of Quality Standard & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100081 Beijing, China.
| | - Jing Cao
- Institute of Quality Standard & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100081 Beijing, China
| | - Yongxin She
- Institute of Quality Standard & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100081 Beijing, China
| | - Yongan Zhu
- Institute of Quality Standard & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100081 Beijing, China
| | - Jiaming Ye
- Yangtze Delta Region Institute of Tsinghua University, 314006 Jiaxing, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey.
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Jing Wang
- Institute of Quality Standard & Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, 100081 Beijing, China; Key Laboratory of Agrofood Safety and Quality (Beijing), Ministry of Agriculture, 100081 Beijing, China; Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003 Nanning, China.
| | - Shuibing Lao
- Agro-products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, 53003 Nanning, China
| |
Collapse
|
15
|
Suo Z, Liu X, Hou X, Liu Y, Lu J, Xing F, Chen Y, Feng L. Ratiometric Assays for Acetylcholinesterase Activity and Organo‐Phosphorous Pesticide Based on Superior Carbon Quantum Dots and BLGF‐Protected Gold Nanoclusters FRET Process. ChemistrySelect 2020. [DOI: 10.1002/slct.202002042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhiguang Suo
- Materials Genome InstituteShanghai University 99 Shangda Road Shanghai 200444 China
| | - Xiaowei Liu
- Materials Genome InstituteShanghai University 99 Shangda Road Shanghai 200444 China
| | - Xialing Hou
- Materials Genome InstituteShanghai University 99 Shangda Road Shanghai 200444 China
| | - Yu Liu
- College of QianweichangShanghai University 99 Shangda Road Shanghai 200444 China
| | - Jiayi Lu
- College of QianweichangShanghai University 99 Shangda Road Shanghai 200444 China
| | - Feifei Xing
- College of Science, Department of ChemistryShanghai University 99 Shangda Road Shanghai 200444 China
| | - Yingying Chen
- Materials Genome InstituteShanghai University 99 Shangda Road Shanghai 200444 China
| | - Lingyan Feng
- Materials Genome InstituteShanghai University 99 Shangda Road Shanghai 200444 China
| |
Collapse
|
16
|
Che Sulaiman IS, Chieng BW, Osman MJ, Ong KK, Rashid JIA, Wan Yunus WMZ, Noor SAM, Kasim NAM, Halim NA, Mohamad A. A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Mikrochim Acta 2020; 187:131. [PMID: 31940088 DOI: 10.1007/s00604-019-3893-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/06/2019] [Indexed: 01/08/2023]
Abstract
This review (with 99 refs.) summarizes the progress that has been made in colorimetric (i.e. spectrophotometric) determination of organophosphate pesticides (OPPs) using gold and silver nanoparticles (NPs). Following an introduction into the field, a first large section covers the types and functions of organophosphate pesticides. Methods for colorimetric (spectrophotometric) measurements including RGB techniques are discussed next. A further section covers the characteristic features of gold and silver-based NPs. Syntheses and modifications of metal NPs are covered in section 5. This is followed by overviews on enzyme inhibition-based assays, aptamer-based assays and chemical (non-enzymatic) assays, and a discussion of specific features of colorimetric assays. Several Tables are presented that give an overview on the wealth of methods and materials. A concluding section addresses current challenges and discusses potential future trends and opportunities. Graphical abstractSchematic representation of organophosphate pesticide determinations based on aggregation of nanoparticles (particular silver or gold nanoparticles). This leads to a color change which can be determined visually and monitored by a red shift in the absorption spectrum.
Collapse
Affiliation(s)
- I S Che Sulaiman
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - B W Chieng
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - M J Osman
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - K K Ong
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia. .,Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia.
| | - J I A Rashid
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - W M Z Wan Yunus
- Centre for Tropicalisation, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - S A M Noor
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - N A M Kasim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia.,Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - N A Halim
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, 57000, Kuala Lumpur, Malaysia
| | - A Mohamad
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
17
|
Duenchay P, Kaewjua K, Chailapakul O, Siangproh W. Application of modifier-free gold nanoparticle colorimetric sensing for rapid screening and detection of vitamin B1. NEW J CHEM 2020. [DOI: 10.1039/d0nj01401j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and fast alternative colorimetric sensing platform for selective determination of vitamin B1 in urine samples was proposed.
