1
|
Majeed N, ul Amin N, Masood Siddiqi H. Non‐Enzymatic Liquid Crystal‐Based Detection of Copper Ions in Water. ChemistrySelect 2023. [DOI: 10.1002/slct.202204433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nasir Majeed
- Department of Chemistry Quaid-i-Azam University Islamabad Pakistan
| | - Noor ul Amin
- Department of Chemistry Quaid-i-Azam University Islamabad Pakistan
| | | |
Collapse
|
2
|
Rouhbakhsh Z, Huang JW, Ho TY, Chen CH. Liquid crystal-based chemical sensors and biosensors: From sensing mechanisms to the variety of analytical targets. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090758. [PMID: 36140143 PMCID: PMC9496589 DOI: 10.3390/bios12090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.
Collapse
|
4
|
Zhan X, Liu Y, Yang KL, Luo D. State-of-the-Art Development in Liquid Crystal Biochemical Sensors. BIOSENSORS 2022; 12:577. [PMID: 36004973 PMCID: PMC9406035 DOI: 10.3390/bios12080577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/31/2022]
Abstract
As an emerging stimuli-responsive material, liquid crystal (LC) has attracted great attentions beyond display applications, especially in the area of biochemical sensors. Its high sensitivity and fast response to various biological or chemical analytes make it possible to fabricate a simple, real-time, label-free, and cost-effective LC-based detection platform. Advancements have been achieved in the development of LC-based sensors, both in fundamental research and practical applications. This paper briefly reviews the state-of-the-art research on LC sensors in the biochemical field, from basic properties of LC material to the detection mechanisms of LC sensors that are categorized into LC-solid, LC-aqueous, and LC droplet platforms. In addition, various analytes detected by LCs are presented as a proof of the application value, including metal ions, nucleic acids, proteins, glucose, and some toxic chemical substances. Furthermore, a machine-learning-assisted LC sensing platform is realized to provide a foundation for device intelligence and automatization. It is believed that a portable, convenient, and user-friendly LC-based biochemical sensing device will be achieved in the future.
Collapse
Affiliation(s)
- Xiyun Zhan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen 518055, China; (X.Z.); (Y.L.)
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen 518055, China; (X.Z.); (Y.L.)
| | - Kun-Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Xueyuan Road 1088, Shenzhen 518055, China; (X.Z.); (Y.L.)
| |
Collapse
|
5
|
Development and Application of Liquid Crystals as Stimuli-Responsive Sensors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041453. [PMID: 35209239 PMCID: PMC8877457 DOI: 10.3390/molecules27041453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022]
Abstract
This focused review presents various approaches or formats in which liquid crystals (LCs) have been used as stimuli-responsive sensors. In these sensors, the LC molecules adopt some well-defined arrangement based on the sensor composition and the chemistry of the system. The sensor usually consists of a molecule or functionality in the system that engages in some form of specific interaction with the analyte of interest. The presence of analyte brings about the specific interaction, which then triggers an orientational transition of the LC molecules, which is optically discernible via a polarized optical image that shows up as dark or bright, depending on the orientation of the LC molecules in the system (usually a homeotropic or planar arrangement). The various applications of LCs as biosensors for glucose, protein and peptide detection, biomarkers, drug molecules and metabolites are extensively reviewed. The review also presents applications of LC-based sensors in the detection of heavy metals, anionic species, gases, volatile organic compounds (VOCs), toxic substances and in pH monitoring. Additionally discussed are the various ways in which LCs have been used in the field of material science. Specific attention has been given to the sensing mechanism of each sensor and it is important to note that in all cases, LC-based sensing involves some form of orientational transition of the LC molecules in the presence of a given analyte. Finally, the review concludes by giving future perspectives on LC-based sensors.
Collapse
|
6
|
Yuan JJX, Shen A, Hao X, Du M, Du XXY, Ma SSF, Li M, Zhang L, Yang Y. Tb3+ luminescence cholate hydrogel-based multi-functionalized platform for Hg2+ and NO2 detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj00344a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, Tb3+ luminescence cholate hydrogel (Tb3+/hydrogel) was selected as a multi-functionalized platform, and PS-BD@Tb3+/hydrogel or PS-BS@Tb3+/hydrogel systems were fabricated respectively for selective detecting of Hg2+ in water and...
