1
|
He Z, Ma S, Huang P, Liang Q, Wang R. Covalent organic framework/layered double hydroxide composite-coated poly(ether ether ketone) jacket for stir bar sorptive extraction of Sudan dyes. J Sep Sci 2024; 47:e2300865. [PMID: 38471971 DOI: 10.1002/jssc.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
A novel coating for stir bar sorptive extraction was developed by growing a covalent organic framework, TpPa-1 (derived from phenylenediamine and 1,3,5-trimethylphloroglucinol), onto the surface of Ni-Al layered double hydroxide. Using a poly(ether ether ketone) tube as the supporting substrate, a TpPa-1/layered double hydroxide-coated stir bar was fabricated and demonstrated excellent extraction performance for Sudan dyes. Notably, its extraction efficiency significantly exceeded that of stir bars modified with only TpPa-1 or Ni-Al layered double hydroxide. Based on this innovative coating, a stir bar sorptive extraction-high performance liquid chromatography method was established. This method exhibited low limits of detection (0.04-0.08 ng/mL) for the analysis of Sudan dyes. It also featured a wide linear range (0.25-100 or 200 ng/mL) and demonstrated good repeatability with relative standard deviations ≤6.22%. The recoveries obtained for spiked lake water and chili powder samples were 93.5%-105.2% and 87.8%-100.6%, respectively, demonstrating the practical potential of the developed method for detecting trace Sudan dyes in real samples.
Collapse
Affiliation(s)
- Zhenfu He
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Shumin Ma
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Peiqi Huang
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Qionghuan Liang
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Rong Wang
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| |
Collapse
|
2
|
Zhao X, Feng X, Chen J, Zhang L, Zhai L, Lv S, Ye Y, Chen Y, Zhong T, Yu X, Xiao Y. Rapid and Sensitive Detection of Polycyclic Aromatic Hydrocarbons in Tea Leaves Using Magnetic Approach. Foods 2023; 12:foods12112270. [PMID: 37297514 DOI: 10.3390/foods12112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
A rapid and efficient method using an alkyl-functionalized magnetic nanoparticles-based extraction technique combined with Ultra-High Performance Liquid Chromatography was developed for the detection of trace amounts of polycyclic aromatic hydrocarbons in tea leaves. As a popular coating for chromatographic column packing materials, C18-alkyl has been demonstrated to be effective in separating polycyclic aromatic hydrocarbons. Additionally, the magnetism of the nanomaterials accelerates the extraction process while their high surface ratio enables desirable dispersity in the sample matrix. Meanwhile, the adsorbents can be washed and reused 30 times without compromising recovery, which greatly reduces the budget. The effects of various parameters were investigated and optimized, and the recoveries for five analytes were in the range of 84.8-105.4%. The RSD of intra-day and inter-day were below 11.9% and 6.8%, respectively. The limits of detection and limits of quantification ranged from 1.69-9.97 ng g-1 and 5.12-30.21 ng g-1, indicating satisfactory sensitivity. Thus, the proposed methodology is rapid, highly efficient, and economical, and it expands the application of magnetic cleanup approaches in complex food matrices.
