1
|
Rajpal S, Mishra P, Mizaikoff B. Rational In Silico Design of Molecularly Imprinted Polymers: Current Challenges and Future Potential. Int J Mol Sci 2023; 24:ijms24076785. [PMID: 37047758 PMCID: PMC10095314 DOI: 10.3390/ijms24076785] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
The rational design of molecularly imprinted polymers has evolved along with state-of-the-art experimental imprinting strategies taking advantage of sophisticated computational tools. In silico methods enable the screening and simulation of innovative polymerization components and conditions superseding conventional formulations. The combined use of quantum mechanics, molecular mechanics, and molecular dynamics strategies allows for macromolecular modelling to study the systematic translation from the pre- to the post-polymerization stage. However, predictive design and high-performance computing to advance MIP development are neither fully explored nor practiced comprehensively on a routine basis to date. In this review, we focus on different steps along the molecular imprinting process and discuss appropriate computational methods that may assist in optimizing the associated experimental strategies. We discuss the potential, challenges, and limitations of computational approaches including ML/AI and present perspectives that may guide next-generation rational MIP design for accelerating the discovery of innovative molecularly templated materials.
Collapse
Affiliation(s)
- Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Hahn-Schickard, Sedanstraße 14, 89077 Ulm, Germany
| |
Collapse
|
2
|
Molecularly Imprinted Solid Phase Extraction Strategy for Quinic Acid. Polymers (Basel) 2022; 14:polym14163339. [PMID: 36015595 PMCID: PMC9416653 DOI: 10.3390/polym14163339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/19/2022] Open
Abstract
Quinic acid (QA) and its ester conjugates have been subjected to in-depth scientific investigations for their antioxidant properties. In this study, molecularly imprinted polymers (MIPs) were used for selective extraction of quinic acid (QA) from coffee bean extract. Computational modelling was performed to optimize the process of MIP preparation. Three different functional monomers (allylamine, methacrylic acid (MAA) and 4-vinylpyridine (4-VP)) were tested for imprinting. The ratio of each monomer to template chosen was based on the optimum ratio obtained from computational studies. Equilibrium rebinding studies were conducted and MIP C, which was prepared using 4-VP as functional monomer with template to monomer ratio of 1:5, showed better binding performance than the other prepared MIPs. Accordingly, MIP C was chosen to be applied for selective separation of QA using solid-phase extraction. The selectivity of MIP C towards QA was tested versus its analogues found in coffee (caffeic acid and chlorogenic acid). Molecularly imprinted solid-phase extraction (MISPE) using MIP C as sorbent was then applied for selective extraction of QA from aqueous coffee extract. The applied MISPE was able to retrieve 81.918 ± 3.027% of QA with a significant reduction in the amount of other components in the extract.
Collapse
|
3
|
Nicholls IA, Golker K, Olsson GD, Suriyanarayanan S, Wiklander JG. The Use of Computational Methods for the Development of Molecularly Imprinted Polymers. Polymers (Basel) 2021; 13:2841. [PMID: 34502881 PMCID: PMC8434026 DOI: 10.3390/polym13172841] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.
Collapse
Affiliation(s)
- Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden; (K.G.); (G.D.O.); (S.S.); (J.G.W.)
| | | | | | | | | |
Collapse
|
4
|
Kaya SI, Karabulut TC, Kurbanoglu S, Ozkan SA. Chemically Modified Electrodes in Electrochemical Drug Analysis. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190304140433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrode modification is a technique performed with different chemical and physical methods
using various materials, such as polymers, nanomaterials and biological agents in order to enhance
sensitivity, selectivity, stability and response of sensors. Modification provides the detection of small
amounts of analyte in a complex media with very low limit of detection values. Electrochemical methods
are well suited for drug analysis, and they are all-purpose techniques widely used in environmental
studies, industrial fields, and pharmaceutical and biomedical analyses. In this review, chemically modified
electrodes are discussed in terms of modification techniques and agents, and recent studies related
to chemically modified electrodes in electrochemical drug analysis are summarized.
