1
|
Wu NN, Chen LG, Wang HB. A Sensitive Fluorescence Sensor for Tetracycline Determination Based on Adenine Thymine-Rich Single-Stranded DNA-Templated Copper Nanoclusters. APPLIED SPECTROSCOPY 2023; 77:1206-1213. [PMID: 37545405 DOI: 10.1177/00037028231192124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A sensitive fluorescent sensor has been developed for the determination of tetracycline (TC) using adenine thymine (AT)-rich single-stranded DNA (ssDNA) templated copper nanoclusters (CuNCs) as a fluorescent probe. Fluorescent ssDNA-CuNCs were synthesized by employing AT-rich ssDNA as templates and ascorbic acid as reducing agents through a facile one-step method. The as-prepared ssDNA-CuNCs exhibited strong fluorescence with a large Stokes shift (240 nm) and stable fluorescence emission. In the presence of TC, the fluorescent intensity of ssDNA-CuNCs was obviously decreased through the inner filter effect, due to the spectral overlapping between ssDNA-CuNCs and TC. Under the optimal conditions, the strategy exhibited sensitive detection of TC with a linear range from 2 nM to 30 μM and with a limit of detection of 0.5 nM. Furthermore, the sensor was successfully applied for the detection of TC in milk samples. Therefore, it provided a simple, rapid, and label-free fluorescent method for TC detection.
Collapse
Affiliation(s)
- Ning-Ning Wu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Lin-Ge Chen
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
2
|
Paper-based device for the selective determination of doxycycline antibiotic based on the turn-on fluorescence of bovine serum albumin-coated copper nanoclusters. Mikrochim Acta 2022; 189:415. [PMID: 36217040 DOI: 10.1007/s00604-022-05509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/21/2022] [Indexed: 10/17/2022]
Abstract
An enhanced ratiometric fluorescence sensor was built for on-site visual detection of doxycycline (DOX) through the interaction with bovine serum albumin on the surface of red emissive copper nanoclusters. Upon the addition of weakly fluorescent DOX, the red fluorescence from copper nanoclusters gradually decreased through the inner-filter effect (IFE), while a green fluorescence appears and significantly increases, forming an interesting fluorescent isosbestic point, which was assigned to DOX due to sensitization effect of bovine serum albumin. On the basis of this ratiometric fluorescence, the system possessed good limit of detection (LOD) of 45 nM and excellent selectivity for DOX over other tetracyclines. Based on these findings, a paper-based sensor has been fabricated for distinct visual detection of trace DOX and combined with smartphone color recognizer for quantitative detection of DOX (LOD = 83 nM). This method shows broad application prospects in environmental monitoring and food safety.
Collapse
|
3
|
Li T, Hu Z, Yu S, Liu Z, Zhou X, Liu R, Liu S, Deng Y, Li S, Chen H, Chen Z. DNA Templated Silver Nanoclusters for Bioanalytical Applications: A Review. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Due to their unique programmability, biocompatibility, photostability and high fluorescent quantum yield, DNA templated silver nanoclusters (DNA Ag NCs) have attracted increasing attention for bioanalytical application. This review summarizes the recent developments in fluorescence
properties of DNA templated Ag NCs, as well as their applications in bioanalysis. Finally, we herein discuss some current challenges in bioanalytical applications, to promote developments of DNA Ag NCs in biochemical analysis.