Collapse
Affiliation(s)
- Xiaohan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Xiao Feng
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jingwen Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Lanxin Zhang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Lingzi Zhai
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Sizhe Lv
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Yonghao Ye
- Zhuhai Resproly Pharmaceutical Technology Co., Ltd., Blk 11, International Health Port, No. 628, Airport West Road, Jinwan District, Zhuhai 519040, China
| | - Yongqi Chen
- Zhuhai Resproly Pharmaceutical Technology Co., Ltd., Blk 11, International Health Port, No. 628, Airport West Road, Jinwan District, Zhuhai 519040, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macao 999078, China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, China
| | - Ying Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, China
| |
Collapse
|
3
|
Liu M, Wang S, Ge W, Bi W, Chen DDY. Influence of host-guest interactions on analytical performance of direct analysis in real-time mass spectrometry. Anal Bioanal Chem 2023:10.1007/s00216-023-04539-4. [PMID: 36651975 DOI: 10.1007/s00216-023-04539-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
To systematically study the influence of host-guest interactions on the analytical performance of direct analysis in real time mass spectrometry (DART-MS), the interactions between cyclodextrins (CDs) and different Sudan dyes were investigated. The results showed that the host-guest interaction between CDs and Sudan dyes did not affect qualitative analysis of the target compounds, but led to a lower signal intensity for Sudan dyes, thus affecting quantitative analysis of the target compounds. The stronger the host-guest interaction, the weaker the signal intensity of target compound on DART-MS. The results also show that both in solution and in solid-phase microextraction (SPME), the addition of organic solvents can weaken the host-guest interaction between CDs and Sudan dyes, thus improving the signal intensity in DART-MS. In SPME, adding organic solvents has a certain practical value and can improve the efficiency of Sudan dye analysis. This study suggests that appropriate sample pretreatment is needed to weaken noncovalent interactions prior to DART-MS analysis to obtain more accurate quantitative results. The data provide some insight into the effects of other noncovalent interactions on the efficiency of DART-MS as an analytical tool, as well as the potential to study intermolecular interactions with DART-MS.
Collapse
Affiliation(s)
- Min Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Simin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wuxia Ge
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wentao Bi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China. .,Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
4
|
Fatimah I, Fadillah G, Purwiandono G, Sahroni I, Purwaningsih D, Riantana H, Avif AN, Sagadevan S. Magnetic-silica nanocomposites and the functionalized forms for environment and medical applications: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Phouthavong V, Yan R, Nijpanich S, Hagio T, Ichino R, Kong L, Li L. Magnetic Adsorbents for Wastewater Treatment: Advancements in Their Synthesis Methods. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1053. [PMID: 35160996 PMCID: PMC8838955 DOI: 10.3390/ma15031053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
The remediation of water streams, polluted by various substances, is important for realizing a sustainable future. Magnetic adsorbents are promising materials for wastewater treatment. Although numerous techniques have been developed for the preparation of magnetic adsorbents, with effective adsorption performance, reviews that focus on the synthesis methods of magnetic adsorbents for wastewater treatment and their material structures have not been reported. In this review, advancements in the synthesis methods of magnetic adsorbents for the removal of substances from water streams has been comprehensively summarized and discussed. Generally, the synthesis methods are categorized into five groups, as follows: direct use of magnetic particles as adsorbents, attachment of pre-prepared adsorbents and pre-prepared magnetic particles, synthesis of magnetic particles on pre-prepared adsorbents, synthesis of adsorbents on preprepared magnetic particles, and co-synthesis of adsorbents and magnetic particles. The main improvements in the advanced methods involved making the conventional synthesis a less energy intensive, more efficient, and simpler process, while maintaining or increasing the adsorption performance. The key challenges, such as the enhancement of the adsorption performance of materials and the design of sophisticated material structures, are discussed as well.
Collapse
Affiliation(s)
- Vanpaseuth Phouthavong
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
| | - Ruixin Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| | - Supinya Nijpanich
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
| | - Takeshi Hagio
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
- Institute of Materials Innovation, Institutes for Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryoichi Ichino
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
- Institute of Materials Innovation, Institutes for Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| |
Collapse
|
6
|
Yu X, Zhong T, Zhang Y, Zhao X, Xiao Y, Wang L, Liu X, Zhang X. Design, Preparation, and Application of Magnetic Nanoparticles for Food Safety Analysis: A Review of Recent Advances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:46-62. [PMID: 34957835 DOI: 10.1021/acs.jafc.1c03675] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review (with 126 references) aims at providing an updated overview of the recent developments and innovations of the preparation and application of magnetic nanoparticles for food safety analysis. During the past two decades, various magnetic nanoparticles with different sizes, shapes, and surface modifications have been designed, synthesized, and characterized with the prospering development of material science. Analytical scientists and food scientists are among the ones who bring these novel materials from laboratories to commercial applications. Powerful and versatile surface functional groups and high surface to mass ratios make these magnetic nanoparticles useful tools for high-efficiency capture and preconcentration of certain molecules, even when they exist in trace levels or complicated food matrices. This is why more and more methods for sensitive detection and quantification of hazards in foods are developed based on these magic magnetic tools. In this review, the principles and superiorities of using magnetic nanoparticles for food pollutant analysis are first introduced, like the mechanism of magnetic solid phase extraction, a most commonly used method for food safety-related sample pretreatment. Their design and preparation are presented afterward, alongside the mechanisms underlying their application for different analytical purposes. After that, recently developed magnetic nanoparticle-based methods for dealing with food pollutants such as organic pollutants, heavy metals, and pathogens in different food matrices are summarized in detail. In the end, some humble outlooks on future directions for work in this field are provided.
