1
|
Bounegru AV, Bounegru I. Chitosan-Based Electrochemical Sensors for Pharmaceuticals and Clinical Applications. Polymers (Basel) 2023; 15:3539. [PMID: 37688165 PMCID: PMC10490380 DOI: 10.3390/polym15173539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Chitosan (CTS), a biocompatible and multifunctional material derived from chitin, has caught researchers' attention in electrochemical detection due to its unique properties. This review paper provides a comprehensive overview of the recent progress and applications of CTS-based electrochemical sensors in the analysis of pharmaceutical products and other types of samples, with a particular focus on the detection of medicinal substances. The review covers studies and developments from 2003 to 2023, highlighting the remarkable properties of CTS, such as biocompatibility, chemical versatility, and large surface area, that make it an excellent candidate for sensor modification. Combining CTS with various nanomaterials significantly enhances the detection capabilities of electrochemical sensors. Various types of CTS-based sensors are analyzed, including those utilizing carbon nanomaterials, metallic nanoparticles, conducting polymers, and molecularly imprinted CTS. These sensors exhibit excellent sensitivity, selectivity, and stability, enabling the precise and reliable detection of medications. The manufacturing strategies used for the preparation of CTS-based sensors are described, the underlying detection mechanisms are elucidated, and the integration of CTS sensors with transducer systems is highlighted. The prospects of CTS-based electrochemical sensors are promising, with opportunities for miniaturization, simultaneous detection, and real-time monitoring applications.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
- Faculty of Medicine and Pharmacy, "Dunărea de Jos" University of Galati, 35 Al. I. Cuza Street, 800010 Galati, Romania
| |
Collapse
|
2
|
Chai X, Li Y, Ma C, Guo M, Fan Z, Zhao J, Cheng B. A voltammetric sensor based on a reduced graphene oxide/β-cyclodextrin/silver nanoparticle/polyoxometalate nanocomposite for detecting uric acid and tyrosine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2528-2535. [PMID: 37191157 DOI: 10.1039/d3ay00207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In the present work, an electrochemical sensor based on reduced graphene oxide/β-cyclodextrin/silver nanoparticle/polyoxometalate (RGO-CD-AgNP-POM) was developed for the simultaneous detection of uric acid (UA) and L-tyrosine (L-Tyr). First, an RGO-CD-AgNP-POM nanocomposite was synthesized via a simple photoreduction method and characterized by transmission electron microscopy (TEM), energy dispersive X-ray imaging (EDS), scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA). As an electrode material, RGO-CD-AgNP-POM showed wide linear ranges (0.5-500 μM for UA, and 1-400 μM for L-Tyr) and relatively low detection limits (0.11 μM for UA, and 0.23 μM for L-Tyr). In addition, the combination of supramolecular recognition from CD and excellent electrochemical performances from RGO, AgNPs and POM was expected to enhance the sensing performances toward UA and L-Tyr in real samples with favorable recovery ranges (99%-104%). This nanocomposite provides a new platform for developing the family of electrode materials.
