1
|
Zhang L, Kong Y, Wang X, Zhang Y, Xiao D. Electrochromic detection of latent fingermarks on metal surface using 1,1'‐dibenzyl‐4,4'‐bipyridinium dichloride. ELECTROANAL 2022. [DOI: 10.1002/elan.202200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
2
|
Ma Q, Zhang H, Chen J, Dong S, Fang Y. Reversible regulation of CdTe quantum dots fluorescence intensity based on Prussian blue with high anti-fatigue performance. Chem Commun (Camb) 2019; 55:644-647. [PMID: 30560263 DOI: 10.1039/c8cc07693f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescence switching device with excellent anti-fatigue performance based on the electrochromic material Prussian blue and fluorophore CdTe quantum dots was realized. The fluorescence switching device ultimately demonstrated a high fluorescence contrast, short response time and superior anti-fatigue property. Notably, the fluorescence contrast remains unchanged after 133 cycles.
Collapse
Affiliation(s)
- Qian Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | | | | | | | | |
Collapse
|
3
|
Zhai Y, Zhu Z, Zhou S, Zhu C, Dong S. Recent advances in spectroelectrochemistry. NANOSCALE 2018; 10:3089-3111. [PMID: 29379916 DOI: 10.1039/c7nr07803j] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The integration of two quite different techniques, conventional electrochemistry and spectroscopy, into spectroelectrochemistry (SEC) provides a complete description of chemically driven electron transfer processes and redox events for different kinds of molecules and nanoparticles. SEC possesses interdisciplinary advantages and can further expand the scopes in the fields of analysis and other applications, emphasizing the hot issues of analytical chemistry, materials science, biophysics, chemical biology, and so on. Considering the past and future development of SEC, a review on the recent progress of SEC is presented and selected examples involving surface-enhanced Raman scattering (SERS), ultraviolet-visible (UV-Vis), near-infrared (NIR), Fourier transform infrared (FTIR), fluorescence, as well as other SEC are summarized to fully demonstrate these techniques. In addition, the optically transparent electrodes and SEC cell design, and the typical applications of SEC in mechanism study, electrochromic device fabrication, sensing and protein study are fully introduced. Finally, the key issues, future perspectives and trends in the development of SEC are also discussed.
Collapse
Affiliation(s)
- Yanling Zhai
- Department of Chemistry and Chemical Engineering, Qingdao University, 308 Ningxia Road, Qingdao, Shandong 266071, China
| | | | | | | | | |
Collapse
|
4
|
Zhang H, Yu Y, Zhang L, Zhai Y, Dong S. Self-powered fluorescence display devices based on a fast self-charging/recharging battery (Mg/Prussian blue). Chem Sci 2016; 7:6721-6727. [PMID: 28451116 PMCID: PMC5355813 DOI: 10.1039/c6sc02347a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023] Open
Abstract
Stimuli-responsive (such as voltage and/or light) fluorescence display systems have attracted particular attention in their promising fields of application. However, there are few examples of self-powered fluorescence display devices. Here we designed and fabricated a self-powered fluorescence display device based on a fast-charging/recharging battery. The specially designed battery was composed of a Prussian blue (PB) cathode and a magnesium metal anode with a high theoretical redox potential difference (∼2.8 V). Moreover, smartly adding a trace amount of NaClO in the electrolyte could realize oxidizing PW to PB ∼480 times faster than when oxidizing without NaClO, leading to the fast self-charging and high power density (maximum power density of 13.34 mW cm-2, about two to three orders of magnitude larger than previous bio-fuel cells) of the Mg/PB battery. Most importantly, PB was used as not only the cathodic catalyst but also as an electrochromic material, making it possible to construct a self-powered and rechargeable electrochromic fluorescence display with only two electrodes. Besides, fluorescent [Ru(bpy)3]2+-doped silica nanoparticles (Ru@SiO2), were selected as the fluorescence resonance energy transfer (FRET) donor to match PB (FRET acceptor). To the best of our knowledge, we demonstrated a self-powered and rechargeable electrochromic fluorescence display with only two electrodes for the first time.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Science , Changchun , Jilin 130022 , P. R. China . .,University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - You Yu
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Science , Changchun , Jilin 130022 , P. R. China . .,University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Lingling Zhang
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Science , Changchun , Jilin 130022 , P. R. China . .,University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Yiwen Zhai
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Science , Changchun , Jilin 130022 , P. R. China . .,University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry , Changchun Institute of Applied Chemistry , Chinese Academy of Science , Changchun , Jilin 130022 , P. R. China . .,University of Chinese Academy of Sciences , Beijing , 100049 , P. R. China
| |
Collapse
|
5
|
Jing C, Gu Z, Xie T, Long YT. Color-coded imaging of electrochromic process at single nanoparticle level. Chem Sci 2016; 7:5347-5351. [PMID: 30155187 PMCID: PMC6020751 DOI: 10.1039/c6sc00903d] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
Electrochromic materials have attracted increasing attention in the field of smart devices and energy economy due to their excellent reversible chromic properties. Investigating an electrochromic process at the nano-scale is beneficial to the development of functional nano-devices exploiting chromophores. In this study, a new method for real-time imaging of an electrochromic process at the single nanoparticle level is developed based on an ultra-sensitive plasmon resonance energy transfer (PRET) technique. The scattering light intensity of nanoparticles is applied to reveal energy transfer from nanoparticles to chromophores modulated by an electrochromic reaction. This PRET-based technique achieves the detection of hundreds of molecules on the surface of a single nanoparticle. Furthermore, a color-coded amplifying method has been introduced for high-throughput, converting light intensity into easily recognized colors via the Matlab program. Compared with traditional electrochemical imaging techniques, this facile and rapid approach using optical techniques to characterize a real-time electrochemical process significantly enhances detection sensitivity, time and spatial resolution. Notably, the obtained electrochromic behavior of chromophores on a single nanoparticle is in good agreement with the simulated cyclic voltammetry (CV) curves on a nano-electrode. Therefore, this study provides a promising way to simultaneously monitor electrochromic reactions on single nano-electrodes with high-throughput.
Collapse
Affiliation(s)
- Chao Jing
- Key Laboratory for Advanced Materials and Department of Chemistry , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P.R. China . .,Physik-Department E20 , Technische Universität München , James-Franck-Str. 1 , D-85748 Garching , Germany
| | - Zhen Gu
- Key Laboratory for Advanced Materials and Department of Chemistry , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P.R. China .
| | - Tao Xie
- Key Laboratory for Advanced Materials and Department of Chemistry , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P.R. China .
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials and Department of Chemistry , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P.R. China .
| |
Collapse
|