Collapse
|
7
|
Applications of Microfluidics in Liquid Crystal-Based Biosensors. BIOSENSORS-BASEL 2021; 11:bios11100385. [PMID: 34677341 PMCID: PMC8534167 DOI: 10.3390/bios11100385] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/06/2023]
Abstract
Liquid crystals (LCs) with stimuli-responsive configuration transition and optical anisotropic properties have attracted enormous interest in the development of simple and label-free biosensors. The combination of microfluidics and the LCs offers great advantages over traditional LC-based biosensors including small sample consumption, fast analysis and low cost. Moreover, microfluidic techniques provide a promising tool to fabricate uniform and reproducible LC-based sensing platforms. In this review, we emphasize the recent development of microfluidics in the fabrication and integration of LC-based biosensors, including LC planar sensing platforms and LC droplets. Fabrication and integration of LC-based planar platforms with microfluidics for biosensing applications are first introduced. The generation and entrapment of monodisperse LC droplets with different microfluidic structures, as well as their applications in the detection of chemical and biological species, are then summarized. Finally, the challenges and future perspectives of the development of LC-based microfluidic biosensors are proposed. This review will promote the understanding of microfluidic techniques in LC-based biosensors and facilitate the development of LC-based microfluidic biosensing devices with high performance.
Collapse
|
8
|
Wu PC, Pai CP, Lee MJ, Lee W. A Single-Substrate Biosensor with Spin-Coated Liquid Crystal Film for Simple, Sensitive and Label-Free Protein Detection. BIOSENSORS 2021; 11:374. [PMID: 34677330 PMCID: PMC8533856 DOI: 10.3390/bios11100374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/31/2022]
Abstract
A liquid crystal (LC)-based single-substrate biosensor was developed by spin-coating an LC thin film on a dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP)-decorated glass slide. Compared with the conventional sandwiched cell configuration, the simplified procedure for the preparation of an LC film allows the film thickness to be precisely controlled by adjusting the spin rate, thus eliminating personal errors involved in LC cell assembly. The limit of detection (LOD) for bovine serum albumin (BSA) was lowered from 10-5 g/mL with a 4.2-μm-thick sandwiched cell of the commercial LC E7 to 10-7 g/mL with a 4.2-μm-thick spin-coated E7 film and further to 10-8 g/mL by reducing the E7 film thickness to 3.4 μm. Moreover, by exploiting the LC film of the highly birefringent nematic LC HDN in the immunodetection of the cancer biomarker CA125, an LOD comparable to that determined with a sandwiched HDN cell was achieved at 10-8 g/mL CA125 using a capture antibody concentration an order of magnitude lower than that in the LC cell. Our results suggest that employing spin-coated LC film instead of conventional sandwiched LC cell provides a more reliable, reproducible, and cost-effective single-substrate platform, allowing simple fabrication of an LC-based biosensor for sensitive and label-free protein detection and immunoassay.
Collapse
Affiliation(s)
- Po-Chang Wu
- Institute of Imaging and Biomedical Photonics, College of Photonics, National Yang Ming Chiao Tung University, Guiren Dist., Tainan 711010, Taiwan; (P.-C.W.); (C.-P.P.)
| | - Chao-Ping Pai
- Institute of Imaging and Biomedical Photonics, College of Photonics, National Yang Ming Chiao Tung University, Guiren Dist., Tainan 711010, Taiwan; (P.-C.W.); (C.-P.P.)
| | - Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Guiren Dist., Tainan 711301, Taiwan
- Department of Medical Science Industries, Chang Jung Christian University, Guiren Dist., Tainan 711301, Taiwan
| | - Wei Lee
- Institute of Imaging and Biomedical Photonics, College of Photonics, National Yang Ming Chiao Tung University, Guiren Dist., Tainan 711010, Taiwan; (P.-C.W.); (C.-P.P.)
| |
Collapse
|
9
|
Wang J, Pinkse PWH, Segerink LI, Eijkel JCT. Bottom-Up Assembled Photonic Crystals for Structure-Enabled Label-Free Sensing. ACS NANO 2021; 15:9299-9327. [PMID: 34028246 PMCID: PMC8291770 DOI: 10.1021/acsnano.1c02495] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
Photonic crystals (PhCs) display photonic stop bands (PSBs) and at the edges of these PSBs transport light with reduced velocity, enabling the PhCs to confine and manipulate incident light with enhanced light-matter interaction. Intense research has been devoted to leveraging the optical properties of PhCs for the development of optical sensors for bioassays, diagnosis, and environmental monitoring. These applications have furthermore benefited from the inherently large surface area of PhCs, giving rise to high analyte adsorption and the wide range of options for structural variations of the PhCs leading to enhanced light-matter interaction. Here, we focus on bottom-up assembled PhCs and review the significant advances that have been made in their use as label-free sensors. We describe their potential for point-of-care devices and in the review include their structural design, constituent materials, fabrication strategy, and sensing working principles. We thereby classify them according to five sensing principles: sensing of refractive index variations, sensing by lattice spacing variations, enhanced fluorescence spectroscopy, surface-enhanced Raman spectroscopy, and configuration transitions.