Collapse
Affiliation(s)
- Xu Chai
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Yongbiao Li
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Chaonan Ma
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Minjie Guo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Zhi Fan
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Jin Zhao
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| | - Bowen Cheng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
| |
Collapse
|
3
|
Ma C, Xu P, Chen H, Cui J, Guo M, Zhao J. An electrochemical sensor based on reduced graphene oxide/β-cyclodextrin/multiwall carbon nanotubes/ polyoxometalate tetracomponent hybrid: Simultaneous determination of ascorbic acid, dopamine and uric acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Construction of Electrochemical and Photoelectrochemical Sensing Platform Based on Porphyrinic Metal-Organic Frameworks for Determination of Ascorbic Acid. NANOMATERIALS 2022; 12:nano12030482. [PMID: 35159826 PMCID: PMC8839235 DOI: 10.3390/nano12030482] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023]
Abstract
Highly sensitive and specific detection of biomolecular markers is of great importance to the diagnosis and treatment of related diseases. Herein, Cu-TCPP@MOFs thin films were synthesized with tetrakis(4-carboxyphenyl) porphyrin (H2TCPP) as organic ligands and copper ions as metal nodes. The as-synthesized Cu-TCPP@MOFs thin films as electrode modifiers were used to modify the pre-treated glassy carbon electrode (GCE) and the electrochemical performances of Cu-TCPP@MOFs/GCE were evaluated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Furthermore, as the working electrode, the constructed Cu-TCPP@MOFs/GCE was used for the investigation of ascorbic acid (AA) due to its outstanding electrocatalytic activities towards AA by several electrochemical methods, including cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoamperometry (CA). The well-linear relationship was established based on different AA concentration ranges and the ideal detection limits (LOD) were obtained in the above-mentioned electrochemical methods, respectively. Furthermore, a Cu-TCPP MOFs@GCE sensing platform was used as a photoelectrochemical (PEC) sensor to quantitatively detect AA based on the strong absorption properties of Cu-TCPP ingredients in Cu-TCPP MOFs in a visible light band of 400~700 nm. PEC sensing platform based on Cu-TCPP@MOFs exhibited a more extensive linear concentration range, more ideal detection limit, and better sensitivity relative than the other electrochemical methods for AA. The well linear regression equations were established between the peak current intensity and AA concentrations in different electrochemical technologies, including CV, DPV, and CA, and PEC technology. AA concentration ranges applicable to various electrochemical equations were as follows: 0.45~2.10 mM of CV, 0.75~2.025 mM of DPV, 0.3~2.4 mM of CA, 7.5~480 μM of PEC, and the corresponding detection limits for AA were 1.08 μM (S/N = 3), 0.14 μM (S/N = 3), 0.049 μM (S/N = 3), and 0.084 nA/μM. Moreover, the proposed Cu-TCPP MOFs@GCE electrochemical and photoelectrochemical sensing platform was applied to determine the AA concentration of a real human serum sample; the results reveal that Cu-TCPP MOFs@GCE sensing platform could accurately determine the concentration of AA of the human serum under other potential interferences contained in the human serum samples.
Collapse
|
5
|
Imanzadeh H, Bakirhan NK, Kuralay F, Amiri M, Ozkan SA. Achievements of Graphene and Its Derivatives Materials on Electrochemical Drug Assays and Drug-DNA Interactions. Crit Rev Anal Chem 2021; 53:1263-1284. [PMID: 34941476 DOI: 10.1080/10408347.2021.2018568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Graphene, emerging as a true two-dimensional (2D) material, has attracted increasing attention due to its unique physical and electrochemical properties such as high surface area, excellent conductivity, high mechanical strength, and ease of functionalization and mass production. The entire scientific community recognizes the significance and potential impact of graphene. Electrochemical detection strategies have advantages such as being simple, fast, and low-cost. The use of graphene as an excellent interface for electrode modification provides a promising way to construct more sensitive and stable electrochemical (bio)sensors. The review presents sensors based on graphene and its derivatives for electrochemical drug assays from pharmaceutical dosage forms and biological samples. Future perspectives in this rapidly developing field are also discussed. In addition, the interaction of several important anticancer drug molecules with deoxyribonucleic acid (DNA) that was immobilized onto graphene-modified electrodes has been detailed in terms of dosage regulation and utility purposes.