Collapse
Affiliation(s)
- Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Zhiyuan Hu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Songlin Yu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Zhanjun Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Xiaohong Zhou
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Rong Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Shiquan Liu
- Hunan Provincial Key Lab of Dark Tea and Jin-Hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
4
|
Wang HB, Mao AL, Tao BB, Zhang HD, Xiao ZL, Liu YM. L-Histidine-DNA interaction: a strategy for the improvement of the fluorescence signal of poly(adenine) DNA-templated gold nanoclusters. Mikrochim Acta 2021; 188:198. [PMID: 34041600 DOI: 10.1007/s00604-021-04853-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
An interesting phenomenon is described that the fluorescence signal of poly(adenine) (A) DNA-templated gold nanoclusters (AuNCs) is greatly improved in the presence of L-histidine by means of L-histidine-DNA interaction. The modified nanoclusters display strong fluorescence emission with excitation/emission maxima at 290/475 nm. The fluorescence quantum yield (QY) is improved from 1.9 to 6.5%. Fluorescence enhancement is mainly ascribed to the L-histidine-DNA interaction leading to conformational changes of the poly(A) DNA template, which offer a better microenvironment to protect AuNCs. The assay enables L-histidine to be determined with good sensitivity and a linear response that covers the 1 to 50 nM L-histidine concentration range with a 0.3 nM limit of detection. The proposed method has been applied to the determination of imidazole-containing drugs in pharmaceutical samples. A turn-on fluorescent method has been designed for the sensitive detection of L-histidine as well as imidazole-containing drugs on the basis of the L-histidine-DNA interaction.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China.
| | - An-Li Mao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Bei-Bei Tao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Zhong-Liang Xiao
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| |
Collapse
|
5
|
Ji Z, Ji Y, Ding R, Lin L, Li B, Zhang X. DNA-templated silver nanoclusters as an efficient catalyst for reduction of nitrobenzene derivatives: a systematic study. NANOTECHNOLOGY 2021; 32:195705. [PMID: 33545692 DOI: 10.1088/1361-6528/abe3b4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrobenzene compounds are highly toxic pollutants with good stability, and they have a major negative impact on both human health and the ecological environment. Herein, it was found for the first time that fluorescent DNA-silver nanoclusters (DNA-AgNCs) can catalyze the reduction of toxic and harmful nitro compounds into less toxic amino compounds with excellent tolerance to high temperature and organic solvents. In this study, the reduction of p-nitrophenol (4-NP) as a model was systematically investigated, followed by expending the substrate to disclose the versatility of this reaction. This report not only expanded the conditions for utilizing catalytic reduction conditions of DNA-AgNCs as an efficient catalyst in the control of hazardous chemicals but also widened the substrate range of DNA-AgNCs reduction, providing a new angle for the application of noble metal nanoclusters.
Collapse
Affiliation(s)
- Zhirun Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People's Republic of China
| | - Yuan Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People's Republic of China
| | - Rui Ding
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People's Republic of China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People's Republic of China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People's Republic of China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Wenyuan Road 1, Nanjing 210023, People's Republic of China
| |
Collapse
|
6
|
Zhang H, Cheng C, Dong N, Ji X, Hu J. Positively charged Ag@Au core-shell nanoparticles as highly stable and enhanced fluorescence quenching platform for one-step nuclease activity detection. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Ou L, Yang F, Luo J, Duan J, Sun A, Chen L, Wang L. A turn‐on fluorescence assay for heparin based on
DNA
‐templated gold nanoclusters via
ET. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- LiJuan Ou
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| | - FaGuo Yang
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| | - JianXin Luo
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| | - JiaoJie Duan
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| | - Aiming Sun
