1
|
El-Sayed SAES, El-Alfy ES, Sayed-Ahmed MZ, Mohanta UK, Alqahtani SS, Alam N, Ahmad S, Ali MS, Igarashi I, Rizk MA. Evaluating the inhibitory effect of resveratrol on the multiplication of several Babesia species and Theileria equi on in vitro cultures, and Babesia microti in mice. Front Pharmacol 2023; 14:1192999. [PMID: 37324476 PMCID: PMC10267976 DOI: 10.3389/fphar.2023.1192999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Histone post-translational modification is one of the most studied factors influencing epigenetic regulation of protozoan parasite gene expression, which is mediated by histone deacetylases (KDACs) and acetyltransferases (KATs). Objective and methods: The present study investigated the role of resveratrol (RVT) as an activator of histone deacetylases in the control of various pathogenic Babesia sp. and Theileria equi in vitro, as well as B. microti infected mice in vivo using fluorescence assay. Its role in mitigating the side effects associated with the widely used antibabesial drugs diminazene aceturate (DA) and azithromycin (AZM) has also been investigated. Results: The in vitro growth of B. bovis, B. bigemina, B. divergens, B. caballi and Theileria equi (T. equi) was significantly inhibited (P < 0.05) by RVT treatments. The estimated IC50 values revealed that RVT has the greatest inhibitory effects on B. bovis growth in vitro, with an IC50 value of 29.51 ± 2.46 µM. Reverse transcription PCR assay showed that such inhibitory activity might be attributed to resveratrol's stimulatory effect on B. bovis KDAC3 (BbKADC3) as well as its inhibitory effect on BbKATS. RVT causes a significant decrease (P < 0.05) in cardiac troponin T (cTnT) levels in heart tissue of B. microti- infected mice, thereby indicating that RVT may play a part in reducing the cardiotoxic effects of AZM. Resveratrol showed an additive effect with imidocarb dipropionate in vivo. Treatment of B. microti-infected mice with a combined 5 mg/kg RVT and 8.5 mg/kg ID resulted in an 81.55% inhibition at day 10 postinoculation (peak of parasitemia). Conclusion: Our data show that RVT is a promising antibabesial pharmacological candidate with therapeutic activities that could overcome the side effects of the currently used anti-Babesia medications.
Collapse
Affiliation(s)
- Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - El-Sayed El-Alfy
- Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Z. Sayed-Ahmed
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Uday Kumar Mohanta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Sarfaraz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jizan, Saudi Arabia
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Mohamed Abdo Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Discovery and validation of bladder cancer related excreted nucleosides biomarkers by dilution approach in cell culture supernatant and urine using UHPLC-MS/MS. J Proteomics 2023; 270:104737. [PMID: 36174950 DOI: 10.1016/j.jprot.2022.104737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023]
Abstract
The exploration of nucleoside changes in human biofluids has profound potential for cancer diagnosis. Herein, we developed a rapid methodology to quantify 17 nucleosides by UHPLC-MS/MS. Five pairs of isomers were successfully separated within 8 min. The ME was mostly eliminated by sample dilution folds of 1000 for urine and 40 for CCS. The optimized method was firstly applied to screen potential nucleoside biomarkers in CCS by comprising bladder cancer cell lines (5637 and T24) and normal human bladder cell line SV-HUC-1 together with student's t-test and OPLS-DA. Nucleosides with significant differences in the supernatant of urine samples were also uncovered comparing BCa with the non-tumor group, as well as a comparison of BCa recurrence group with the non-recurrence group. By intersecting the differential nucleosides in CCS and urine supernatant, and then further confirmed using validation sets, the combination of m3C and m1A with AUC of 0.775 was considered as a potential biomarker for bladder cancer diagnosis. A panel of m3C, m1A, m1G, and m22G was defined as potential biomarkers for bladder cancer prognosis with an AUC of 0.819. Above all, this method provided a new perspective for diagnosis and recurrence monitoring of bladder cancer. SIGNIFICANCE: The exploration of nucleoside changes in body fluids has profound potential for the diagnosis and elucidation of the pathogenesis of cancer. In this study, we developed a rapid methodology for the simultaneous quantitative determination of 17 nucleosides in the supernatant of cells and urine samples using UHPLC-MS/MS to discover and validate bladder cancer related excreted nucleoside biomarkers. The results of this paper provide a new strategy for diagnosis and postoperative recurrence monitoring of bladder cancer and provide theoretical support for the exploration of its pathogenesis.