Collapse
Affiliation(s)
- Hamideh Imanzadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| | - Nurgul K Bakirhan
- Department of Analytical Chemistry, Gulhane Faculty of Pharmacy, University of Health Sciences, Ankara, Turkey
| | - Filiz Kuralay
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sibel A Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Wu Y, Deng P, Tian Y, Feng J, Xiao J, Li J, Liu J, Li G, He Q. Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite. J Nanobiotechnology 2020; 18:112. [PMID: 32778119 PMCID: PMC7419206 DOI: 10.1186/s12951-020-00672-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/05/2020] [Indexed: 12/31/2022] Open
Abstract
A method with high sensitivity, good accuracy and fast response is of ever increasing importance for the simultaneous detection of AA, DA and UA. In this paper, a simple and sensitive electrochemical sensor, which based on the polyvinylpyrrolidone (PVP)-graphene composite film modified glassy carbon electrode (PVP-GR/GCE), was presented for detecting ascorbic acid (AA), dopamine (DA) and uric acid (UA) simultaneously. The PVP-GR/GCE has excellent electrocatalytic activity for the oxidation of AA, DA and UA. The second-order derivative linear sweep voltammetry was used for the electrochemical measurements. The peak potential differences of DA-AA, DA-UA, and UA-AA (measured on the PVP-GR/GCE) were 212, 130 and 342 mV respectively. Besides, the over potential of AA, DA and UA reduced obviously, so did the peak current increase. Under the optimum conditions, the linear ranges of AA, DA and UA were 4.0 μM–1.0 mM, 0.02–100 μM, and 0.04–100 μM, respectively. The detection limits were 0.8 μM, 0.002 μM and 0.02 μM for AA, DA, and UA. The electrochemical sensor presented the advantages of high sensitivity and selectivity, excellent reproducibility and long-term stability. Furthermore, the sensor was successfully applied to the analysis of real samples.![]()
Collapse
Affiliation(s)
- Yiyong Wu
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.,Key Laboratory of Functional Metal-Organic Compounds of Hunan Province; Key Laboratory of Functional Organometallic Materials of Hunan Provincial Universities, Department of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, China
| | - Peihong Deng
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province; Key Laboratory of Functional Organometallic Materials of Hunan Provincial Universities, Department of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, China.
| | - Yaling Tian
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.,Key Laboratory of Functional Metal-Organic Compounds of Hunan Province; Key Laboratory of Functional Organometallic Materials of Hunan Provincial Universities, Department of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, China
| | - Jinxia Feng
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jingyun Xiao
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Junhua Li
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province; Key Laboratory of Functional Organometallic Materials of Hunan Provincial Universities, Department of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421008, China
| | - Jun Liu
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Guangli Li
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Quanguo He
- School of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China. .,School of Materials Science and Energy Engineering, Foshan University, Foshan, 528000, China.
| |
Collapse
|
7
|
Liu S, Gao S, Fei T, Zhang T. Highly Sensitive and Selective Dopamine Detection Utilizing Nitrogen-Doped Mesoporous Carbon Prepared by a Molten Glucose-Assisted Hard-Template Approach. Chempluschem 2020; 84:845-852. [PMID: 31943989 DOI: 10.1002/cplu.201900291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/24/2019] [Indexed: 01/29/2023]
Abstract
Nitrogen-doped mesoporous carbons (N-MCs) are promising materials for electrochemical sensors or biosensors. However, facile and effective methods for the preparation of N-MCs for electrochemical detection of dopamine (DA) are required. A molten-glucose-assisted hard-template approach has been developed to synthesize N-MC materials by in situ introduction of nitrogen precursors, including ethylenediaminetetraacetic acid disodium salt (EDTA), dicyandiamide, and melamine. The combined characterization of X-ray diffraction (XRD), N2 sorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) indicate the successful preparation of N-MC materials. Most importantly, after detailed examination by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), N-MC obtained by using melamine as precursor (designated as N-MC-MA) displays good catalytic activity for electrochemical oxidation of DA. The N-MC-MA-based DA sensor shows a linear range from 0.2-8 μm with a detection limit of 0.05 μm in the presence of ascorbic acid (AA) and uric acid (UA), thus showing excellent sensitivity and selectivity for electrochemical DA detection.