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| | - LanLan Chen
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| | - LingYun Wang
- College of Material and Chemical Engineering Hunan Institute of Technology Hengyang P. R. China
| |
Collapse
|
8
|
Wang HB, Mao AL, Tao BB, Zhang HD, Liu YM. Fabrication of multiple molecular logic gates made of fluorescent DNA-templated Au nanoclusters. NEW J CHEM 2021. [DOI: 10.1039/d0nj06192a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A universal platform of label-free multiple molecular logic gates have been constructed by taking the advantage of DNA-AuNCs.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - An-Li Mao
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - Bei-Bei Tao
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|
9
|
Wang HB, Mao AL, Li YH, Gan T, Liu YM. A turn-on fluorescence strategy for biothiols determination by blocking Hg(II)-mediated fluorescence quenching of adenine-rich DNA-templated gold nanoclusters. LUMINESCENCE 2020; 35:1296-1303. [PMID: 32510805 DOI: 10.1002/bio.3891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/12/2020] [Accepted: 06/03/2020] [Indexed: 01/27/2023]
Abstract
Fluorescent adenine (A)-rich DNA-templated gold nanoclusters were demonstrated to be a novel probe for determination of biothiols (including cysteine, glutathione, and homocysteine). Fluorescence intensity of adenine-rich DNA-templated gold nanoclusters could be greatly quenched by Hg(II) ions through the formation of a gold nanoclusters-Hg(II) system. When biothiols (cysteine as the model) were introduced into the system, the fluorescence intensity recovered due to the formation of a more stable Hg(II)-thiol coordination complex using Hg-S metal-ligand bonds, which inhibited the Hg(II)-mediated fluorescence quenching of adenine-rich DNA-templated gold nanoclusters. Based on this fluorescence phenomenon, an on-off-on fluorescence strategy was designed for the sensitive determination of biothiols. The method allowed sensitive detection of cysteine with a linear detection range from 100 nM to 5 μM and a limit of detection of 30 nM. Additionally, the assay can be applied for detection of biothiol levels in human plasma samples. Therefore, it can provide a simple and rapid fluorescent platform for biothiol detection.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - An-Li Mao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yong-Hong Li
- School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Tian Gan
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
10
|
Beyond native deoxyribonucleic acid, templating fluorescent nanomaterials for bioanalytical applications: A review. Anal Chim Acta 2020; 1105:11-27. [DOI: 10.1016/j.aca.2020.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
|
11
|
Highly selective fluorimetric and colorimetric sensing of mercury(II) by exploiting the self-assembly-induced emission of 4-chlorothiophenol capped copper nanoclusters. Mikrochim Acta 2020; 187:185. [DOI: 10.1007/s00604-020-4158-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022]
|
12
|
Wang HB, Bai HY, Mao AL, Gan T, Liu YM. Poly(adenine)-templated fluorescent Au nanoclusters for the rapid and sensitive detection of melamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 219:375-381. [PMID: 31059889 DOI: 10.1016/j.saa.2019.04.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/10/2019] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
A rapid and label-free fluorescence sensing strategy has been established for the sensitive determination of melamine (MA) on the basis of poly(adenine) (poly (A))-templated Au nanoclusters (AuNCs). The poly(A)-templated AuNCs possessed excellent luminescence and photo-stability. In the presence of Hg2+, the luminescence of AuNCs was quenched by Hg2+ through the metallophilic interactions between Au+ and Hg2+. When melamine was introduced, the fluorescence intensity of sensing system could be recovered. There was a greater coordination interaction between Hg2+ and melamine, which blocked the Hg2+-mediated fluorescence quenching of AuNCs. The assay allowed sensitive determination of melamine with a linear detection range from 50 nM to 100 μM. The limit of detection was as low as 16.6 nM. Furthermore, the label-free strategy was successfully employed for the detection of melamine concentration in real samples.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China.
| | - Hong-Yu Bai
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China
| | - An-Li Mao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China
| | - Tian Gan
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China.
