1
|
Hassan M, Hussain D, Kanwal T, Xiao HM, Ghulam Musharraf S. Methods for detection and quantification of gelatin from different sources. Food Chem 2024; 438:137970. [PMID: 37988934 DOI: 10.1016/j.foodchem.2023.137970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Gelatin is a water-soluble protein obtained from the collagen of various animal origins (porcine, bovine, fish, donkey, horse, and deer hide) and has diverse applications in the food, pharmaceutical, and cosmetics industries. Porcine and bovine gelatins are extensively used in food and non-food products; however, their acceptance is limited due to religious prohibitions, whereas fish gelatin is accepted in all religions. In Southeast Asia, especially in China, gelatin obtained from donkey and deer skins is used in medicines. However, both sources suffer from adulteration (mixing different sources of gelatin) due to their limited availability and high cost. Unclear labeling and limited information about actual gelatin sources in gelatin-containing products cause serious concern among societies for halal and fraud authentication of gelatin sources. Therefore, authenticating gelatin sources in gelatin-based products is challenging due to close similarities between the composition differences and degradation of DNA and protein biomarkers in processed gelatin. Thus, different methods have been proposed to identify and quantify different gelatin sources in pharmaceutical and food products. To the best of our knowledge, this systematic and comprehensive review highlights different authentication techniques and their limitations in gelatin detection and quantification in various commercial products. This review also describes halal authentication and adulteration prevention strategies of various gelatin sources, mainly focussing on research gaps, challenges, and future directions in this research area.
Collapse
Affiliation(s)
- Mahjabeen Hassan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Dilshad Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Tehreem Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hua-Ming Xiao
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
2
|
Schüller M, Hansen FA, Pedersen-Bjergaard S. Extraction performance of electromembrane extraction and liquid-phase microextraction in prototype equipment. J Chromatogr A 2023; 1710:464440. [PMID: 37832461 DOI: 10.1016/j.chroma.2023.464440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
In this comparative study, the performance of liquid-phase microextraction and electromembrane extraction in prototype equipment was evaluated for extraction of ninety basic substances from plasma. Using a commercial EME device based on conductive vials enabled a standardized and comprehensive comparison between the two methods. Extractions were performed from a pH-adjusted donor solution, across an organic liquid membrane immobilized in a porous polypropylene membrane, and into an acidic acceptor solution. In LPME, dodecyl acetate was used as the extraction solvent, while 2-nitrophenyl octyl ether was used for EME with an electric field applied across the system. To assess the extraction performance, extraction recovery plots and extraction time curves were constructed and analyzed. These plots provided insights into the efficiency and effectiveness of LPME and EME, allowing users to make better decisions about the most suitable method for a specific bioanalytical application. Both LPME and EME were effective for substances with 2.0 < log P < 4.0, with EME showing faster extraction kinetics. Small (200 µL) and large vials (600 µL) were compared, showing that smaller vials improved kinetics markedly in both techniques. Carrier-mediated extraction showed improved performance for analytes with log P < 2 in EME, however, with some limitations due to system instability. This is, to our knowledge, the first time LPME was performed in the commercial vial-based equipment. An evaluation of vial-based LPME investigating linearity, precision, accuracy, and matrix effects showed promising results. These findings contribute to a general understanding of the performance differences in vial-based LPME and EME.
Collapse
Affiliation(s)
- Maria Schüller
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Frederik André Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
3
|
Garcia-Vaquero M, Mirzapour-Kouhdasht A. A review on proteomic and genomic biomarkers for gelatin source authentication: Challenges and future outlook. Heliyon 2023; 9:e16621. [PMID: 37303544 PMCID: PMC10248112 DOI: 10.1016/j.heliyon.2023.e16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Biomarkers are compounds that could be detected and used as indicators of normal and/or abnormal functioning of different biological systems, including animal tissues and food matrices. Gelatin products of animal origin, mainly bovine and porcine, are currently under scrutiny mainly due to the specific needs of some sectors of the population related to religious beliefs and their dietary prohibitions, as well as some potential health threats associated with these products. Thus, manufacturers are currently in need of a reliable, convenient, and easy procedure to discern and authenticate the origin of animal-based gelatins (bovine, porcine, chicken, or fish). This work aims to review current advances in the creation of reliable gelatin biomarkers for food authentication purposes based on proteomic and DNA biomarkers that could be applied in the food sector. Overall, the presence of specific proteins and peptides in gelatin can be chemically analysed (i.e., by chromatography, mass spectroscopy, electrophoresis, lateral flow devices, and enzyme-linked immunosorbent assay), and different polymerase chain reaction (PCR) methods have been applied for the detection of nucleic acid substances in gelatin. Altogether, despite the fact that numerous methods are currently being developed for the purpose of detecting gelatin biomarkers, their widespread application is highly dependent on the cost of the equipment and reagents as well as the ease of use of the various methods. Combining different methods and approaches targeting multiple biomarkers may be key for manufacturers to achieve reliable authentication of gelatin's origin.