Collapse
Affiliation(s)
- Sen Liu
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Shang Gao
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Teng Fei
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China.,State Key Laboratory of Transducer Technology, Shanghai, 200050, P. R. China
| | - Tong Zhang
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
8
|
Ghanbari K, Moloudi M, Bonyadi S. Modified Glassy Carbon Electrode with Silver Nanoparticles/Polyaniline/Reduced Graphene Oxide Nanocomposite for the Simultaneous Determination of Biocompounds in Biological Fluids. J ELECTROCHEM SCI TE 2019. [DOI: 10.33961/jecst.2019.00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Luo G, Deng Y, Zhang X, Zou R, Sun W, Li B, Sun B, Wang Y, Li G. A ZIF-8 derived nitrogen-doped porous carbon and nitrogen-doped graphene nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. NEW J CHEM 2019. [DOI: 10.1039/c9nj04095a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid by a nanocomposite modified electrode was realized.
Collapse
Affiliation(s)
- Guiling Luo
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Ying Deng
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Xiaoping Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Ruyi Zou
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Binghang Li
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Bi Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Yubao Wang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
| | - Guangjiu Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science of Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- P. R. China
| |
Collapse
|
10
|
Kaya SI, Kurbanoglu S, Ozkan SA. Nanomaterials-Based Nanosensors for the Simultaneous Electrochemical Determination of Biologically Important Compounds: Ascorbic Acid, Uric Acid, and Dopamine. Crit Rev Anal Chem 2018; 49:101-125. [DOI: 10.1080/10408347.2018.1489217] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- S. Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Baig N, Rana A, Kawde AN. Modified Electrodes for Selective Voltammetric Detection of Biomolecules. ELECTROANAL 2018. [DOI: 10.1002/elan.201800468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nadeem Baig
- Chemistry Department, College of Sciences; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Azeem Rana
- Chemistry Department, College of Sciences; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Abdel-Nasser Kawde
- Chemistry Department, College of Sciences; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| |
Collapse
|
12
|
Electrocomposite Developed with Chitosan and Ionic Liquids Using Screen-Printed Carbon Electrodes Useful to Detect Rutin in Tropical Fruits. SENSORS 2018; 18:s18092934. [PMID: 30181437 PMCID: PMC6164375 DOI: 10.3390/s18092934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 11/27/2022]
Abstract
This work reports the development of a composite of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BP4) and chitosan (CS) described in previous reports through a new method using cyclic voltammetry with 10 cycles at a scan rate of 50.0 mV s−1. This method is different from usual methods such as casting, deposition, and constant potential, and it allows the development of an electroactive surface toward the oxidation of rutin by stripping voltammetry applied to the detection in tropical fruits such as orange, lemon, and agraz (Vaccinium meridionale Swartz), with results similar to those reported in previous studies. In addition, the surface was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and Raman spectroscopy. The limit of detection was 0.07 µmol L−1 and the relative standard deviation (RSD) of 10 measurements using the same modified electrode was 0.86%. Moreover, the stability of the sensor was studied for six days using the same modified electrode, where the variation of the signal using a known concentration of rutin (RT) was found to be less than 5.0%. The method was validated using a urine chemistry control spiked with known amounts of RT and possible interference was studied using ten substances including organic and biological compounds, metal ions, and dyes. The results obtained in this study demonstrated that this electrodeveloped composite was sensitive, selective, and stable.