Collapse
Affiliation(s)
- Paweenar Duenchay
- Department of Chemistry
- Faculty of Science
- Srinakharinwirot University
- Sukhumvit 23
- Bangkok 10110
| | - Kantima Kaewjua
- Department of Chemistry
- Faculty of Science
- Srinakharinwirot University
- Sukhumvit 23
- Bangkok 10110
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry
- Faculty of Science
- Chulalongkorn University
- Bangkok 10330
- Thailand
| | - Weena Siangproh
- Department of Chemistry
- Faculty of Science
- Srinakharinwirot University
- Sukhumvit 23
- Bangkok 10110
| |
Collapse
|
18
|
ReddyPrasad P, Naidoo EB, Sreedhar NY. Electrochemical preparation of a novel type of C-dots/ZrO2 nanocomposite onto glassy carbon electrode for detection of organophosphorus pesticide. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
19
|
Duenchay P, Chailapakul O, Siangproh W. A Transparency Sheet-Based Colorimetric Device for Simple Determination of Calcium Ions Using Induced Aggregation of Modified Gold Nanoparticles. Int J Mol Sci 2019; 20:ijms20122954. [PMID: 31212937 PMCID: PMC6627648 DOI: 10.3390/ijms20122954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 11/23/2022] Open
Abstract
A simple and novel transparency sheet-based colorimetric detection device using gold nanoparticles (AuNPs) modified by 4-Amino-6-hydroxy-2-mercaptopyrimidine monohydrate (AHMP) was fabricated and developed for the determination of calcium ions (Ca2+). The detection was based on a colorimetric reaction as a result of the aggregation of modified AuNPs induced by Ca2+ due to the ability to form strong electrostatic interactions between positively charged Ca2+ and negatively charged modified AuNPs. Probe solution changes color from red to blue in the presence of Ca2+ and can be observed by the naked eyes. To verify the complete self-assembly of the AHMP onto the AuNP surface, the modified AuNPs were characterized using ultraviolet–visible spectroscopy and zeta potential measurements. Under optimal conditions, a quantitative linearity was 10 to 100 ppm (R2 = 0.9877) with a detection limit of 3.05 ppm. The results obtained by the developed method were in good agreement with standard atomic absorption spectrometry (AAS) results and demonstrated that this method could reliably measure Ca2+. Overall, this novel alternative approach presents a low-cost, simple, sensitive, rapid, and promising device for the detection of Ca2+.
Collapse
Affiliation(s)
- Paweenar Duenchay
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Centre of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand.
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand.
| |
Collapse
|
20
|
Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor. Biosens Bioelectron 2019; 136:112-117. [PMID: 31054518 DOI: 10.1016/j.bios.2019.04.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/26/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
In this paper, we present a simple strategy to fabricate a sensitive fluorescence microfluidic sensor based on quantum dots (QDs) aerogel and acetylcholinesterase enzyme (AChE) for organophosphate pesticides (OPs) detection The detection is based on the change of fluorescence intensity of QDs aerogel, which will be partly quenched as a consequence of the hydrolytic reaction of acetylthiocholine (ATCh) catalyzed by the AChE, and then the fluorescence of QDs aerogel is recovered due to decreasing of the enzymatic activity in the presence of OPs. The QDs-AChE aerogel based microfluidic arrays sensor provided good sensitivity for rapid detection of OPs with a detection limit of 0.38 pM, while the detection range is from 10-5 to 10-12 M. Due to the result of random orientations of AChE in the 3D porous aerogel nano-structure, the sensor presents similar calibration curves to difference pesticides, which promises the ability of the sensor to monitor total OPs of mixture. This determination sensor shows a low detection limit, wide linear range, and highly accurate determination of total OPs and carbamate content. Finally, we show the proposed sensor can be used to monitor of simple OPs and mixture in spiked fruit samples. This novel QDs-AChE aerogel sensor has an extremely high sensitivity and large detection range, it is a promising tool for accurate, rapid and cost-effective detection of various OP residues on agricultural products.