Collapse
|
3
|
Zapp E, Brondani D, Silva TR, Girotto E, Gallardo H, Vieira IC. Label-Free Immunosensor Based on Liquid Crystal and Gold Nanoparticles for Cardiac Troponin I Detection. BIOSENSORS 2022; 12:1113. [PMID: 36551080 PMCID: PMC9775587 DOI: 10.3390/bios12121113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity worldwide. The development of electrochemical biosensors for CVD markers detection, such as cardiac troponin I (cTnI), becomes an important diagnostic strategy. Thus, a glassy carbon electrode (GCE) was modified with columnar liquid crystal (LCcol) and gold nanoparticles stabilized in polyallylamine hydrochloride (AuNPs-PAH), and the surface was employed to evaluate the interaction of the cTnI antibody (anti-cTnI) and cTnI for detection in blood plasma. Morphological and electrochemical investigations were used in the characterization and optimization of the materials used in the construction of the immunosensor. The specific interaction of cTnI with the surface of the immunosensor containing anti-cTnI was monitored indirectly using a redox probe. The formation of the immunocomplex caused the suppression of the analytical signal, which was observed due to the insulating characteristics of the protein. The cTnI-immunosensor interaction showed linear responses from 0.01 to 0.3 ng mL-1 and a low limit of detection (LOD) of 0.005 ng mL-1 for linear sweep voltammetry (LSV) and 0.01 ng mL-1 for electrochemical impedance spectroscopy (EIS), showing good diagnostic capacity for point-of-care applications.
Collapse
Affiliation(s)
- Eduardo Zapp
- Department of Exact Science and Education, Federal University of Santa Catarina, Campus Blumenau, Blumenau 89036-256, Brazil
| | - Daniela Brondani
- Department of Exact Science and Education, Federal University of Santa Catarina, Campus Blumenau, Blumenau 89036-256, Brazil
| | - Tânia Regina Silva
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Edivandro Girotto
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Hugo Gallardo
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Iolanda Cruz Vieira
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
4
|
Mecarelli E, Aigotti R, Asteggiano A, Giacobini P, Chasles M, Tillet Y, Dal Bello F, Medana C. Quantitation of endogenous GnRH by validated nano-HPLC-HRMS method: a pilot study on ewe plasma. Anal Bioanal Chem 2022; 414:7623-7634. [PMID: 36063171 PMCID: PMC9587114 DOI: 10.1007/s00216-022-04293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Gonadotropin-releasing hormone isoform I (GnRH), a neuro-deca-peptide, plays a fundamental role in development and maintenance of the reproductive system in vertebrates. The anomalous release of GnRH is observed in reproductive disorder such as hypogonadotropic hypogonadism, polycystic ovary syndrome (PCOS), or following prenatal exposure to elevated androgen levels. Quantitation of GnRH plasma levels could help to diagnose and better understand these pathologies. Here, a validated nano-high-performance liquid chromatography–high-resolution mass spectrometry (HPLC-HRMS) method to quantify GnRH in ewe plasma samples is presented. Protein precipitation and solid-phase extraction (SPE) pre-treatment steps were required to purify and enrich GnRH and internal standard (lamprey-luteinizing hormone-releasing hormone-III, l-LHRH-III). For the validation process, a surrogate matrix approach was chosen following the International Council for Harmonisation (ICH) and FDA guidelines. Before the validation study, the validation model using the surrogate matrix was compared with those using a real matrix such as human plasma. All the tested parameters were analogous confirming the use of the surrogate matrix as a standard calibration medium. From the validation study, limit of detection (LOD) and limit of quantitation (LOQ) values of 0.008 and 0.024 ng/mL were obtained, respectively. Selectivity, accuracy, precision, recovery, and matrix effect were assessed with quality control samples in human plasma and all values were acceptable. Sixteen samples belonging to healthy and prenatal androgen (PNA) exposed ewes were collected and analyzed, and the GnRH levels ranged between 0.05 and 3.26 ng/mL. The nano-HPLC-HRMS developed here was successful in measuring GnRH, representing therefore a suitable technique to quantify GnRH in ewe plasma and to detect it in other matrices and species.