Collapse
|
13
|
Tukimin N, Abdullah J, Sulaiman Y. Electrodeposition of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/manganese dioxide for simultaneous detection of uric acid, dopamine and ascorbic acid. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Nagles E, García-Beltrán O, Calderón JA. Evaluation of the usefulness of a novel electrochemical sensor in detecting uric acid and dopamine in the presence of ascorbic acid using a screen-printed carbon electrode modified with single walled carbon nanotubes and ionic liquids. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.093] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Zou C, Zhong J, Li S, Wang H, Wang J, Yan B, Du Y. Fabrication of reduced graphene oxide-bimetallic PdAu nanocomposites for the electrochemical determination of ascorbic acid, dopamine, uric acid and rutin. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Begum H, Ahmed MS, Jeon S. New Approach for Porous Chitosan-Graphene Matrix Preparation through Enhanced Amidation for Synergic Detection of Dopamine and Uric Acid. ACS OMEGA 2017; 2:3043-3054. [PMID: 31457638 PMCID: PMC6640929 DOI: 10.1021/acsomega.7b00331] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/16/2017] [Indexed: 05/14/2023]
Abstract
Amide-functionalized materials have emerged as promising nonprecious catalysts for electrochemical sensing and catalysis. The covalent immobilization of chitosan (CS) onto graphene sheet (GS) (denoted as CS-GS) has been done via higher degree of amidation reaction to develop an electrochemical sensing matrix for simultaneous determination of dopamine (DA) and uric acid (UA). The enhanced amidation between CS and GS has not been reported previously. However, electrochemical results have revealed that the CS-GS enhances the electrocatalytic performance in terms of the oxidation potential and peak current due to the higher degree of amide functionalization compared to that of CS/GS, which has a lower amidation. Differential pulse voltammetry-based studies have indicated that the CS-GS matrix works at a lower detection limit (0.14 and 0.17 μM) (S/N = 3) and over a longer linear range (1-700 and 1-800 μM), with a comparatively higher sensitivity (2.5 and 2.0 μA μM-1 cm-2), for DA and UA, respectively. In addition, the CS-GS matrix demonstrates good selectivity toward the detection of DA and UA in the presence of a 10-fold higher concentration of AA and glucose. The as-prepared three-dimensional porous CS-GS also endows selective determination toward DA and UA in various real samples.
Collapse
Affiliation(s)
| | | | - Seungwon Jeon
- E-mail: . Tel: +82 62 530 0064. Fax: +82 62 530 3389
| |
Collapse
|
17
|
Dinesh B, Saraswathi R, Senthil Kumar A. Water based homogenous carbon ink modified electrode as an efficient sensor system for simultaneous detection of ascorbic acid, dopamine and uric acid. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.139] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
A selective sensor based on Au nanoparticles-graphene oxide-poly(2,6-pyridinedicarboxylic acid) composite for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. J APPL ELECTROCHEM 2017. [DOI: 10.1007/s10800-017-1060-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Zhang T, Liu J, Wang C, Leng X, Xiao Y, Fu L. Synthesis of graphene and related two-dimensional materials for bioelectronics devices. Biosens Bioelectron 2017; 89:28-42. [DOI: 10.1016/j.bios.2016.06.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 12/30/2022]
|
20
|
Functionalised carbon nano spheres modified electrode for simultaneous determination of dopamine and uric acid. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Rao H, Zhang Z, Ge H, Liu X, Zou P, Wang X, Wang Y. Enhanced amperometric sensing using a NiCo2O4/nitrogen-doped reduced graphene oxide/ionic liquid ternary composite for enzyme-free detection of glucose. NEW J CHEM 2017. [DOI: 10.1039/c7nj00077d] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic illustration of the fabrication of NiCo2O4/N-rGO/ILs/GCE.