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, PR China
| |
Collapse
|
13
|
Nucleic acid-based fluorescent methods for the determination of DNA repair enzyme activities: A review. Anal Chim Acta 2019; 1060:30-44. [DOI: 10.1016/j.aca.2018.12.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
|
14
|
Wang HB, Bai HY, Mao AL, Liu YM. Poly(adenine) DNA-Templated Gold Nanocluster-Based Fluorescent Strategy for the Determination of Thiol-Containing Pharmaceuticals. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1609491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Hong-Yu Bai
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - An-Li Mao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
15
|
Wang HB, Bai HY, Dong GL, Liu YM. DNA-templated Au nanoclusters coupled with proximity-dependent hybridization and guanine-rich DNA induced quenching: a sensitive fluorescent biosensing platform for DNA detection. NANOSCALE ADVANCES 2019; 1:1482-1488. [PMID: 36132614 PMCID: PMC9419426 DOI: 10.1039/c8na00278a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
In this paper, the fluorescence signal of poly(A) DNA-templated Au nanoclusters (AuNCs) is found to be greatly quenched by photoinduced electron transfer (PET) when they are close to guanine (G)-rich DNA. Based on the findings, we have designed a low-cost fluorescence biosensing strategy for the sensitive detection of DNA. Highly luminescent and photo-stable poly(A) DNA-AuNCs were utilized as the fluorescent indicator and G-rich DNA was utilized as the fluorescent quencher. In the absence of target DNA, DNA-AuNCs failed to hybridize with the G-rich DNA and did not form the duplex DNA structure. Strong fluorescence intensity at 475 nm was observed due to the DNA-AuNCs being far away from the G-rich DNA. However, in the presence of target DNA, the DNA-AuNCs together with G-rich DNA could hybridize with the target DNA, leading to the 5' terminus of the DNA-AuNCs and the 3' terminus of G-rich DNA being in close proximity and promoting the cooperative hybridization. Therefore, a "Y" junction structure was formed and the G-rich sequences were brought close to the AuNCs. Therefore, the fluorescence intensity of the sensing system decreased significantly. Taking advantage of the poly(A) DNA-templated Au nanoclusters and G-rich DNA proximity-induced quenching, the strategy could be extended to determine other biomolecules by designing appropriate sequences of DNA probes.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University Xinyang 464000 PR China +86 376 6391172 +86 376 6391172
| | - Hong-Yu Bai
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University Xinyang 464000 PR China +86 376 6391172 +86 376 6391172
| | - Gao-Li Dong
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University Xinyang 464000 PR China +86 376 6391172 +86 376 6391172
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University Xinyang 464000 PR China +86 376 6391172 +86 376 6391172
| |
Collapse
|
16
|
Lee CY, Kim H, Kim HY, Park KS, Park HG. Fluorescent S1 nuclease assay utilizing exponential strand displacement amplification. Analyst 2019; 144:3364-3368. [DOI: 10.1039/c9an00300b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We devise a simple, label-free S1 nuclease activity assay by exploiting target-induced inhibition of exponential strand displacement amplification (eSDA).
Collapse
Affiliation(s)
- Chang Yeol Lee
- Department of Chemical and Biomolecular Engineering (BK 21+ program)
- KAIST
- Daejeon 34141
- Republic of Korea
| | - Hansol Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ program)
- KAIST
- Daejeon 34141
- Republic of Korea
| | - Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ program)
- KAIST
- Daejeon 34141
- Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering
- College of Engineering
- Konkuk University
- Seoul 05029
- Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ program)
- KAIST
- Daejeon 34141
- Republic of Korea
| |
Collapse
|
17
|
Peng J, Ling J, Wen QL, Li Y, Cao QE, Huang ZJ, Ding ZT. The presence of a single-nucleotide mismatch in linker increases the fluorescence of guanine-enhanced DNA-templated Ag nanoclusters and their application for highly sensitive detection of cyanide. RSC Adv 2018; 8:41464-41471. [PMID: 35559308 PMCID: PMC9091977 DOI: 10.1039/c8ra07986b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Fluorescence of DNA-templated silver nanoclusters can be enhanced by more than 100-fold by placing the nanoclusters in proximity to guanine-rich DNA sequences after hybridization. We found that the fluorescence of the guanine-enhanced silver nanoclusters is not increased with the guanine-rich DNA sequence closer to the silver nanoclusters. By studying the different numbers of mismatches in the linker sequences, we found that the presence of a single-nucleotide mismatch in the linker increases fluorescence more than the complementary nucleotide. Further study indicated the mismatch position of the linker sequence also affects the fluorescence of the hybridized DNA-Ag NCs. The evidence reported here indicated that the mismatch of the linker sequence affects the fluorescence enhancement of guanine-enhanced silver nanoclusters. We also found that DNA-Ag NCs is an excellent fluorescence sensor for cyanide, as cyanide effectively quenches the fluorescence of NCs at a very low concentration with high selectivity. Cyanide in the range from 0.10 μM to 0.35 μM could be linearly detected, with a detection limit of 25.6 nM.