Collapse
|
21
|
Patel H, Rawtani D, Agrawal Y. A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide detection using Acetylcholinesterase- a review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.01.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Chawla P, Kaushik R, Shiva Swaraj V, Kumar N. Organophosphorus pesticides residues in food and their colorimetric detection. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2018.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Li X, Tang X, Chen X, Qu B, Lu L. Label-free and enzyme-free fluorescent isocarbophos aptasensor based on MWCNTs and G-quadruplex. Talanta 2018; 188:232-237. [DOI: 10.1016/j.talanta.2018.05.092] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 01/08/2023]
|
24
|
Zheng M, He J, Wang Y, Wang C, Ma S, Sun X. Colorimetric recognition of 6-benzylaminopurine in environmental samples by using thioglycolic acid functionalized silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 192:27-33. [PMID: 29126005 DOI: 10.1016/j.saa.2017.10.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/17/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
A simple and selective colorimetric sensor thioglycolic acid capped silver nanoparticles (TGA-AgNPs) was developed for the detection of 6-benzylaminopurine (6-BAP). The synthesized TGA-AgNPs were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), and transmission electron microscopic (TEM) techniques. The TGA-AgNPs as a sensor for binding 6-BAP through hydrogen-bonding and π-π bonding that causes large conjugate clusters, resulting in a color change from yellow to reddish orange. The surface plasmon resonance (SPR) band of TGA-AgNPs at 397nm is red-shifted to 510nm, which confirms that 6-BAP induces the aggregation of TGA-AgNPs. Under the optimized conditions, a linear relationship between the absorption ratio (A510nm/A397nm) and 6-BAP concentration was found in the range of 4-26μM. The detection limit of 6-BAP was 0.2μM, which is lower than the other analytical techniques. Moreover, the proposed sensor was successfully applied for the detection of 6-BAP in environmental samples with good recoveries. The proposed assay provides a simple and cost-effective method for the analysis of 6-BAP in vegetable and water samples.
Collapse
Affiliation(s)
- Mingda Zheng
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiang He
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yingying Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chenge Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shuang Ma
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaohan Sun
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
25
|
Rawtani D, Khatri N, Tyagi S, Pandey G. Nanotechnology-based recent approaches for sensing and remediation of pesticides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:749-762. [PMID: 29161677 DOI: 10.1016/j.jenvman.2017.11.037] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/11/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Pesticides are meant to control and destroy the pests and weeds. They are classified into different categories on the basis their origin and type of pest they target. Chemical pesticides such as insecticides, herbicides and fungicides are commonly used in agricultural fields. However, the excessive use of these agrochemicals have adverse effects on environment such as reduced population of insect pollinators, threat to endangered species and habitat of birds. Upon consumption; chemical pesticides also cause various health issues such as skin, eye and nervous system related problems and cancer upon prolonged exposure. Various techniques in the past have been developed on the basis of surface adsorption, membrane filtration and biological degradation to reduce the content of pesticides. However, slow response, less specificity and sensitivity are some of the drawbacks of such techniques. In recent times, Nanotechnology has emerged as a helping tool for the sensing and remediation of pesticides. This review focuses on the use of this technology for the detection, degradation and removal of pesticides. Nanomaterials have been classified into nanoparticles, nanotubes and nanocomposites that are commonly used for detection, degradation and removal of pesticides. The review also focuses on the chemistry behind the sensing and remediation of pesticides using nanomaterials. Different types of nanoparticles, viz. metal nanoparticles, bimetallic nanoparticles and metal oxide nanoparticles; nanotubes such as carbon nanotubes and halloysite nanotubes have been used for the detection, degradation and removal of pesticides. Further, various enzyme-based biosensors for detection of pesticides have also been summarized.