Collapse
Affiliation(s)
- Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, P.R. China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Yujia Zhang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Xiaohan Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
- Guangdong-Hong Kong-Macau Joint Laboratory for Contaminants Exposure and Health, Guangzhou 510006, P.R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, P.R. China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
7
|
Colorimetric determination of trace orthophosphate in water by using C 18-functionalized silica coated magnetite. Sci Rep 2021; 11:23073. [PMID: 34845276 PMCID: PMC8630040 DOI: 10.1038/s41598-021-02516-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
In this study, we customized magnetic sorbents by functionalizing silica coated magnetite with octadecyl(C18)silane (Fe3O4@SiO2@C18). This sorbent was intended for the determination of trace orthophosphate (o-PO43−) in unpolluted freshwater samples. The o-PO43− was transformed to phosphomolybdenum blue (PMB), a known polyoxometalate ion. Then the PMB were coupled with cetyl trimethyl ammonium bromide (CTAB), cationic surfactant, in order to hydrophobically bound with the Fe3O4@SiO2@C18 particles through dispersive magnetic solid-phase extraction (d-MSPE) as part of sample preconcentration. The PMB–CTAB–magnetic particles are simply separated from the aqueous solution by the external magnet. The acidified ethanol 0.5 mL was used as PMB-CTAB eluent to produce an intense blue solution, which the absorbance was measured using a UV–Vis spectrophotometer at 800 nm. The proposed method (employing 2 mg of Fe3O4@SiO2@C18) yielded an enhancement factor of 32 with a linear range of 1.0–30.0 µg P L−1. Precision at 6.0 µg P L−1 and 25.0 µg P L−1 were 3.70 and 2.49% (RSD, n = 6) respectively. The lower detection limit of 0.3 µg P L−1 and quantification limit of 1.0 µg P L−1 allowed trace levels analysis of o-PO43− in samples. The reliability and accuracy of the proposed method were confirmed by using a certified reference material. Our method offers highly sensitive detection of o-PO43− with simple procedures that can be operated at room temperature and short analysis time.
Collapse
|
8
|
Wu Y, Bai H, Zhou Q, Li S, Tong Y, Guo J, Zhou B, Li Z, Zhan Y, Liu M, Li Y, Qu T. Preparation of Polyamidoamine Dendrimer Modified Magnetic Nanoparticles and Its Application for Reliable Measurement of Sudan Red Contaminants in Natural Waters at Parts-Per-Billion Levels. Front Chem 2021; 9:708995. [PMID: 34422768 PMCID: PMC8374313 DOI: 10.3389/fchem.2021.708995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The health threat from Sudan red dyes has been the subject of much attention in recent years and is crucial to design and establish reliable measurement technologies. In the present study, a new magnetic nanomaterial, polyamidoamine dendrimer-modified magnetic nanoparticles (Gn-MNPs), was synthesized and characterized. The nanomaterials had good adsorption capacity for Sudan dyes from natural waters. G1.5-MNPs possessed excellent adsorption capacity and a linear adsorption relationship over the range from 0.02 to 300 μg L−1 of Sudan dyes with relative coefficients all larger than 0.996. The sensitivity of the proposed method was excellent with detection limits over the range from 1.8 to 5.5 ng L−1 and the precision was less than 3.0%. G1.5-MNPs showed a remarkable application potential for the enrichment of trace environment pollutants in aqueous samples and the developed method based on this nanomaterial could be a robust and reliable alternative tool for routine monitoring of such pollutants.