Collapse
Affiliation(s)
- Juan Wang
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Pepijn W. H. Pinkse
- Complex
Photonic Systems Group, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Loes I. Segerink
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Jan C. T. Eijkel
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
10
|
Wang Z, Xu T, Noel A, Chen YC, Liu T. Applications of liquid crystals in biosensing. SOFT MATTER 2021; 17:4675-4702. [PMID: 33978639 DOI: 10.1039/d0sm02088e] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Liquid crystals (LCs), as a promising branch of highly-sensitive, quick-response, and low-cost materials, are widely applied to the detection of weak external stimuli and have attracted significant attention. Over the past decade, many research groups have been devoted to developing LC-based biosensors due to their self-assembly potential and functional diversity. In this paper, recent investigations on the design and application of LC-based biosensors are reviewed, based on the phenomenon that the orientation of LCs can be directly influenced by the interactions between biomolecules and LC molecules. The sensing principle of LC-based biosensors, as well as their signal detection by probing interfacial interactions, is described to convert, amplify, and quantify the information from targets into optical and electrical parameters. Furthermore, commonly-used LC biosensing targets are introduced, including glucose, proteins, enzymes, nucleic acids, cells, microorganisms, ions, and other micromolecules that are critical to human health. Due to their self-assembly potential, chemical diversity, and high sensitivity, it has been reported that tunable stimuli-responsive LC biosensors show bright perspectives and high superiorities in biological applications. Finally, challenges and future prospects are discussed for the fabrication and application of LC biosensors to both enhance their performance and to realize their promise in the biosensing industry.
Collapse
Affiliation(s)
- Ziyihui Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | | | | | | | | |
Collapse
|
11
|
Hong PTK, Jang CH. Simple, sensitive technique for α-amylase detection facilitated by liquid crystal-based microcapillary sensors. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Liquid Crystal-Based Droplet Sensor for the Detection of Hg(II) Ions Using an Aptamer as the Recognition Element. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00010-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Temperature-dependent fluorescence emission of 4-cyano-4′-pentylbiphenyl and 4-cyano-4′-hexylbiphenyl liquid crystals and their bulk phase transitions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
A label-free liquid crystal droplet-based sensor used to detect lead ions using single-stranded DNAzyme. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Liu JH, Hung YH, Lin SN, Shvetsov SA, Rudyak VY, Emelyanenko AV, Liu CY. Recyclable liquid crystal polymeric sensor beads based on the assistance of radially aligned liquid crystals. Polym J 2020. [DOI: 10.1038/s41428-020-00428-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Han X, Han D, Zeng J, Deng J, Hu N, Yang J. Fabrication and performance of monodisperse liquid crystal droplet-based microchips for the on-chip detection of bile acids. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
|
18
|
Real-time, quantitative and sensitive detection of urea by whispering gallery mode lasing in liquid crystal microdroplet. Talanta 2020; 209:120513. [DOI: 10.1016/j.talanta.2019.120513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/22/2022]
|
19
|
A Simple Liquid Crystal-based Aptasensor Using a Hairpin-shaped Aptamer for the Bare-Eye Detection of Carcinoembryonic Antigen. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3406-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Fabrication of Liquid Crystal Droplet Patterns for Monitoring Aldehyde Vapors. Chempluschem 2019; 84:1554-1559. [DOI: 10.1002/cplu.201900470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/16/2019] [Indexed: 11/07/2022]
|
21
|
|
22
|
Zhou X, Sun J, Tian Y, Wu X, Dai C, Li B. Spectral classification of lettuce cadmium stress based on information fusion and VISSA‐GOA‐SVM algorithm. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xin Zhou
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Jun Sun
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Yan Tian
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Xiaohong Wu
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Chunxia Dai
- School of Electrical and Information Engineering of Jiangsu University Zhenjiang China
| | - Bin Li
- Beijing Research Center for Information Technology in Agriculture Beijing China
| |
Collapse
|
23
|
Reflective Fiber Surface Plasmon Resonance Sensor for High-Sensitive Mercury Ion Detection. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071480] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper proposes a reflective fiber mercury ion sensor based on the surface plasmon resonance (SPR) principle and chitosan (CS)/polyacrylic acid (PAA) multilayer sensitive film. By optimizing the coating parameters of the gold film, the refractive index (RI) sensitivity of the reflective SPR sensor is demonstrated to be 2110.33 nm/RIU. Then, a multi-layer CS/PAA film is fixed on the surface of the gold film as a mercury ion sensitive film to form a reflective SPR fiber mercury ion sensor. Experimental results demonstrate that the sensor can be used to detect different concentrations of mercury ions with a high sensitivity of 0.5586 nm/μM and good specificity and repeatability. Therefore, the reflective SPR fiber mercury ion sensor shows great promise for future applications of environmental monitoring and drinking water safety.