Collapse
Affiliation(s)
- Deepak Rawtani
- Gujarat Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India.
| | - Nitasha Khatri
- Gujarat Environment Management Institute, Department of Forest and Environment, Sector 10B, Dr. Jivraj Mehta Bhawan, Gandhinagar, Gujarat, India
| | - Sanjiv Tyagi
- Gujarat Environment Management Institute, Department of Forest and Environment, Sector 10B, Dr. Jivraj Mehta Bhawan, Gandhinagar, Gujarat, India
| | - Gaurav Pandey
- Gujarat Environment Management Institute, Department of Forest and Environment, Sector 10B, Dr. Jivraj Mehta Bhawan, Gandhinagar, Gujarat, India
| |
Collapse
|
26
|
Wu S, Li D, Gao Z, Wang J. Controlled etching of gold nanorods by the Au(III)-CTAB complex, and its application to semi-quantitative visual determination of organophosphorus pesticides. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2468-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Ma R, Jin M, Tian Y. An Ultrasensitive and Selective Probe for Ratiometric Determination and Removal of Hg2+. JOURNAL OF ANALYSIS AND TESTING 2017. [DOI: 10.1007/s41664-017-0011-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Luo QJ, Li YX, Zhang MQ, Qiu P, Deng YH. A highly sensitive, dual-signal assay based on rhodamine B covered silver nanoparticles for carbamate pesticides. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.10.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides. Biosens Bioelectron 2016; 85:457-463. [DOI: 10.1016/j.bios.2016.05.040] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/28/2016] [Accepted: 05/11/2016] [Indexed: 11/24/2022]
|
30
|
Conducting polymer and multi-walled carbon nanotubes nanocomposites based amperometric biosensor for detection of organophosphate. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.05.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Yue G, Su S, Li N, Shuai M, Lai X, Astruc D, Zhao P. Gold nanoparticles as sensors in the colorimetric and fluorescence detection of chemical warfare agents. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Acetylcholinesterase inhibition-based ultrasensitive fluorometric detection of malathion using unmodified silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Lu L, Xia Y. Enzymatic reaction modulated gold nanorod end-to-end self-assembly for ultrahigh sensitively colorimetric sensing of cholinesterase and organophosphate pesticides in human blood. Anal Chem 2015. [PMID: 26217956 DOI: 10.1021/acs.analchem.5b02516] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We present herein the first reported self-assembly modulation of gold nanorods (AuNRs) by enzymatic reaction, which is further employed for colorimetric assays of cholinesterase (ChE) and organophosphate pesticides (OPs) in human blood. ChE catalyzes its substrate (acetylthiocholine) and produces thiocholine and acetate acid. The resulting thiols then react with the tips of the AuNRs by S-Au conjunction and prevent subsequent cysteine-induced AuNR end-to-end (EE) self-assembly. Correspondingly, the AuNR surface plasmon resonance is regulated, which results in a distinctly ratiometric signal output. Under optimal conditions, the linear range is 0.042 to 8.4 μU/mL, and the detection limit is as low as 0.018 μU/mL. As ChE is incubated with OPs, the enzymatic activity is inhibited. So, the cysteine-induced assembly is observed again. On the basis of this principle, OPs can be well determined ranging from 0.12 to 40 pM with a 0.039 pM detection limit. To our knowledge, the present quasi pU/mL level sensitivity for ChE and the quasi femtomolar level sensitivity for OPs are at least 500 and 7000 times lower than those of previous colorimetric methods, respectively. The ultrahigh sensitivity results from (1) the rational choice of anisotropic AuNRs as building blocks and reporters and (2) the specific structure of the enzymatic thiocholine. Because of ultrahigh sensitivity, serum samples are allowed to be extremely diluted in the assay. Accordingly, various nonspecific interactions, even from glutathione/cysteine, are well avoided. So, both ChE and OPs in human blood can be directly assayed without any prepurification, indicating the simplicity and practical promise of the proposed method.
Collapse
Affiliation(s)
- Linlin Lu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Yunsheng Xia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| |
Collapse
|
34
|
Manjumeena R, Duraibabu D, Rajamuthuramalingam T, Venkatesan R, Kalaichelvan PT. Highly responsive glutathione functionalized green AuNP probe for precise colorimetric detection of Cd2+ contamination in the environment. RSC Adv 2015. [DOI: 10.1039/c5ra12427a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Precise colorimetric detection of Cd2+ using a glutathione functionalized phytosynthesized AuNP probe provides an ecofriendly approach to heavy metal detection.