Collapse
Affiliation(s)
- Yalin Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China.,Beijing Municipal Research Institute of Environmental Protection, Beijing, China
| | - Huahua Bai
- Beijing Municipal Research Institute of Environmental Protection, Beijing, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Yayang Tong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Jinghan Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Zhi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Yali Zhan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Menghua Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Yanhui Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| | - Tongxu Qu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, China
| |
Collapse
|
9
|
Zhou XZ, Yan XY, Zhu L, Ma M, Dai Y, Wang CG, Zhu LJ, Yu KJ, Liu SM. Magnetic solid-phase extraction of phthalate esters from environmental water samples using fibrous phenyl-functionalized Fe3O4@SiO2@KCC-1. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1909161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Xue-zheng Zhou
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing 400060,
China
| | - Xiang-yang Yan
- Department of Chemistry, University of Science and Technology of China, Hefei 230026,
China
| | - Ling Zhu
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing 400060,
China
| | - Ming Ma
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing 400060,
China
| | - Ya Dai
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing 400060,
China
| | - Chang-guo Wang
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing 400060,
China
| | - Li-jun Zhu
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, Chongqing 400060,
China
| | - Ke-jie Yu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026,
China
| | - Shao-min Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026,
China
| |
Collapse
|
10
|
Yu X, Lee JK, Liu H, Yang H. Synthesis of magnetic nanoparticles to detect Sudan dye adulteration in chilli powders. Food Chem 2019; 299:125144. [PMID: 31323440 DOI: 10.1016/j.foodchem.2019.125144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/22/2022]
Abstract
Magnetic nanoparticles were synthesised to extract Sudan dyes from chilli powders. The adsorbents used were magnetic ferroferric oxide nanoparticles coated with polystyrene. The extraction procedures for Sudan dyes comprised liquid-solid extraction and magnetic solid phase extraction. The conditions were optimised to achieve efficient magnetic solid phase extraction, including extraction and desorption time, type and volume of the desorption solvent, and the mass of the adsorbents. Repeatability tests showed satisfactory recovery rates of 80.2-115.8%, with a relative standard deviation <3.8%. The results suggested that the proposed extraction method was effective and efficient to extract Sudan dyes from chilli powders. The extraction process was simpler compared with traditional approaches because the adsorbents can be rapidly removed from the sample matrix using a permanent magnet. The use of recyclable adsorbents decreased the cost greatly. Chilli powder samples collected from local markets in Singapore were tested using the proposed method under optimum conditions.
Collapse
Affiliation(s)
- Xi Yu
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Jun Kang Lee
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, PR China
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
11
|
Qin SB, Fan YH, Li XS, Zhang Y, Qi SH. Rapid preparation of methyltrimethoxy-modified magnetic mesoporous silica as an effective solid-phase extraction adsorbent. J Sep Sci 2018; 41:669-677. [DOI: 10.1002/jssc.201700832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Shi-Bin Qin
- State Key Laboratory of Biogeology and Environmental Geology; China University of Geosciences; Wuhan China
- School of Environmental Studies; China University of Geosciences; Wuhan China
| | - Yu-Han Fan
- State Key Laboratory of Biogeology and Environmental Geology; China University of Geosciences; Wuhan China
| | - Xiao-Shui Li
- State Key Laboratory of Biogeology and Environmental Geology; China University of Geosciences; Wuhan China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology; China University of Geosciences; Wuhan China
| | - Shi-Hua Qi
- State Key Laboratory of Biogeology and Environmental Geology; China University of Geosciences; Wuhan China
| |
Collapse
|
12
|