Collapse
Affiliation(s)
- Enrica Mecarelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, via Pietro Giuria 5, 10125, Turin, Italy
| | - Riccardo Aigotti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, via Pietro Giuria 5, 10125, Turin, Italy
| | - Alberto Asteggiano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, via Pietro Giuria 5, 10125, Turin, Italy
| | - Paolo Giacobini
- University Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, Inserm UMR-S1172, 59000, Lille, France
| | - Manon Chasles
- University of Tours, IFCE, Centre INRAE Val de Loire, 37380, Nouzilly, France
| | - Yves Tillet
- University of Tours, IFCE, Centre INRAE Val de Loire, 37380, Nouzilly, France
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, via Pietro Giuria 5, 10125, Turin, Italy.
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, via Pietro Giuria 5, 10125, Turin, Italy
| |
Collapse
|
5
|
Sui X, Wu Q, Cui X, Wang X, Zhang L, Deng N, Bian Y, Xu R, Tian R. Robust Capillary- and Micro-Flow Liquid Chromatography-Tandem Mass Spectrometry Methods for High-Throughput Proteome Profiling. J Proteome Res 2022; 21:2472-2480. [PMID: 36040778 DOI: 10.1021/acs.jproteome.2c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Capillary- and micro-flow liquid chromatography-tandem mass spectrometry (capLC-MS/MS and μLC-MS/MS) is becoming a valuable alternative to nano-flow LC-MS/MS due to its high robustness and throughput. The systematic comparison of capLC-MS/MS and μLC-MS/MS systems for global proteome profiling has not been reported yet. Here, the capLC-MS/MS (150 μm i.d. column, 1 μL/min) and μLC-MS/MS (1 mm i.d. column, 50 μL/min) systems were both established based on UltiMate 3000 RSLCnano coupled to an Orbitrap Exploris 240 by integrating with different flowmeters. We evaluated both systems in terms of sensitivity, analysis throughput, separation efficiency, and robustness. capLC-MS/MS was about 10 times more sensitive than μLC-MS/MS at different gradient lengths. Compared with capLC-MS/MS, μLC-MS/MS was able to achieve higher analysis throughput and separation efficiency. During the 7 days' long-term performance test, both systems showed good reproducibility of chromatographic full width (RSD < 3%), retention time (RSD < 0.4%), and protein identification (RSD < 3%). These results demonstrate that capLC-MS/MS is more suitable for high-throughput analysis of clinical samples with a limited starting material. When enough samples are available, μLC-MS/MS is preferred. Together, capLC and μLC coupled to Orbitrap Exploris 240 with moderate sensitivity should well meet the needs of large-cohort clinical proteomic analysis.
Collapse
Affiliation(s)
- Xintong Sui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiong Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaozhen Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Wang
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Luobin Zhang
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Nan Deng
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yangyang Bian
- The College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ruilian Xu
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Cheng S, Chen M, Zheng Z, Yang J, Peng J, Yang H, Zheng D, Chen Y, Gao W. In-situ construction of hollow double-shelled CoSx@CdS nanocages with prominent photoelectric response for highly sensitive photoelectrochemical biosensor. Anal Chim Acta 2022; 1211:339881. [DOI: 10.1016/j.aca.2022.339881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 04/10/2022] [Accepted: 04/26/2022] [Indexed: 11/01/2022]
|
7
|
Majuta SN, DeBastiani A, Li P, Valentine SJ. Combining Field-Enabled Capillary Vibrating Sharp-Edge Spray Ionization with Microflow Liquid Chromatography and Mass Spectrometry to Enhance 'Omics Analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:473-485. [PMID: 33417454 PMCID: PMC8132193 DOI: 10.1021/jasms.0c00376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Field-enabled capillary vibrating sharp-edge spray ionization (cVSSI) has been combined with high-flow liquid chromatography (LC) and mass spectrometry (MS) to establish current ionization capabilities for metabolomics and proteomics investigations. Comparisons are made between experiments employing cVSSI and a heated electrospray ionization probe representing the state-of-the-art in microflow LC-MS methods for 'omics studies. For metabolomics standards, cVSSI is shown to provide an ionization enhancement by factors of 4 ± 2 for both negative and positive ion mode analyses. For chymotryptic peptides, cVSSI is shown to provide an ionization enhancement by factors of 5 ± 2 and 2 ± 1 for negative and positive ion mode analyses, respectively. Slightly broader high-performance liquid chromatography peaks are observed in the cVSSI datasets, and several studies suggest that this results from a slightly decreased post-split flow rate. This may result from partial obstruction of the pulled-tip emitter over time. Such a challenge can be remedied with the use of LC pumps that operate in the 10 to 100 μL·min-1 flow regime. At this early stage, the proof-of-principle studies already show ion signal advantages over state-of-the-art electrospray ionization (ESI) for a wide variety of analytes in both positive and negative ion mode. Overall, this represents a ∼20-50-fold improvement over the first demonstration of LC-MS analyses by voltage-free cVSSI. Separate comparisons of the ion abundances of compounds eluting under identical solvent conditions reveal ionization efficiency differences between cVSSI and ESI and may suggest varied contributions to ionization from different physicochemical properties of the compounds. Future investigations of parameters that could further increase ionization gains in negative and positive ion mode analyses with the use of cVSSI are briefly presented.