Collapse
Affiliation(s)
- Sariye I. Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Tutku C. Karabulut
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinç Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
5
|
Hai Gen Zuo, Yang H, Zhu JX, Guo P, Shi L, Zhan CR, Ding Y. Synthesis of Molecularly Imprinted Polymer on Surface of TiO2 Nanowires and Assessment of Malathion and its Metabolite in Environmental Water. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819100058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Radi AE, Wahdan T, El-Basiony A. Electrochemical Sensors Based on Molecularly Imprinted Polymers for Pharmaceuticals Analysis. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180501100131] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
<P>Background: The electrochemical sensing of drugs in pharmaceutical formulations and biological matrices using molecular-imprinting polymer (MIP) as a recognition element combined with different electrochemical signal transduction has been widely developed. The MIP electrochemical sensors based on nanomaterials such as graphene, carbon nanotubes, nanoparticles, as well as other electrode modifiers incorporated into the MIPs to enhance the performance of the sensor, have been discussed. The recent advances in enantioselective sensing using MIP-based electrochemical sensors have been described. </P><P> Methods: The molecular imprinting has more than six decades of history. MIPs were introduced in electrochemistry only in the 1990s by Mosbach and coworkers. This review covers recent literature published a few years ago. The future outlook for sensing, miniaturization and development of portable devices for multi-analyte detection of the target analytes was also given. </P><P> Results: The growing pharmaceutical interest in molecularly imprinted polymers is probably a direct consequence of its major advantages over other analytical techniques, namely, increased selectivity and sensitivity of the method. Due to the complexity of biological samples and the trace levels of drugs in biological samples, molecularly imprinted polymers have been used to improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. The emergence of nanomaterials opened a new horizon in designing integrated electrochemical systems. The success of obtaining a high-performance electrochemical sensor based on MIPs lies in the kind of material that builds up the detection platform. </P><P> Conclusion: The novel approaches to produce MIP materials, combined with electrochemical transduction to develop sensors for screening different pharmaceutically active compounds have been overviewed. MIPs may appear indispensable for sensing in harsh conditions, or sensing that requires longterm stability unachievable by biological receptors. The electrochemical sensors provide several benefits including low costs, shortening analysis time, simple design; portability; miniaturization, easy-touse, can be tailored using a simple procedure for particular applications. The performance of sensor can be improved by incorporating some conductive nanomaterials as AuNPs, CNTs, graphene, nanowires and magnetic nanoparticles in the polymeric matrix of MIP-based sensors. The application of new electrochemical sensing scaffolds based on novel multifunctional-MIPs is expected to be widely developed and used in the future.</P>
Collapse
Affiliation(s)
- Abd-Egawad Radi
- Department of Chemistry, Faculty of Science, Dumyat University, Dumyat, Egypt
| | - Tarek Wahdan
- Department of Chemistry, Faculty of Science, Suez Canal University, El-Arish, Egypt
| | - Amir El-Basiony
- Department of Chemistry, Faculty of Science, Dumyat University, Dumyat, Egypt
| |
Collapse
|
7
|
Hosny H, El Gohary N, Saad E, Handoussa H, El Nashar RM. Isolation of sinapic acid from broccoli using molecularly imprinted polymers. J Sep Sci 2018; 41:1164-1172. [PMID: 29239525 DOI: 10.1002/jssc.201701120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022]
Abstract
A molecularly imprinted polymer was synthesized for the purpose of sinapic acid isolation from Egyptian nutraceutical Botrytis italica, L. (broccoli) due to its prominent medicinal and wide pharmacological activities. A computational study was first developed to determine the optimal template to functional monomer molar ratio. Based on the computational results, five polymers were synthesized using a bulk polymerization method with sinapic acid as the template molecule. Evaluation of the synthesized polymers binding performance was carried out using batch rebinding assay, which revealed that the molecularly imprinted polymer of molar ratio (1:4:20), template to functional monomer (4-vinyl pyridine) to crosslinker (ethylene glycol dimethacrylate) was of optimum performance, thus, this polymer was applied for sinapic acid isolation from closely related analogues. This represents a more practical approach to isolate sinapic acid from different natural extracts selectively.