Collapse
Affiliation(s)
- Jun Peng
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
- Hunan Province Geological Testing Institute Changsha 410007 China
| | - Jian Ling
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Qiu-Lin Wen
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Yu Li
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Qiu-E Cao
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Zhang-Jie Huang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| | - Zhong-Tao Ding
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University Kunming 650091 China
| |
Collapse
|
18
|
Hu C, Kong XJ, Yu RQ, Chen TT, Chu X. MnO 2 Nanosheet-based Fluorescence Sensing Platform for Sensitive Detection of Endonuclease. ANAL SCI 2018; 33:783-788. [PMID: 28690254 DOI: 10.2116/analsci.33.783] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel fluorescence sensing platform for ultrasensitive detection of S1 nuclease activity has been constructed based on MnO2 nanosheets and FAM labeled single-stranded DNA (FAM-ssDNA). In this system, MnO2 nanosheets were found to have different adsorbent ability toward ssDNA and mono- or oligonucleotide fragments. FAM-ssDNA could adsorb on MnO2 nanosheets and resulted in significant fluorescence quenching through fluorescence resonance energy transfer (FRET), while mono- or oligonucleotide fragments could not adsorb on MnO2 nanosheets and still retained strong fluorescence emission. With the addition of S1 nuclease, FAM-ssDNA was cleaved into mono- or oligonucleotide fragments, which were not able to adsorb on MnO2 nanosheets and the fluorescence signal was never quenched. The different fluorescence intensity allowed for examination of S1 nuclease activity. The developed method can detect S1 nuclease activity in the range of 0 - 20 U mL-1 with a detection limit of 0.05 U mL-1. Benefits of the system include less time-consuming processes and more simple design compared to other endonuclease assays. Satisfactory performance for S1 nuclease in complex samples has been successfully demonstrated with the system. The developed assay could potentially provide a new platform in bioimaging and clinical diagnosis.
Collapse
Affiliation(s)
- Chao Hu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Xiang Juan Kong
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Ru Qin Yu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Ting Ting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
| |
Collapse
|
19
|
Wang HB, Li Y, Bai HY, Zhang ZP, Li YH, Liu YM. Development of Rapid and Label-Free Fluorescence Sensing of Tetracyclines in Milk Based on Poly(Adenine) DNA-Templated Au Nanoclusters. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1289-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Wang HB, Li Y, Bai HY, Liu YM. Fluorescent Determination of Dopamine Using Polythymine-Templated Copper Nanoclusters. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1454457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
- State Key Laboratory of Chemo/biosensing and Chemometrics, Hunan University, Changsha, China
| | - Yang Li
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Hong-Yu Bai
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
21
|
Chen Z, Liu C, Cao F, Ren J, Qu X. DNA metallization: principles, methods, structures, and applications. Chem Soc Rev 2018; 47:4017-4072. [DOI: 10.1039/c8cs00011e] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes the research activities on DNA metallization since the concept was first proposed in 1998, covering the principles, methods, structures, and applications.
Collapse
Affiliation(s)
- Zhaowei Chen
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Fangfang Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| |
Collapse
|
22
|
Ma C, Liu H, Wu K, Chen M, He H, Wang K, Xia K. A turn-on fluorescence assay of alkaline phosphatase activity using a DNA–silver nanocluster probe. NEW J CHEM 2018. [DOI: 10.1039/c7nj04894g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A label-free fluorescence assay has been developed for the detection of alkaline phosphatase based on DNA–silver nanocluster probes.