Hu WB, Cai HR, Hu WJ, Zhao XL, Liu YA, Li JS, Jiang B, Wen K. Pillar[5]arene-Py-Cu Gel, the First Pillar[5]arene-Based Metallo(organo)gel, and Adsorption of Sudan III by Its Gel-Precipitate. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei-Bo Hu
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; 201210 Shanghai China
- University of Chinese Academy of Sciences; 100039 Beijing P. R. China
| | - Hong-Rui Cai
- School of Physical Science and Technology; ShanghaiTech University; 201210 Shanghai China
| | - Wen-Jing Hu
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; 201210 Shanghai China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes; and Department of Chemistry; East China Normal University; 200062 Shanghai China
| | - Yahu A. Liu
- Medicinal Chemistry; ChemBridge Research Laboratories; 92127 San Diego CA USA
| | - Jiu-Sheng Li
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; 201210 Shanghai China
| | - Biao Jiang
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; 201210 Shanghai China
| | - Ke Wen
- Shanghai Advanced Research Institute; Chinese Academy of Sciences; 201210 Shanghai China
- School of Physical Science and Technology; ShanghaiTech University; 201210 Shanghai China
| |
Collapse
|
13
|
Zhang Q, Liu Y, Wang X, Li H, Chen J. In Situ Synthesis of a Magnetic Graphene Platform for the Extraction of Benzimidazoles from Food Samples and Analysis by High-Performance Liquid Chromatography. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:3018198. [PMID: 28546882 PMCID: PMC5435904 DOI: 10.1155/2017/3018198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
A novel method was proposed for the determination of five benzimidazoles (oxfendazole, mebendazole, flubendazole, albendazole, and fenbendazole) using magnetic graphene (G-Fe3O4). G-Fe3O4 was synthesized via in situ chemical coprecipitation. The properties of G-Fe3O4 were characterized by various instrumental methods. G-Fe3O4 exhibited a great adsorption ability and good stability towards analytes. Various experimental parameters that might affect the extraction efficiency such as the amount of G-Fe3O4, extraction solvent, extraction time, and desorption conditions were evaluated. Under the optimized conditions, a method based on G-Fe3O4 magnetic solid-phase extraction coupled with high-performance liquid chromatography was developed. A good linear response was observed in the concentration range of 0.100-100 μg/L for the five benzimidazoles, with correlation coefficients ranging from 0.9966 to 0.9998. The limits of detection (S/N = 3) of the method were between 17.2 and 32.3 ng/L. Trace benzimidazoles in chicken, chicken blood, and chicken liver samples were determined and the concentrations of oxfendazole, mebendazole, flubendazole, and fenbendazole in these samples were 13.0-20.2, 1.62-4.64, 1.94-6.42, and 0.292-1.04 ng/g, respectively. The recovery ranged from 83.0% to 115%, and the relative standard deviations were less than 7.9%. The proposed method was sensitive, reliable, and convenient for the analysis of trace benzimidazoles in food samples.
Collapse
Affiliation(s)
- Qianchun Zhang
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Yulan Liu
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Xingyi Wang
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Huimin Li
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Junyu Chen
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China
| |
Collapse
|
14
|
Fe3O4 Magnetic Nanoparticles Modified with Sodium Dodecyl Sulfate for Removal of Basic Orange 21 and Basic Orange 22 from Complex Food Samples with High-Performance Liquid Chromatographic Analysis. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0878-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Tolmacheva VV, Apyari VV, Kochuk EV, Dmitrienko SG. Magnetic adsorbents based on iron oxide nanoparticles for the extraction and preconcentration of organic compounds. JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1134/s1061934816040079] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Rajabi M, Sabzalian S, Barfi B, Arghavani-Beydokhti S, Asghari A. In-line micro-matrix solid-phase dispersion extraction for simultaneous separation and extraction of Sudan dyes in different spices. J Chromatogr A 2015; 1425:42-50. [DOI: 10.1016/j.chroma.2015.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 11/25/2022]
|
17
|