Collapse
Affiliation(s)
- Heba Hosny
- Pharmaceutical Chemistry Department, Faculty of Dentistry, Future University in Egypt, Cairo, Egypt
| | - Nesrine El Gohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Engy Saad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Heba Handoussa
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rasha M El Nashar
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Yehia AM, Abo-Elhoda SE, Hassan NY, Badawey AM. Experimental validation of a computationally-designed tiotropium membrane sensor. NEW J CHEM 2018. [DOI: 10.1039/c8nj03507e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work draws an analogy between theoretical and practical data for innocuous potentiometric sensor optimization.
Collapse
Affiliation(s)
- Ali M. Yehia
- Analytical Chemistry Department
- Faculty of Pharmacy
- Cairo University
- El-Kasr El-Aini Street
- Cairo
| | - Soad E. Abo-Elhoda
- Pharmaceutical Chemistry Department
- Faculty of Pharmaceutical Sciences & Pharmaceutical Industries
- Future University in Egypt
- Cairo
- Egypt
| | - Nagiba Y. Hassan
- Analytical Chemistry Department
- Faculty of Pharmacy
- Cairo University
- El-Kasr El-Aini Street
- Cairo
| | - Amr M. Badawey
- Analytical Chemistry Department
- Faculty of Pharmacy
- Cairo University
- El-Kasr El-Aini Street
- Cairo
| |
Collapse
|
9
|
Patra S, Roy E, Parui R, Madhuri R, Sharma PK. RETRACTED: Anisotropic (spherical/hexagon/cube) silver nanoparticle embedded magnetic carbon nanosphere as platform for designing of tramadol imprinted polymer. Biosens Bioelectron 2017; 97:208-217. [DOI: 10.1016/j.bios.2017.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/23/2017] [Accepted: 06/04/2017] [Indexed: 11/30/2022]
|
10
|
Wang L, Fu W, Shen Y, Tan H, Xu H. Molecularly Imprinted Polymers for Selective Extraction of Oblongifolin C from Garcinia yunnanensis Hu. Molecules 2017; 22:molecules22040508. [PMID: 28333096 PMCID: PMC6153995 DOI: 10.3390/molecules22040508] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/19/2017] [Accepted: 03/21/2017] [Indexed: 11/28/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) were synthesized and applied for the selective extraction of oblongifolin C (OC) from fruit extracts of Garcinia yunnanensis Hu. A series of experiments and computational approaches were employed to improve the efficiency of screening for optimal MIP systems in the study. The molar ratio (1:4) was eventually chosen based on the comparison of the binding energy of the complexes between the template (OC) and the functional monomers using density functional theory (DFT) at the RI-PBE-D3-gCP/def2-TZVP level of theory. The binding characterization and the molecular recognition mechanism of MIPs were further explained using the molecular modeling method along with NMR and IR spectra data. The reusability of this approach was demonstrated in over 20 batch rebinding experiments. A mass of 140.5 mg of OC (>95% purity) was obtained from the 5 g extracts, with 2 g of MIPs with the best binding properties, through a gradient elution program from 35% to 70% methanol-water solution. At the same time, another structural analog, 46.5 mg of guttiferone K (GK) (>88% purity), was also obtained by the gradient elution procedure. Our results showed that the structural analogs could be separated from the crude extracts by the molecularly imprinted solid-phase extraction (MISPE) using a gradient elution procedure for the first time.