Collapse
Affiliation(s)
- Changbei Ma
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Haisheng Liu
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Kefeng Wu
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Mingjian Chen
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Hailun He
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- Hunan University
- Changsha 410081
- China
| | - Kun Xia
- School of Life Sciences
- Central South University
- Changsha 410013
- China
| |
Collapse
|
23
|
A DNA-stabilized silver nanoclusters/graphene oxide-based platform for the sensitive detection of DNA through hybridization chain reaction. Biosens Bioelectron 2017; 91:374-379. [DOI: 10.1016/j.bios.2016.12.060] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/14/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022]
|
24
|
Zhang Y, Yang F, Sun Z, Li YT, Zhang GJ. A surface acoustic wave biosensor synergizing DNA-mediated in situ silver nanoparticle growth for a highly specific and signal-amplified nucleic acid assay. Analyst 2017; 142:3468-3476. [DOI: 10.1039/c7an00988g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An SAW biosensor harmonizes the surface mass effect for signal-amplified and sequence-specific DNA detection in blood serum.
Collapse
Affiliation(s)
- Yulin Zhang
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- China
| | - Fan Yang
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- China
| | - Zhongyue Sun
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- China
| | - Yu-Tao Li
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- China
| | - Guo-Jun Zhang
- School of Laboratory Medicine
- Hubei University of Chinese Medicine
- Wuhan 430065
- China
| |
Collapse
|
25
|
Wang HB, Chen Y, Li N, Liu YM. A fluorescent glucose bioassay based on the hydrogen peroxide-induced decomposition of a quencher system composed of MnO2 nanosheets and copper nanoclusters. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2045-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
A real time S1 assay at neutral pH based on graphene oxide quenched fluorescence probe. SENSING AND BIO-SENSING RESEARCH 2016. [DOI: 10.1016/j.sbsr.2015.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
27
|
Mao X, Liu S, Yang C, Liu F, Wang K, Chen G. Colorimetric detection of hepatitis B virus (HBV) DNA based on DNA-templated copper nanoclusters. Anal Chim Acta 2016; 909:101-8. [PMID: 26851090 DOI: 10.1016/j.aca.2016.01.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/31/2015] [Accepted: 01/03/2016] [Indexed: 12/18/2022]
Abstract
DNA detection plays an important role in early diagnosis of genetic disease. The conventional detection methods of DNA are based on expensive equipment, which do not meet the demands of developing countries. Thus, we developed a colorimetric method, which could be observed with naked eye and used copper nanoclusters for cost-effective. Moreover, the target of this method is the DNA in Hepatitis B virus that is one of the most popular chronic viral infections in developing countries over the past years. Our method was sensitive and the limit of detection was 12 × 10(9) molecules. Three-base-pair mismatches target DNA was detected easily. These results revealed the favorable sensitivity and selectivity of this approach. Most importantly, our method may have potential applications in correct diagnosis of genetic disease and monitoring of gene therapy in the poverty-stricken areas.
Collapse
Affiliation(s)
- Xiaoxia Mao
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China; Department of Life Science, Anqing Normal University, Anqing, Anhui 246011, China
| | - Siyu Liu
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chao Yang
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Fengzhen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Keming Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.
| | - Guifang Chen
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
28
|
Wang HB, Chen Y, Li Y, Liu YM. A sensitive fluorescence sensor for glutathione detection based on MnO2 nanosheets–copper nanoclusters composites. RSC Adv 2016. [DOI: 10.1039/c6ra17850b] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A sensitive fluorescence sensor has been developed for glutathione detection based on MnO2 nanosheets–Cu NCs composites.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Ying Chen
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Yang Li
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- PR China
| |
Collapse
|
29
|
Teng Y, Jia X, Zhang S, Zhu J, Wang E. A nanocluster beacon based on the template transformation of DNA-templated silver nanoclusters. Chem Commun (Camb) 2016; 52:1721-4. [DOI: 10.1039/c5cc09138a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We developed a novel light-up nanocluster beacon for sensitive and selective DNA detection based on the template transformation by shuttling dark Ag nanoclusters to a bright scaffold through hybridization.