Collapse
Affiliation(s)
- Sandra N. Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501
| | - Anthony DeBastiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown WV 26501
| |
Collapse
|
8
|
Çimen D, Bereli N, Günaydın S, Denizli A. Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta 2020; 219:121259. [PMID: 32887150 DOI: 10.1016/j.talanta.2020.121259] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/05/2023]
Abstract
In this study, it is aimed to determine cardiac troponin I by a surface plasmon resonance biosensor immobilized anti-cardiac troponin I monoclonal antibody. The immobilized anti-cardiac troponin I monoclonal antibody surface plasmon resonance biosensors were characterized with ellipsometry, atomic force microscopy and contact angle analysis. After that, surface plasmon resonance biosensor system was completed to biosensor system to investigate kinetic properties for cardiac tropinin I. The sensing ability of surface plasmon resonance biosensor was investigated with 0.001-8.0 ng/mL concentrations of cardiac tropinin I solutions. The limit of detection and limit of quantification were calculated as 0.00012 ng/mL and 0.00041 ng/mL, respectively. To show the selectivity of surface plasmon resonance biosensor competitive adsorption of cardiac tropinin I, myoglobin, immunoglobulin G and prostate specific antigen were investigated. Surface plasmon resonance biosensor was investigated five times with 0.5 ng/mL concentrations of cardiac tropinin I solution to show reuse of the chip. The results showed that surface plasmon resonance biosensor has high selectivity for cardiac tropinin I. The reproducibility of surface plasmon resonance sensors was investigated both on the same day and on different days for five times. To determine the usability, selectivity and validation studies of surface plasmon resonance biosensors were performed by enzyme-linked immunosorbent assay method.
Collapse
Affiliation(s)
- Duygu Çimen
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Nilay Bereli
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey
| | - Serdar Günaydın
- Department of Cardiovascular Surgery, Ankara Numune Education Hospital, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Beytepe, Ankara, Turkey.
| |
Collapse
|
9
|
Vialaret J, Picas A, Delaby C, Bros P, Lehmann S, Hirtz C. Nano-flow vs standard-flow: Which is the more suitable LC/MS method for quantifying hepcidin-25 in human serum in routine clinical settings? J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1086:110-117. [DOI: 10.1016/j.jchromb.2018.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/26/2023]
|
10
|
Li MN, Li CR, Gao W, Li P, Yang H. Highly sensitive strategy for identification of trace chemicals in complex matrix: Application to analysis of monacolin analogues in monascus-fermented rice product. Anal Chim Acta 2017; 982:156-167. [DOI: 10.1016/j.aca.2017.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/17/2017] [Accepted: 05/21/2017] [Indexed: 01/11/2023]
|
11
|
Márta Z, Bobály B, Fekete J, Magda B, Imre T, Mészáros KV, Szabó PT. Pushing quantitation limits in micro UHPLC–MS/MS analysis of steroid hormones by sample dilution using high volume injection. J Pharm Biomed Anal 2016; 129:135-141. [DOI: 10.1016/j.jpba.2016.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/21/2022]
|
12
|
Streng AS, de Boer D, Bouwman FG, Mariman EC, Scholten A, van Dieijen-Visser MP, Wodzig WK. Development of a targeted selected ion monitoring assay for the elucidation of protease induced structural changes in cardiac troponin T. J Proteomics 2016; 136:123-32. [DOI: 10.1016/j.jprot.2015.12.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 12/08/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
|