Collapse
Affiliation(s)
- Liping Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| | - Yunhui Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hongsheng Tan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| |
Collapse
|
11
|
RETRACTED: Single cell imprinting on the surface of Ag–ZnO bimetallic nanoparticle modified graphene oxide sheets for targeted detection, removal and photothermal killing of E. Coli. Biosens Bioelectron 2017; 89:620-626. [DOI: 10.1016/j.bios.2015.12.085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/07/2015] [Accepted: 12/24/2015] [Indexed: 11/19/2022]
|
12
|
Voltammetric Determination of Valaciclovir Using a Molecularly Imprinted Polymer Modified Carbon Paste Electrode. ELECTROANAL 2017. [DOI: 10.1002/elan.201600784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Bian Z, Zhu J, Li H. Solvothermal alcoholysis synthesis of hierarchical TiO 2 with enhanced activity in environmental and energy photocatalysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2016. [DOI: 10.1016/j.jphotochemrev.2016.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Cowen T, Karim K, Piletsky S. Computational approaches in the design of synthetic receptors – A review. Anal Chim Acta 2016; 936:62-74. [DOI: 10.1016/j.aca.2016.07.027] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023]
|
15
|
Nanocomposite of bimetallic nanodendrite and reduced graphene oxide as a novel platform for molecular imprinting technology. Anal Chim Acta 2016; 918:77-88. [PMID: 27046213 DOI: 10.1016/j.aca.2016.02.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 01/10/2023]
Abstract
In this present work, for the first time, we are reporting a green synthesis approach for the preparation of vinyl modified reduced graphene oxide-based magnetic and bimetallic (Fe/Ag) nanodendrite (RGO@BMNDs). Herein, the RGO@BMNDs acts as a platform for the synthesis of the pyrazinamide (PZA)-imprinted polymer matrix and used for designing of the electrochemical sensor. We have demonstrated how the change in morphology could affect the electrochemical and magnetic property of nanomaterials and for this the reduced graphene oxide-based bimetallic nanoparticle (Fe/Ag) was also prepared It was found that the combination of graphene and bimetallic nanodendrites shows improvement as well as enhancement in the electrocatalytic activity and adsorption capacity, in comparison to their respective nanoparticles. The application of imprinted-RGO@BMNDs sensor was explored for trace level detection of PZA (Limit of detection = 6.65 pg L(-1), S/N = 3), which is a drug used for the cure of Tuberculosis. This is lowest detection limit reported so far for the detection of PZA. The sensor is highly selective, cost-effective, simple and free from any interfering effect. The real time application of the sensor was explored by successful detection of PZA in pharmaceutical and human blood serum, plasma and urine samples.
Collapse
|
16
|
2-Dimensional graphene as a route for emergence of additional dimension nanomaterials. Biosens Bioelectron 2016; 89:8-27. [PMID: 26992844 DOI: 10.1016/j.bios.2016.02.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
Dimension has a different and impactful significance in the field of innovation, research and technologies. Starting from one-dimension, now, we all are moving towards 3-D visuals and try to do the things in this dimension. However, we still have some very innovative and widely applicable nanomaterials, which have tremendous potential in the form of 2-D only i.e. graphene. In this review, we have tried to incorporate the reported pathways used so far for modification of 2-D graphene sheets to make is three-dimensional. The modified graphene been applied in many fields like supercapacitors, sensors, catalysis, energy storage devices and many more. In addition, we have also incorporated the conversion of 2-D graphene to their various other dimensions like zero-, one- or three-dimensional nanostructures.
Collapse
|
17
|
Roy E, Patra S, Tiwari A, Madhuri R, Sharma PK. Introduction of selectivity and specificity to graphene using an inimitable combination of molecular imprinting and nanotechnology. Biosens Bioelectron 2016; 89:234-248. [PMID: 26952532 DOI: 10.1016/j.bios.2016.02.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/21/2023]
Abstract
Recently, the nanostructured modified molecularly imprinting polymer has created a great attention in research field due to its excellent properties such as high surface to volume ratio, low cost, and easy preparation/handling. Among the nanostructured materials, the carbonaceous material such as 'graphene' has attracted the tremendous attention of researchers owing to their fascinating electrical, thermal and physical properties. In this review article, we have tried to explore as well as compile the role of graphene-based nanomaterials in the fabrication of imprinted polymers. In other words, herein the recent efforts made to introduce selectivity in graphene-based nanomaterials were tried collected together. The major concern of this review article is focused on the sensing devices fabricated via a combination of graphene, graphene@nanoparticles, graphene@carbon nanotubes and molecularly imprinted polymers. Additionally, the combination of graphene and quantum dots was also included to explore the fluorescence properties of zero-band-gap graphene.