Collapse
|
35
|
Badawy MEI, El-Aswad AF. Bioactive paper sensor based on the acetylcholinesterase for the rapid detection of organophosphate and carbamate pesticides. Int J Anal Chem 2014; 2014:536823. [PMID: 25484901 PMCID: PMC4251802 DOI: 10.1155/2014/536823] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/27/2014] [Indexed: 11/17/2022] Open
Abstract
In many countries, people are becoming more concerned about pesticide residues which are present in or on food and feed products. For this reason, several methods have been developed to monitor the pesticide residue levels in food samples. In this study, a bioactive paper-based sensor was developed for detection of acetylcholinesterase (AChE) inhibitors including organophosphate and carbamate pesticides. Based on the Ellman colorimetric assay, the assay strip is composed of a paper support (1 × 10 cm), onto which a biopolymer chitosan gel immobilized in crosslinking by glutaraldehyde with AChE and 5,5'-dithiobis(2-nitrobenzoic) acid (DTNB) and uses acetylthiocholine iodide (ATChI) as an outside reagent. The assay protocol involves introducing the sample to sensing zone via dipping of a pesticide-containing solution. Following an incubation period, the paper is placed into ATChI solution to initiate enzyme catalyzed hydrolysis of the substrate, causing a yellow color change. The absence or decrease of the yellow color indicates the levels of the AChE inhibitors. The biosensor is able to detect organophosphate and carbamate pesticides with good detection limits (methomyl = 6.16 × 10(-4) mM and profenofos = 0.27 mM) and rapid response times (~5 min). The results show that the paper-based biosensor is rapid, sensitive, inexpensive, portable, disposable, and easy-to-use.
Collapse
Affiliation(s)
- Mohamed E. I. Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt
| | - Ahmed F. El-Aswad
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria 21545, Egypt
| |
Collapse
|
36
|
Acetylcholinesterase-Free Colorimetric Detection of Chlorpyrifos in Fruit Juice Based on the Oxidation Reaction of H2O2 with Chlorpyrifos and ABTS2− Catalyzed by Hemin/G-Quadruplex DNAzyme. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-0042-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Li S, Liang W, Zheng F, Lin X, Cai J. Ascorbic acid surface modified TiO₂-thin layers as a fully integrated analysis system for visual simultaneous detection of organophosphorus pesticides. NANOSCALE 2014; 6:14254-14261. [PMID: 25319460 DOI: 10.1039/c4nr04430d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
TiO₂ photocatalysis and colorimetric detection are coupled with thin layer chromatography (TLC) for the first time to develop a fully integrated analysis system. Titania@polystyrene hybrid microspheres were surface modified with ascorbic acid, denoted AA-TiO₂@PS, and used as the stationary phase for TLC. Because the affinity between AA-TiO₂@PS and organophosphorus pesticides (OPs) was different for different species of OPs (including chlopyrifos, malathion, parathion, parathion-methyl, and methamidophos), OPs could be separated simultaneously by the mobile phase in 12.0 min with different Rf values. After surface modification, the UV-vis wavelength response range of AA-TiO₂@PS was expanded to 650 nm. Under visible-light irradiation, all of the OPs could be photodegraded to PO₄(3-) in 25.0 min. Based on the chromogenic reaction between PO₄(3-) and chromogenic agents (ammonium molybdate and ascorbic acid), OPs were quantified from color intensity images using a scanner in conjunction with image processing software. So, AA-TiO₂@PS was respectively used as the stationary phase of TLC for efficient separation of OPs, as a photocatalyst for species transformation of phosphorus, and as a colorimetric probe for on-field simultaneous visual detection of OPs in natural water. Linear calibration curves for each OP ranged from 19.3 nmol P L(-1) to 2.30 μmol P L(-1). This integrated analysis system was simple, inexpensive, easy to operate, and sensitive.