Qiao Z, Perestrelo R, Reyes-Gallardo EM, Lucena R, Cárdenas S, Rodrigues J, Câmara JS. Octadecyl functionalized core-shell magnetic silica nanoparticle as a powerful nanocomposite sorbent to extract urinary volatile organic metabolites. J Chromatogr A 2015; 1393:18-25. [PMID: 25818559 DOI: 10.1016/j.chroma.2015.03.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 02/08/2023]
Abstract
In this present study, magnetic Fe3O4@SiO2 nanoparticles (MNPs) functionalized with octadecyl groups (Fe3O4@SiO2-C18 NPs) were synthesized, characterized and employed, for the first time, as powerful nanosorbent to extract endogenous volatile organic metabolites (EVOMs) namely, hexanal, heptanal, decanal, benzaldehyde, 4-heptanone, 5-methyl-2-furfural and phenol, described as potential biomarkers of cancer, from human urine. By using co-precipitation, surface modification methods, the carbon-ferromagnetic nanocomposite was synthesized and characterized by infrared spectrum (IR) and transmission electron microscopy (TEM). By coupling with gas chromatography-mass spectrometry (GC-qMS), a reliable, sensitive and cost-effective method was validated. To test the extraction efficiency of the carbon-ferromagnetic nanocomposite toward urinary EVOMs experimental variables affecting the extraction performance, including nanosorbent amount, adsorption time, elution time, and nature of elution solvent, were investigated in detail. The extraction process was performed by dispersing Fe3O4@SiO2-C18 NPs into working solution containing targeted VOMs, and into urine samples, and then eluted with an adequate organic solvent. The eluate was collected, concentrated and analyzed by GC-qMS. Under the optimized conditions, the LODs and LOQs achieved were in the range of 9.7-57.3 and 32.4-190.9ng/mL, respectively. Calibration curves were linear (r(2)≥0. 988) over the concentration ranges from 0.25 to 250ng/mL. In addition, a satisfying reproducibility was achieved by evaluating the intra- and inter-day precisions with relative standard deviations (RSDs) less than 3 and 11%, respectively. The method also afforded satisfactory results in terms of the matrix effect (72.8-96.1%) and recoveries (accuracy) higher than 75.1% for most of the studied EVOMs. The Fe3O4@SiO2-C18 NPs-based sorbent extraction combined with GC-qMS revealed that the new nanosorbent had a strong ability to retain the target metabolites providing a new, reliable and high throughput strategy for isolation of targeted EVOMs in human urine, suggesting their potential to be applied in other EVOMs.
Collapse
Affiliation(s)
- Zheng Qiao
- CQM, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Rosa Perestrelo
- CQM, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Emilia M Reyes-Gallardo
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Córdoba, 14071 Córdoba, Spain
| | - R Lucena
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Córdoba, 14071 Córdoba, Spain
| | - S Cárdenas
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, Marie Curie Building, Campus de Rabanales, University of Córdoba, 14071 Córdoba, Spain
| | - João Rodrigues
- CQM, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal; Centro de Ciências Exatas e de Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Portugal
| | - José S Câmara
- CQM, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal; Centro de Ciências Exatas e de Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9000-390 Funchal, Portugal.
| |
Collapse
|
18
|
Removal of sudan dyes from aqueous solution by magnetic carbon nanotubes: Equilibrium, kinetic and thermodynamic studies. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.07.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Li C, Chen L, You X. Extraction of Sudan dyes from environmental water by hemimicelles-based magnetic titanium dioxide nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:12382-12389. [PMID: 24938811 DOI: 10.1007/s11356-014-3153-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 06/04/2014] [Indexed: 06/03/2023]
Abstract