Collapse
Affiliation(s)
- Ekta Roy
- Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand 826004, India
| | - Santanu Patra
- Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand 826004, India
| | - Ashutosh Tiwari
- Smart Materials and Biodevices, Biosensors and Bioelectronics Centre, IFM-Linköpings Universitet, 581 83 Linköping, Sweden
| | - Rashmi Madhuri
- Department of Applied Chemistry, Indian School of Mines, Dhanbad, Jharkhand 826004, India.
| | - Prashant K Sharma
- Functional Nanomaterials Research Laboratory, Department of Applied Physics, Indian School of Mines, Dhanbad, Jharkhand 826004, India
| |
Collapse
|
18
|
Momeni S, Farrokhnia M, Karimi S, Nabipour I. Copper hydroxide nanostructure-modified carbon ionic liquid electrode as an efficient voltammetric sensor for detection of metformin: a theoretical and experimental study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0816-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Zhang QL, Ju KJ, Huang XY, Wang AJ, Wei J, Feng JJ. Metformin mediated facile synthesis of AuPt alloyed nanochains with enhanced electrocatalytic properties for alcohol oxidation. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.09.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Zhao S, Yang X, Zhao H, Dong A, Wang J, Zhang M, Huang W. Water-compatible surface imprinting of ‘Saccharin sodium’ on silica surface for selective recognition and detection in aqueous solution. Talanta 2015; 144:717-25. [DOI: 10.1016/j.talanta.2015.05.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/24/2022]
|
21
|
Saad EM, Madbouly A, Ayoub N, El Nashar RM. Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Chicorium intybus L. medicinal plant. Anal Chim Acta 2015; 877:80-9. [PMID: 26002213 DOI: 10.1016/j.aca.2015.03.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/25/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
Abstract
Molecularly imprinted polymer (MIP) was synthesized and applied for the extraction of chicoric acid from Chicory herb (Chicorium intybus L.). A computational study was developed to find a suitable template to functional monomer molar ratio for MIP preparations. The molar ratio was chosen based on the comparison of the binding energy of the complexes between the template and functional monomers. Based on the computational results, eight different polymers were prepared using chicoric acid as the template. The MIPs were synthesized in a non-covalent approach via thermal free-radical polymerization, using two different polymerization methods, bulk and suspension. Batch rebinding experiments were performed to evaluate the binding properties of the imprinted polymers. The best results were obtained with a MIP prepared using bulk polymerization with 4-vinylpyridine (4-VP) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the crosslinker with a molar ratio of 1:4:20. The best MIP showed selective binding ability toward chicoric acid in the presence of the template's structural analogues, caffeic acid, caftaric acid and chlorogenic acid.
Collapse
Affiliation(s)
- Engy M Saad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, Egypt
| | - Adel Madbouly
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Nahla Ayoub
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, Egypt; Department of Pharmacology, Faculty of Medicine, Umm Al Qurah University, Saudi Arabia
| | - Rasha Mohamed El Nashar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, Egypt; Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
22
|
El Gohary NA, Madbouly A, El Nashar RM, Mizaikoff B. Synthesis and application of a molecularly imprinted polymer for the voltammetric determination of famciclovir. Biosens Bioelectron 2015; 65:108-14. [DOI: 10.1016/j.bios.2014.10.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/29/2014] [Accepted: 10/09/2014] [Indexed: 11/29/2022]
|
23
|
Patra S, Roy E, Madhuri R, Sharma PK. RETRACTED: Imprinted ZnO nanostructure-based electrochemical sensing of calcitonin: A clinical marker for medullary thyroid carcinoma. Anal Chim Acta 2015; 853:271-284. [DOI: 10.1016/j.aca.2014.10.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/17/2014] [Accepted: 10/24/2014] [Indexed: 11/27/2022]
|
24
|
Meng X, Guo W, Qin X, Liu Y, Zhu X, Pei M, Wang L. A molecularly imprinted electrochemical sensor based on gold nanoparticles and multiwalled carbon nanotube–chitosan for the detection of tryptamine. RSC Adv 2014. [DOI: 10.1039/c4ra04503c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|