Collapse
Affiliation(s)
- Hanbing Rao
- College of Science
- Sichuan Agricultural University
- Ya'an 625014
- P. R. China
| | - Zhaoyi Zhang
- College of Science
- Sichuan Agricultural University
- Ya'an 625014
- P. R. China
| | - Hongwei Ge
- College of Science
- Sichuan Agricultural University
- Ya'an 625014
- P. R. China
| | - Xin Liu
- College of Science
- Sichuan Agricultural University
- Ya'an 625014
- P. R. China
| | - Ping Zou
- College of Science
- Sichuan Agricultural University
- Ya'an 625014
- P. R. China
| | - Xianxiang Wang
- College of Science
- Sichuan Agricultural University
- Ya'an 625014
- P. R. China
| | - Yanying Wang
- College of Science
- Sichuan Agricultural University
- Ya'an 625014
- P. R. China
| |
Collapse
|
22
|
Nagles E, Calderón JA, García-Beltrán O. Development of an Electrochemical Sensor to Detect Dopamine and Ascorbic Acid Based on Neodymium (III) Oxide and Chitosan. ELECTROANAL 2016. [DOI: 10.1002/elan.201600729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Edgar Nagles
- Facultad de Ciencias Naturales y Matemáticas; Universidad de Ibagué; Carrera 22 Calle 67 Ibagué 730001 Colombia
| | - Jorge A. Calderón
- Centro de Investigación; Innovación y Desarrollo de Materiales - CIDEMAT; Universidad de Antioquia - UdeA; Calle 70 No. 52-21 Medellín Colombia
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas; Universidad de Ibagué; Carrera 22 Calle 67 Ibagué 730001 Colombia
| |
Collapse
|
23
|
Recent trends in electrochemical sensors for multianalyte detection – A review. Talanta 2016; 161:894-916. [DOI: 10.1016/j.talanta.2016.08.084] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 01/21/2023]
|
24
|
Palanisamy S, Thangavelu K, Chen SM, Gnanaprakasam P, Velusamy V, Liu XH. Preparation of chitosan grafted graphite composite for sensitive detection of dopamine in biological samples. Carbohydr Polym 2016; 151:401-407. [DOI: 10.1016/j.carbpol.2016.05.076] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 12/30/2022]
|
25
|
Park S, Kim K. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sumi Park
- Department of Chemistry; Incheon National University; Incheon 406-772 Republic of Korea
| | - Kyuwon Kim
- Department of Chemistry; Incheon National University; Incheon 406-772 Republic of Korea
| |
Collapse
|
26
|
Sajid M, Nazal MK, Mansha M, Alsharaa A, Jillani SMS, Basheer C. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.09.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zou C, Zhong J, Wang J, Shiraishi Y, Li S, Yan B, Guo J, Du Y. Fabrication of reduced graphene oxide–bimetallic Pd@Au nanocomposites for simultaneous determination of ascorbic acid, dopamine and uric acid. RSC Adv 2016. [DOI: 10.1039/c6ra18254b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Pd@Au/RGO plays a critical important role in facilitating the electron transfer capability and promoting the highly efficient electrocatalytic performance in the simultaneous determination of AA, UA and DA.
Collapse
Affiliation(s)
- Cui'e Zou
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Jiatai Zhong
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Jin Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | | | - Shumin Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Bo Yan
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Jun Guo
- Testing and Analysis Center
- Soochow University
- Suzhou
- 215123 PR China
| | - Yukou Du
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| |
Collapse
|
28
|
Zheng D, Hu H, Liu X, Hu S. Application of graphene in elctrochemical sensing. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Kemmegne-Mbouguen JC, Angnes L, Mouafo-Tchinda E, Ngameni E. Electrochemical Determination of Uric Acid, Dopamine and Tryptophan at Zinc Hexacyanoferrate Clay Modified Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Gu X, Jiang G, Jiang G, Chen T, Zhan W, Li X, Wu S, Tian S. Detection of dopamine on a mercapto-terminated hexanuclear Fe(III) cluster modified gold electrode. Talanta 2015; 137:189-96. [DOI: 10.1016/j.talanta.2015.01.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/21/2015] [Accepted: 01/25/2015] [Indexed: 10/24/2022]
|
31
|
Park S, Hwang S, Takenaka S, Kim K. Electrochemical Sensing Performances for Uric Acid Detection on Various Amine Adlayers Used in Immobilizing Reduced Graphene Oxide. ELECTROANAL 2015. [DOI: 10.1002/elan.201400650] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Wang C, Zou X, Zhao X, Wang Q, Tan J, Yuan R. Cu-nanoparticles incorporated overoxidized-poly(3-amino-5-mercapto-1,2,4-triazole) film modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