Collapse
|
24
|
Zhou L, Hu Q, Kang Q, Fang M, Yu L. Construction of a Liquid Crystal-Based Sensing Platform for Sensitive and Selective Detection of l-Phenylalanine Based on Alkaline Phosphatase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:461-467. [PMID: 30576146 DOI: 10.1021/acs.langmuir.8b03682] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The detection of l-phenylalanine (l-Phe) has become one of the most pressing issues concerning diagnosis and treatment of phenylketonuria in neonates; however, a simple and robust methodology is yet to be developed. Here, the application of novel liquid crystals (LCs)-sensing platform for sensitive, selective, and label-free detection of l-Phe was reported at the first time. We devised a strategy to fabricate the sodium monododecyl phosphate (SMP)-decorated LC sensing platform with the appearance of dark. Then, a dark to bright (D-B) optical images alteration of LCs was observed after transferring alkaline phosphatase (ALP) to the interface, owing to cleavage of SMP induced by ALP. LCs remained dark images after the SMP-decorated interface in contact with the pre-incubated ALP and l-Phe. Such optical appearance resulted from the inhibition of ALP by l-Phe, which was further verified by the isothermal titration calorimetry (ITC). The strategy was applied to sensing l-Phe, which have been proven to allow for sensitively and selectively differentiation of l-Phe from interfering compounds with similar aromatic groups, as well as seven other essential amino acids. More importantly, the detection limit of l-Phe reached 1 pg/mL in urine samples, further demonstrating its value in the practical applications. Results obtained in this study clearly demonstrated the superiority of LCs toward the l-Phe detection, which can pave a way for the development of high performance and robust probes for l-Phe detection in clinical applications.
Collapse
Affiliation(s)
- Lele Zhou
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , P.R. China
- School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , P.R. China
| | - Qiongzheng Hu
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science , Shandong Normal University , Jinan 250014 , P. R. China
| | - Ming Fang
- Department of Chemistry , University of Houston , Houston , Texas 77204 , United States
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education , Shandong University , Jinan 250100 , P.R. China
- School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , P.R. China
| |
Collapse
|
25
|
Zhou L, Hu Q, Kang Q, Yu L. Construction of liquid crystal droplet-based sensing platform for sensitive detection of organophosphate pesticide. Talanta 2018; 190:375-381. [DOI: 10.1016/j.talanta.2018.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 01/16/2023]
|
26
|
Photoinduced orientational structures of nematic liquid crystal droplets in contact with polyimide coated surface. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Sharif AM, Mahamod WRW, Abu Bakar N, Rahim NA, Mustafar S, Rosmi MS, Norazan M. The Effect of pH on the Arrangement of 5CB Based Liquid Crystal Containing BDMT-Mercury Complex Using Polarized Optical Microscopy. CHEM LETT 2018. [DOI: 10.1246/cl.171169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Aisyah Mohamad Sharif
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Wan Rusmawati Wan Mahamod
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Norlaili Abu Bakar
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Nurulsaidah Abdul Rahim
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Suzaliza Mustafar
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Mohamad Saufi Rosmi
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Muadz Norazan
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| |
Collapse
|
28
|
Shvetsov SA, Emelyanenko AV, Boiko NI, Zolot'ko AS, Zhang YS, Liu JH, Khokhlov AR. Optical orientation of nematic liquid crystal droplets via photoisomerization of an azodendrimer dopant. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:870-879. [PMID: 29600148 PMCID: PMC5870153 DOI: 10.3762/bjnano.9.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/11/2018] [Indexed: 06/08/2023]
Abstract
Two sequential transformations of the orientational structure in nematic liquid crystal droplets containing a dendrimer additive (nanosized macromolecules with light-absorbing azobenzene terminal moieties) under light irradiation in the UV-blue spectral range were investigated. The origin of these transitions is in the change of the boundary conditions due to photoisomerization of the dendrimer adsorbed onto the liquid crystal-glycerol interface. It was shown that the photoisomerization processes of dendrimer molecules in a liquid crystal are accompanied by a spatial rearrangement of their azobenzene moieties, which is the key point in the explanation of the observed effects.
