1
|
Pang H, Allinson M, Scales PJ. Sub-ppm determination of perfluorinated carboxylic acids in solution by UV-vis high-performance liquid chromatography through solid phase extraction. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:605-616. [PMID: 37095699 DOI: 10.1080/10934529.2023.2204801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study investigated a novel and sensitive analytical method based on a simple heat-based derivatization using 3-bromoacetyl coumarin as the reagent and analysis with a HPLC-UV system or just a UV-vis spectrometer to allow the sub-ppm determination of PFCAs in water solution with the potential for utilization in simple laboratories and field laboratory scenarios. A Strata-X-AW cartridge was used for the solid phase extraction (SPE) procedure and higher than 98% recoveries were obtained. The derivatization condition showed that a high efficiency of peak separation was obtained with obviously different retention time among various PFCAs derivatives using HPLC-UV analysis. The derivatization stability and repeatability showed favorable results with stable derivatized analytes for ≤12 h and a relative standard deviation (RSD) of <2% for all repetitions. The limit of detection for the HPLC-UV analysis was between 0.1 ppm and 0.5 ppm. A satisfactory linearity response was found with R2 >0.998 for all individual PFCA compounds. The limit of detection for simple UV-Vis analysis was <0.0003 ppm to measure the presence of PFCAs. Contamination of standards with humic substances and measurement of industrial samples in a complex wastewater matrix showed no adverse effects on the accuracy of PFCA determination by using the developed methodology.
Collapse
Affiliation(s)
- Hongjiao Pang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Mayumi Allinson
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter J Scales
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Ouyang S, Liu G, Peng S, Zheng J, Ye YX, Zheng J, Tong Y, Hu Y, Zhou N, Gong X, Xu J, Ouyang G. Superficially capped amino metal-organic framework for efficient solid-phase microextraction of perfluorinated alkyl substances. J Chromatogr A 2022; 1669:462959. [PMID: 35303573 DOI: 10.1016/j.chroma.2022.462959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022]
Abstract
Perfluorinated alkyl substances (PFASs) were ubiquitously in the surface and groundwater. It is crucial and urgent to develop a rapid and ultrasensitive analysis method for the quantification of trace-level PFASs. Herein, a highly hydrophobic sorbent by capping phenylsilane groups on the surfaces of NH2-UiO-66(Zr) nanocrystals was used for efficient solid-phase microextraction (SPME) of PFASs in water samples. It was found that the superficially capped nanocrystals (NH2-UiO-66(Zr)-hp) exhibited both faster extraction kinetics and higher enrichment capacity than the non-capped nanocrystals. The extraction of eleven kinds of PFASs by NH2-UiO-66(Zr)-hp fiber reached equilibrium in 20 min. The enrichment factors of the NH2-UiO-66(Zr)-hp fiber ranged from 6.5 to 48, with a preference for long-chain PFASs over short-chain PFASs. It was proposed that superficial capping eliminated competitive moisture adsorption on the surfaces of the non-capped nanocrystals, thus facilitating the adsorption of PFASs through hydrophobic interaction. By using this new sorbent, the limits of detection of the SPME method as low as 0.035 to 0.616 ng·L-1 were achieved for the target PFASs. The recoveries of PFASs in the environmental water samples were 80.9%-120%. This study presents a new strategy for developing an efficient sorbent for PFASs by surface hydrophobic modification.
Collapse
Affiliation(s)
- Sai Ouyang
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Guifeng Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Sheng Peng
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jiating Zheng
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yu-Xin Ye
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Juan Zheng
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yuanjun Tong
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yalan Hu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China
| | - Ningbo Zhou
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, China.
| | - Xinying Gong
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Jianqiao Xu
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
3
|
Recent applications of the Charged Aerosol Detector for liquid chromatography in drug quality control. J Chromatogr A 2020; 1619:460911. [DOI: 10.1016/j.chroma.2020.460911] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/12/2023]
|
4
|
Wang N, Lv H, Zhou Y, Zhu L, Hu Y, Majima T, Tang H. Complete Defluorination and Mineralization of Perfluorooctanoic Acid by a Mechanochemical Method Using Alumina and Persulfate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8302-8313. [PMID: 31149813 DOI: 10.1021/acs.est.9b00486] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a persistent organic pollutant that has received concerns worldwide due to its extreme resistance to conventional degradation. A mechanochemical (MC) method was developed for complete degradation of PFOA by using alumina (Al2O3) and potassium persulfate (PS) as comilling agents. After ball milling for 2 h, the MC treatment using Al2O3 or PS caused conversion of PFOA to either 1-H-1-perfluoroheptene or dimers with a defluorination efficiency lower than 20%, but that using both Al2O3 and PS caused degradation of PFOA with a defluorination of 100% and a mineralization of 98%. This method also caused complete defluorination of other C3∼C6 homologues of PFOA. The complete defluorination of PFOA attributes to Al2O3 and PS led to the weakening of the C-F bond in PFOA and the generation of hydroxyl radical (•OH), respectively. During the MC degradation, Al2O3 strongly anchors PFOA through COO--Al coordination and in situ formed from Lewis-base interaction and PS through hydrogen bond. Meanwhile, mechanical effects induce the homolytic cleavage of PS to produce SO4•-, which reacts with OH group of Al2O3 to generate •OH. The degradation of PFOA is initiated by decarboxylation as a result of weakened C-COO- due to Al3+ coordination. The subsequent addition of •OH, elimination of HF, and reaction with water induce the stepwise removal of all carboxyl groups and F atoms as CO2 and F-, respectively. Thus, complete defluorination and mineralization are achieved.