The fabrication of a Co (II) complex and multi-walled carbon nanotubes modified glass carbon electrode, and its application for the determination of dopamine. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2014.07.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Li H, Wang Y, Ye D, Luo J, Su B, Zhang S, Kong J. An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta 2014; 127:255-61. [DOI: 10.1016/j.talanta.2014.03.034] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
|
35
|
Wu LP, Zhang L, Lu LM, Duan XM, Xu JK, Nie T. Graphene oxide doped poly(hydroxymethylated-3,4-ethylenedioxythiophene): enhanced sensitivity for electrochemical determination of rutin and ascorbic acid. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1484-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Lian Q, He Z, He Q, Luo A, Yan K, Zhang D, Lu X, Zhou X. Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene. Anal Chim Acta 2014; 823:32-9. [DOI: 10.1016/j.aca.2014.03.032] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
|
37
|
Abstract
In recent years, graphene, the two-dimensional closely packed honeycomb carbon lattice, has been attracting much attention in the field of electrochemistry due to its intrinsic properties and merits. Efforts to create novel graphene based electrochemical biosensors have led to the establishment of effective strategies for diverse bioassays, from simple molecules to complex biotargets. In this Feature Article, we provide an overview of electrochemical biosensing with graphene related materials, and discuss the role of graphene in different sensing protocols.
Collapse
Affiliation(s)
- Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | | |
Collapse
|
38
|
Zhang Z, Yin J. Sensitive detection of uric acid on partially electro-reduced graphene oxide modified electrodes. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.12.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Liu X, Zhu H, Yang X. An electrochemical sensor for dopamine based on poly(o-phenylenediamine) functionalized with electrochemically reduced graphene oxide. RSC Adv 2014. [DOI: 10.1039/c3ra45234d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Ho TD, Zhang C, Hantao LW, Anderson JL. Ionic liquids in analytical chemistry: fundamentals, advances, and perspectives. Anal Chem 2013; 86:262-85. [PMID: 24205989 DOI: 10.1021/ac4035554] [Citation(s) in RCA: 374] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tien D Ho
- Department of Chemistry, The University of Toledo , Toledo, Ohio 43606, United States
| | | | | | | |
Collapse
|
41
|
Weng X, Cao Q, Liang L, Chen J, You C, Ruan Y, Lin H, Wu L. Simultaneous determination of dopamine and uric acid using layer-by-layer graphene and chitosan assembled multilayer films. Talanta 2013; 117:359-65. [DOI: 10.1016/j.talanta.2013.09.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 12/27/2022]
|
42
|
Rodthongkum N, Ruecha N, Rangkupan R, Vachet RW, Chailapakul O. Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine. Anal Chim Acta 2013; 804:84-91. [DOI: 10.1016/j.aca.2013.09.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 09/21/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
|
43
|
Wang C, Xu P, Zhuo K. Ionic Liquid Functionalized Graphene-Based Electrochemical Biosensor for Simultaneous Determination of Dopamine and Uric Acid in the Presence of Ascorbic Acid. ELECTROANAL 2013. [DOI: 10.1002/elan.201300345] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
de Pieri Troiani E, Rodrigues Pereira-Filho E, Censi Faria R. Chemometric Strategies to Develop a Nanocomposite Electrode for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. ELECTROANAL 2013. [DOI: 10.1002/elan.201300166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Mazloum-Ardakani M, Sheikh-Mohseni MA, Mirjalili BF. Selective and Simultaneous Voltammetric Determination of Glutathione, Uric Acid and Penicillamine by a Modified Carbon Nanotube Paste Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201300151] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Cathodically pretreated poly(1-aminoanthraquinone)-modified electrode for determination of ascorbic acid, dopamine, and uric acid. J APPL ELECTROCHEM 2013. [DOI: 10.1007/s10800-013-0577-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Khan MMI, Haque AMJ, Kim K. Electrochemical determination of uric acid in the presence of ascorbic acid on electrochemically reduced graphene oxide modified electrode. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|