A novel method for the extraction of Sudan dyes including Sudan I, II, III, and IV from environmental water by magnetic titanium dioxide nanoparticles (Fe3O4@TiO2) coated with sodium dodecylsulfate (SDS) as adsorbent was reported. Fe3O4@TiO2 was synthesized by a simple method and was characterized by transmission electron microscopy, Fourier-transform infrared spectrometry, and vibrating sample magnetometer. The magnetic separation was quite efficient for the adsorption and desorption of Sudan dyes. The effect of the amount of SDS, extraction time, pH, desorption condition, maximal extraction volume, and humic acid on the extraction process were investigated. This method was employed to analyze three environmental water samples. The results demonstrated that our proposed method had wide linear range (25-5,000 ng L(-1)) with a good linearity (R (2) > 0.999) and low detection limits (2.9-7.3 ng L(-1)). An enrichment factor of 1,000 was achieved. In all three spiked levels (25, 250, and 2,500 ng L(-1)), the recoveries of Sudan dyes were in the range of 86.9-93.6 %. The relative standard deviations obtained were ranging from 2.5 to 9.3 %. That is to say, the new method was fast and effective for the extraction of Sudan dye from environmental water.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Chemistry, College of Science, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | | | | |
Collapse
|
20
|
Wierucka M, Biziuk M. Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.04.007] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Xie L, Jiang R, Zhu F, Liu H, Ouyang G. Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem 2013; 406:377-99. [PMID: 24037613 DOI: 10.1007/s00216-013-7302-6] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/11/2013] [Accepted: 08/13/2013] [Indexed: 11/26/2022]
Abstract
Functionalized magnetic nanoparticles have attracted much attention in sample preparation because of their excellent performance compared with traditional sample-preparation sorbents. In this review, we describe the application of magnetic nanoparticles functionalized with silica, octadecylsilane, carbon-based material, surfactants, and polymers as adsorbents for separation and preconcentration of analytes from a variety of matrices. Magnetic solid-phase extraction (MSPE) techniques, mainly reported in the last five years, are presented and discussed.
Collapse
Affiliation(s)
- Lijun Xie
- MOE Key Laboratory of Aquatic Product Safety/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | | | | | | | | |
Collapse
|
22
|
Liquid–solid extraction coupled with magnetic solid-phase extraction for determination of pyrethroid residues in vegetable samples by ultra fast liquid chromatography. Talanta 2013; 114:167-75. [DOI: 10.1016/j.talanta.2013.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 11/21/2022]
|
23
|
Tian J, Xu J, Zhu F, Lu T, Su C, Ouyang G. Application of nanomaterials in sample preparation. J Chromatogr A 2013; 1300:2-16. [DOI: 10.1016/j.chroma.2013.04.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/23/2013] [Accepted: 04/04/2013] [Indexed: 12/07/2022]
|
24
|
Wang W, Ma R, Wu Q, Wang C, Wang Z. Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatography–fluorescence analysis. J Chromatogr A 2013; 1293:20-7. [DOI: 10.1016/j.chroma.2013.03.071] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/27/2013] [Accepted: 03/26/2013] [Indexed: 11/28/2022]
|
25
|
Wang W, Ma R, Wu Q, Wang C, Wang Z. Fabrication of magnetic microsphere-confined graphene for the preconcentration of some phthalate esters from environmental water and soybean milk samples followed by their determination by HPLC. Talanta 2013; 109:133-40. [DOI: 10.1016/j.talanta.2013.02.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/27/2013] [Accepted: 02/01/2013] [Indexed: 11/16/2022]
|
26
|
Janoš P, Kormunda M, Novák F, Životský O, Fuitová J, Pilařová V. Multifunctional humate-based magnetic sorbent: Preparation, properties and sorption of Cu (II), phosphates and selected pesticides. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2012.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Yu X, Sun Y, Jiang CZ, Gao Y, Wang YP, Zhang HQ, Song DQ. Magnetic solid-phase extraction and ultrafast liquid chromatographic detection of Sudan dyes in red wines, juices, and mature vinegars. J Sep Sci 2012. [DOI: 10.1002/jssc.201200555] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xi Yu
- College of Chemistry; Jilin University; Changchun; P. R. China
| | - Ying Sun
- College of Chemistry; Jilin University; Changchun; P. R. China
| | - Chun-Zhu Jiang
- College of Chemistry; Jilin University; Changchun; P. R. China
| | - Yan Gao
- College of Chemistry; Jilin University; Changchun; P. R. China
| | - Yuan-Peng Wang
- College of Chemistry; Jilin University; Changchun; P. R. China
| | - Han-Qi Zhang
- College of Chemistry; Jilin University; Changchun; P. R. China
| | - Da-Qian Song
- College of Chemistry; Jilin University; Changchun; P. R. China
| |
Collapse
|