Collapse
Affiliation(s)
- Ye Teng
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiaofang Jia
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Shan Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jinbo Zhu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
30
|
Pandya A, Lad AN, Singh SP, Shanker R. DNA assembled metal nanoclusters: synthesis to novel applications. RSC Adv 2016. [DOI: 10.1039/c6ra24098d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review, we have discussed the emergence of promising environmental-benign DNA assembled fluorescent metal nanoclusters and their unique electronic structures, unusual physical and chemical properties.
Collapse
Affiliation(s)
- Alok Pandya
- Division of Biological & Life Sciences
- School of Arts & Sciences
- Ahmedabad University
- Ahmedabad
- India
| | - Amitkumar N. Lad
- Gujarat Forensic Sciences University
- Institute of Research and Development
- Gandhinagar
- India
| | | | - Rishi Shanker
- Division of Biological & Life Sciences
- School of Arts & Sciences
- Ahmedabad University
- Ahmedabad
- India
| |
Collapse
|
31
|
Wang HB, Zhang HD, Chen Y, Liu YM. A fluorescent biosensor for protein detection based on poly(thymine)-templated copper nanoparticles and terminal protection of small molecule-linked DNA. Biosens Bioelectron 2015; 74:581-6. [DOI: 10.1016/j.bios.2015.07.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/05/2015] [Accepted: 07/10/2015] [Indexed: 12/28/2022]
|
32
|
Spectra, Stability and Labeling of a Novel Carbazole Derivative as a Fluorescent Turn-on DNA Probe. J Fluoresc 2015; 25:1251-8. [DOI: 10.1007/s10895-015-1613-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/30/2015] [Indexed: 01/29/2023]
|
33
|
A DNA-templated silver nanocluster probe for label-free, turn-on fluorescence-based screening of homo-adenine binding molecules. Biosens Bioelectron 2015; 64:618-24. [DOI: 10.1016/j.bios.2014.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
|
34
|
Wang HB, Chen Y, Li Y, Zhang HD, Cao JT. A rapid, sensitive and label-free sensor for Hg(ii) ion detection based on blocking of cysteine-quenching of fluorescent poly(thymine)-templated copper nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra18906c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A rapid fluorescence sensor was developed for Hg2+ detection based on blocking of cysteine-quenching of poly T templated Cu NPs.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Ying Chen
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Yang Li
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| |
Collapse
|
35
|
Liu CL, Kong XJ, Yuan J, Yu RQ, Chu X. A dual-amplification fluorescent sensing platform for ultrasensitive assay of nuclease and ATP based on rolling circle replication and exonuclease III-aided recycling. RSC Adv 2015. [DOI: 10.1039/c5ra13301g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A ultrasensitive, easy operated and robust assay of S1 nuclease in real samples and ATP has been successfully achieved with the dual-amplification strategy based on rolling circle replication and Exo III-aided recycling.
Collapse
Affiliation(s)
- Chen-Liwei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xiang-Juan Kong
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Jing Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Ru-Qin Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
36
|
Wang HB, Zhang HD, Chen Y, Li Y, Gan T. H2O2-mediated fluorescence quenching of double-stranded DNA templated copper nanoparticles for label-free and sensitive detection of glucose. RSC Adv 2015. [DOI: 10.1039/c5ra14852a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A label-free fluorescent sensor has been developed for glucose detection based on H2O2-mediated fluorescence quenching of ds-DNA templated Cu NPs.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Ying Chen
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Yang Li
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| | - Tian Gan
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- PR China
| |
Collapse
|
37
|
Wang HB, Zhang HD, Chen Y, Liu YM. Inhibition of double-stranded DNA templated copper nanoparticles as label-free fluorescent sensors for l-histidine detection. NEW J CHEM 2015. [DOI: 10.1039/c5nj01847a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A label-free fluorescent sensing strategy was reported for l-histidine detection by the inhibition of double-stranded DNA templated copper nanoparticles.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| | - Ying Chen
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- P. R. China
| |
Collapse
|