Collapse
Affiliation(s)
- Nan Wang
- College of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , P. R. China
| | - Hanqing Lv
- College of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , P. R. China
| | - Yuqi Zhou
- College of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , P. R. China
| | - Lihua Zhu
- College of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , P. R. China
| | - Yue Hu
- College of Resourcesand Environmental , South-Central University for Nationalities , Wuhan 430074 , P. R. China
| | - Tetsuro Majima
- College of Chemistry and Chemical Engineering , Huazhong University of Science & Technology , Wuhan 430074 , P. R. China
| | - Heqing Tang
- College of Resourcesand Environmental , South-Central University for Nationalities , Wuhan 430074 , P. R. China
| |
Collapse
|
5
|
Huang Y, Li H, Bai M, Huang X. Efficient extraction of perfluorocarboxylic acids in complex samples with a monolithic adsorbent combining fluorophilic and anion-exchange interactions. Anal Chim Acta 2018; 1011:50-58. [DOI: 10.1016/j.aca.2018.01.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 01/14/2023]
|
6
|
Peng M, Zhang T, Ding Y, Yi Y, Yang Y, Le J. Structure-based prediction of CAD response factors of dammarane-type tetracyclic triterpenoid saponins and its application to the analysis of saponin contents in raw and processed Panax notoginseng. RSC Adv 2016. [DOI: 10.1039/c6ra03193e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structure-based impacts of saponins on CAD response factors are discovered, and in-depth analysis of saponins in Panax notoginseng is implemented.
Collapse
Affiliation(s)
- Ming Peng
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
- Department of Chemistry
| | - Tong Zhang
- Experiment Center for Teaching and Learning
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Yue Ding
- Experiment Center for Teaching and Learning
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Yaxiong Yi
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Yongjian Yang
- Department of Chemistry
- Shanghai Institute for Food and Drug Control
- Shanghai
- China
| | - Jian Le
- Department of Chemistry
- Shanghai Institute for Food and Drug Control
- Shanghai
- China
| |
Collapse
|
7
|
Mori M, Sagara K, Arai K, Nakatani N, Ohira SI, Toda K, Itabashi H, Kozaki D, Sugo Y, Watanabe S, Ishioka NS, Tanaka K. Simultaneous analysis of silicon and boron dissolved in water by combination of electrodialytic salt removal and ion-exclusion chromatography with corona charged aerosol detection. J Chromatogr A 2015; 1431:131-137. [PMID: 26755416 DOI: 10.1016/j.chroma.2015.12.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/16/2015] [Accepted: 12/18/2015] [Indexed: 11/17/2022]
Abstract
Selective separation and sensitive detection of dissolved silicon and boron (DSi and DB) in aqueous solution was achieved by combining an electrodialytic ion isolation device (EID) as a salt remover, an ion-exclusion chromatography (IEC) column, and a corona charged aerosol detector (CCAD) in sequence. DSi and DB were separated by IEC on the H(+)-form of a cation exchange resin column using pure water eluent. DSi and DB were detected after IEC separation by the CCAD with much greater sensitivity than by conductimetric detection. The five-channel EID, which consisted of anion and cation acceptors, cathode and anode isolators, and a sample channel, removed salt from the sample prior to the IEC-CCAD. DSi and DB were scarcely attracted to the anion accepter in the EID and passed almost quantitatively through the sample channel. Thus, the coupled EID-IEC-CCAD device can isolate DSi and DB from artificial seawater and hot spring water by efficiently removing high concentrations of Cl(-) and SO4(2-) (e.g., 98% and 80% at 0.10molL(-1) each, respectively). The detection limits at a signal-to-noise ratio of 3 were 0.52μmolL(-1) for DSi and 7.1μmolL(-1) for DB. The relative standard deviations (RSD, n=5) of peak areas were 0.12% for DSi and 4.3% for DB.
Collapse
Affiliation(s)
- Masanobu Mori
- Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Katsuya Sagara
- Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Kaori Arai
- Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Nobutake Nakatani
- Department of Environmental and Symbiotic Sciences, College of Agriculture, Food and Environmental Science, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Shin-Ichi Ohira
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Kei Toda
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Hideyuki Itabashi
- Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Daisuke Kozaki
- Faculty of Industrial Sciences and Technology, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang Darul Makmur, Malaysia
| | - Yumi Sugo
- Medical Radioisotope Application Group, Biotechnology and Medical Application Division, Quantum Beam Science Center, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292, Japan
| | - Shigeki Watanabe
- Medical Radioisotope Application Group, Biotechnology and Medical Application Division, Quantum Beam Science Center, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292, Japan
| | - Noriko S Ishioka
- Medical Radioisotope Application Group, Biotechnology and Medical Application Division, Quantum Beam Science Center, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292, Japan
| | - Kazuhiko Tanaka
- Department of Applied Chemistry, Chubu University, 1200, Matsumoto-cho, Kasugai-shi, Aichi 487-8501, Japan
| |
Collapse
|