Collapse
Affiliation(s)
- Sergey A Shvetsov
- M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
- P.N. Lebedev Physical Institute, Moscow, 119991, Russia
| | | | - Natalia I Boiko
- M.V. Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | | | | | | |
Collapse
|
29
|
Shvetsov SA, Emelyanenko AV, Boiko NI, Liu JH, Khokhlov AR. Communication: Orientational structure manipulation in nematic liquid crystal droplets induced by light excitation of azodendrimer dopant. J Chem Phys 2017; 146:211104. [PMID: 28595414 DOI: 10.1063/1.4984984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Reversible orientational transitions in the droplets of a nematic liquid crystal (NLC) caused by the change of boundary conditions under the low intensity diode illumination are investigated. Photosensitivity of NLC is achieved by the addition of the dendrimer compound with azobenzene terminal groups. Two types of NLC droplets in glycerol are considered: the spherical droplets in the bulk of glycerol and the droplets laid-down onto the solid substrate. In the second case, the first order phase transition is revealed. The effects described can be useful for the development of highly sensitive chemical detectors and microsized photo-tunable optical devices.
Collapse
|
30
|
Li XQ, Liang HQ, Cao Z, Xiao Q, Xiao ZL, Song LB, Chen D, Wang FL. Simple and rapid mercury ion selective electrode based on 1-undecanethiol assembled Au substrate and its recognition mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:26-33. [DOI: 10.1016/j.msec.2016.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/02/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022]
|
31
|
Hussain Z, Qazi F, Ahmed MI, Usman A, Riaz A, Abbasi AD. Liquid crystals based sensing platform-technological aspects. Biosens Bioelectron 2016; 85:110-127. [PMID: 27162142 DOI: 10.1016/j.bios.2016.04.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
Abstract
In bulk phase, liquid crystalline molecules are organized due to non-covalent interactions and due to delicate nature of the present forces; this organization can easily be disrupted by any small external stimuli. This delicate nature of force balance in liquid crystals organization forms the basis of Liquid-crystals based sensing scheme which has been exploited by many researchers for the optical visualization and sensing of many biological interactions as well as detection of number of analytes. In this review, we present not only an overview of the state of the art in liquid crystals based sensing scheme but also highlight its limitations. The approaches described below revolve around possibilities and limitations of key components of such sensing platform including bottom substrates, alignments layers, nature and type of liquid crystals, sensing compartments, various interfaces etc. This review also highlights potential materials to not only improve performance of the sensing scheme but also to bridge the gap between science and technology of liquid crystals based sensing scheme.
Collapse
Affiliation(s)
- Zakir Hussain
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan.
| | - Farah Qazi
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Muhammad Imran Ahmed
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Adil Usman
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Asim Riaz
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - Amna Didar Abbasi
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| |
Collapse
|
32
|
Ma CD, Adamiak L, Miller DS, Wang X, Gianneschi NC, Abbott NL. Liquid Crystal Interfaces Programmed with Enzyme-Responsive Polymers and Surfactants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5747-5751. [PMID: 26418129 DOI: 10.1002/smll.201502137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Indexed: 06/05/2023]
Abstract
Synthesis of biologically active peptide-polymer amphiphiles (PPAs), and characterization of assemblies formed by PPAs at the interfaces of liquid crystal (LC) microdroplets, is shown to permit the use of PPAs in strategies that can trigger ordering transitions in LC microdroplets in response to targeted biomolecular events.
Collapse
Affiliation(s)
- C Derek Ma
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Lisa Adamiak
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA
| | - Daniel S Miller
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Xiaoguang Wang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Nathan C Gianneschi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| |
Collapse
|
33
|
Wang P, Liu L, Zhou P, Wu W, Wu J, Liu W, Tang Y. A peptide-based fluorescent chemosensor for multianalyte detection. Biosens Bioelectron 2015; 72:80-6. [DOI: 10.1016/j.bios.2015.04.094] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
|