Collapse
Affiliation(s)
- Shunxing Li
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Zhangzhou, 363000, China
| | | | | | | | | |
Collapse
|
38
|
Guo J, Zhang Y, Luo Y, Shen F, Sun C. Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate. Talanta 2014; 125:385-92. [PMID: 24840461 DOI: 10.1016/j.talanta.2014.03.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
We designed a turn-on fluorescence assay for glyphosate based on the fluorescence resonance energy transfer (FRET) between negatively charged CdTe quantum dots capped with thioglycolic acid (TGA-CdTe-QDs) and positively charged gold nanoparticles stabilized with cysteamine (CS-AuNPs). Oppositely charged TGA-CdTe-QDs and CS-AuNPs can form FRET donor-acceptor assemblies due to electrostatic interactions, which effectively quench the fluorescence intensity of TGA-CdTe-QDs. The presence of glyphosate could induce the aggregation of CS-AuNPs through electrostatic interactions, resulting in the fluorescence recovery of the quenched QDs. This FRET-based method has been successfully utilized to detect glyphosate in apples with satisfactory results. The detection limit for glyphosate was 9.8 ng/kg (3σ), with the linear range of 0.02-2.0 μg/kg. The attractive sensitivity was obtained due to the efficient FRET and the superior fluorescence properties of QDs. The proposed method is a promising approach for rapid screening of glyphosate in real samples.
Collapse
Affiliation(s)
- Jiajia Guo
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Yan Zhang
- Laboratory of Nutrition and Functional Food, Jilin University, Changchun 130062, China
| | - Yeli Luo
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Fei Shen
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Chunyan Sun
- Department of Food Quality and Safety, Jilin University, Changchun 130062, China.
| |
Collapse
|
39
|
Kiran K. Gold nanoparticles for mercury determination in environmental water and vegetable samples. APPLIED NANOSCIENCE 2014. [DOI: 10.1007/s13204-014-0325-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
40
|
Martí A, Costero AM, Gaviña P, Parra M. Triarylcarbinol functionalized gold nanoparticles for the colorimetric detection of nerve agent simulants. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.03.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Giannoulis KM, Giokas DL, Tsogas GZ, Vlessidis AG. Ligand-free gold nanoparticles as colorimetric probes for the non-destructive determination of total dithiocarbamate pesticides after solid phase extraction. Talanta 2014; 119:276-83. [DOI: 10.1016/j.talanta.2013.10.063] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/24/2013] [Accepted: 10/31/2013] [Indexed: 11/27/2022]
|
42
|
Zhang N, Si Y, Sun Z, Li S, Li S, Lin Y, Wang H. Lab-on-a-drop: biocompatible fluorescent nanoprobes of gold nanoclusters for label-free evaluation of phosphorylation-induced inhibition of acetylcholinesterase activity towards the ultrasensitive detection of pesticide residues. Analyst 2014; 139:4620-8. [DOI: 10.1039/c4an00855c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalysis and phosphorylated inhibition of acetylcholinesterase were monitored using fluorescent AuNCs nanoprobes for detecting pesticide residues.
Collapse
Affiliation(s)
- Ning Zhang
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Yanmei Si
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Zongzhao Sun
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Shuai Li
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Shuying Li
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University
- Pullman, USA
| | - Hua Wang
- Shandong Province Key Laboratory of Life-Organic Analysis
- School of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu City, P. R. China
| |
Collapse
|
43
|
Duan J, He D, Wang W, Liu Y, Wu H, Wang Y, Fu M, Li S. The fabrication of nanochain structure of gold nanoparticles and its application in ractopamine sensing. Talanta 2013; 115:992-8. [DOI: 10.1016/j.talanta.2013.04.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/15/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
|
44
|
Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4:Yb,Ho nanocrystals and gold nanoparticles. Talanta 2013; 114:124-30. [DOI: 10.1016/j.talanta.2013.02.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/23/2013] [Accepted: 02/27/2013] [Indexed: 11/22/2022]
|
45
|
|
46
|
Kavruk M, Özalp VC, Öktem HA. Portable bioactive paper-based sensor for quantification of pesticides. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2013; 2013:932946. [PMID: 23971002 PMCID: PMC3736481 DOI: 10.1155/2013/932946] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/13/2013] [Accepted: 07/01/2013] [Indexed: 05/28/2023]
Abstract
A paper-based biosensor was developed for the detection of the degradation products of organophosphorus pesticides. The biosensor quantifies acetylcholine esterase inhibitors in a fast, disposable, cheap, and accurate format. We specifically focused on the use of sugar or protein stabilizer to achieve a biosensor with long shelf-life. The new biosensor detected malathion with a detection limit of 2.5 ppm in 5 min incubation time. The operational stability was confirmed by testing 60 days storage at 4°C when glucose was used as stabilizer.
Collapse
Affiliation(s)
- Murat Kavruk
- NanoBiz Ltd. Metu Technopolis, Galyum Block, Floor 2, No. 18, 06800 Ankara, Turkey
- Department of Biology, Nanobiotechnology R&D Lab, Middle East Technical University, 06800 Ankara, Turkey
| | - Veli Cengiz Özalp
- NanoBiz Ltd. Metu Technopolis, Galyum Block, Floor 2, No. 18, 06800 Ankara, Turkey
- School of Medicine, Istanbul Kemerburgaz University, 34217 Istanbul, Turkey
| | - Hüseyin Avni Öktem
- NanoBiz Ltd. Metu Technopolis, Galyum Block, Floor 2, No. 18, 06800 Ankara, Turkey
- Department of Biology, Nanobiotechnology R&D Lab, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
47
|
Martí A, Costero AM, Gaviña P, Gil S, Parra M, Brotons-Gisbert M, Sánchez-Royo JF. Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Lafleur JP, Senkbeil S, Jensen TG, Kutter JP. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants. LAB ON A CHIP 2012; 12:4651-4656. [PMID: 22824920 DOI: 10.1039/c2lc40543a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Conventional methods of environmental analysis can be significantly improved by the development of portable microscale technologies for direct in-field sensing at remote locations. This report demonstrates the vast potential of gold nanoparticle-based microfluidic sensors for the rapid, in-field, detection of two important classes of environmental contaminants - heavy metals and pesticides. Using gold nanoparticle-based microfluidic sensors linked to a simple digital camera as the detector, detection limits as low as 0.6 μg L(-1) and 16 μg L(-1) could be obtained for the heavy metal mercury and the dithiocarbamate pesticide ziram, respectively. These results demonstrate that the attractive optical properties of gold nanoparticle probes combine synergistically with the inherent qualities of microfluidic platforms to offer simple, portable and sensitive sensors for environmental contaminants.
Collapse
Affiliation(s)
- Josiane P Lafleur
- Technical University of Denmark, Department of Micro- and Nanotechnology, Ørsteds Plads Bldg 345B, Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
49
|
Liu D, Chen W, Wei J, Li X, Wang Z, Jiang X. A Highly Sensitive, Dual-Readout Assay Based on Gold Nanoparticles for Organophosphorus and Carbamate Pesticides. Anal Chem 2012; 84:4185-91. [DOI: 10.1021/ac300545p] [Citation(s) in RCA: 343] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dingbin Liu
- CAS Key Lab
for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11
Beiyitiao, Zhongguancun, Beijing 100190, China
- Graduate University of Chinese Academy of Sciences,
Shijingshan, Yuquan Road 19A, Beijing 100049, China
| | - Wenwen Chen
- CAS Key Lab
for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11
Beiyitiao, Zhongguancun, Beijing 100190, China
- Graduate University of Chinese Academy of Sciences,
Shijingshan, Yuquan Road 19A, Beijing 100049, China
| | - Jinhua Wei
- Institute of Microbiology, Chinese Academy of Science, 8 North Second Street, Haidian District,
Beijing 100190, China
- Graduate University of Chinese Academy of Sciences,
Shijingshan, Yuquan Road 19A, Beijing 100049, China
| | - Xuebing Li
- Institute of Microbiology, Chinese Academy of Science, 8 North Second Street, Haidian District,
Beijing 100190, China
| | - Zhuo Wang
- CAS Key Lab
for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11
Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Xingyu Jiang
- CAS Key Lab
for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11
Beiyitiao, Zhongguancun, Beijing 100190, China
| |
Collapse
|