Collapse
|
4
|
Li YQ, Liu ZH, Chen S, Wu YJ, Liang JT, Dang Z, Liu Y. Trace determination of fifteen free amino acids in drinking source water via solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:594-605. [PMID: 35902528 DOI: 10.1007/s11356-022-22133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Amino acids (AAs) are important nitrogen-containing organics in water, and a large number of reports have proven that they were the precursors of many nitrogen-containing disinfection by-products, some of which have cytotoxicity and carcinogenicity. However, little has been done on their occurrence in drinking source water. Therefore, a trace determination method via solid-phase extraction coupled with ultra-high pressure liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for 15 free AAs (FAAs) was developed, which was successfully applied for drinking source water samples. For sample preparation, strong cation-exchange stationary solid-phase extraction (SPE) cartridge showed better extraction performance to that of reverse phase stationary oasis HLB SPE cartridge. The optimal water pH was determined to be 2.8 before extraction. Strong matrix effects for most FAAs were observed in this work; thus, sample extraction with SPE was recommended to eliminate the matrix effects. The developed method showed excellent linearity (R2 > 0.991), low limits of detection (LODs, 0.01-0.27 nmol/L), and good recoveries of 69.8-117.9% in drinking source water with low relative standard deviations (RSDs, 0.3-13.2%). The developed method was finally applied to eight drinking source water samples, and the top five FAAs were found to be serine, glycine, leucine, alanine, and isoleucine.
Collapse
Affiliation(s)
- Ying-Qiang Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China.
| | - Sa Chen
- Zhongshan Public Water Co., Ltd, Zhongshan, 528403, Guangdong, China
| | - Ying-Juan Wu
- Zhongshan Public Water Co., Ltd, Zhongshan, 528403, Guangdong, China
| | - Jing-Tang Liang
- Zhongshan Public Water Co., Ltd, Zhongshan, 528403, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yun Liu
- Ministry of Ecology and Environment of the People's Republic of China, South China Institute of Environmental Sciences, Guangzhou, 510655, China
| |
Collapse
|
5
|
Han S, Zhao K, Cai S, Jiang M, Huang X, Chen S, Li S, Zhao M, Duan JA, Liu R. Discovery of peptide biomarkers by label-free peptidomics for discrimination of horn gelatin and hide gelatin from Cervus nippon Temminck. Food Chem 2021; 363:130347. [PMID: 34147893 DOI: 10.1016/j.foodchem.2021.130347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
Gelatin and gelatin-based derivatives have been attracting worldwide attention as health-food ingredients. Deer horn gelatin (DCG), a well-known and expensive gelatin food in Asia, has suffered adulterants by adding deer-hide gelatin (DHG) in it. However, robust and effective methods which could differentiate DCG from DHG are still unavailable. This study is committed to discover peptide biomarkers to distinguish DCG from DHG using label-free peptidomics by nanoLC-MS/MS. Multivariate statistical analysis combined with glycosylation sites analysis of peptides was applied to visualize the difference between DCG and DHG. As a result, four peptide biomarkers for distinguishing DCG and DHG were confirmed and validated by UPLC-MS/MS and MRM mode, which was also used to calculate adulteration percentage in commercial samples. The presented strategy may be also particularly helpful in the in-depth authentication of food gelatins from different tissues of the same species.
Collapse
Affiliation(s)
- Shuying Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Kexuan Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shuo Cai
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mengtong Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaozheng Huang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Key Laboratory of Research and Development in Marine Bio-resource Pharmaceutics, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shengjun Chen
- Jiangyin Tianjiang Pharmaceutical Co. LTD., Jiangyin 214434, PR China; Key Technology Laboratory for Preparation and Quality Control of Traditional Chinese Medicine Granules in Jiangsu. Jiangyin 214434, PR China
| | - Song Li
- Jiangyin Tianjiang Pharmaceutical Co. LTD., Jiangyin 214434, PR China; Key Technology Laboratory for Preparation and Quality Control of Traditional Chinese Medicine Granules in Jiangsu. Jiangyin 214434, PR China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Rui Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
6
|
Electromembrane extraction of peptides and amino acids - status and perspectives. Bioanalysis 2021; 13:277-289. [PMID: 33543669 DOI: 10.4155/bio-2020-0285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
This article reviews the scientific literature on electromembrane extraction (EME) of peptides and amino acids. In EME, target analytes are extracted from aqueous sample, through a supported liquid membrane (organic) and into a microliter volume of aqueous buffer (acceptor). Experimental conditions and performance for EME of peptides and amino acids are reviewed and discussed in detail, providing readers with an overview and basic understanding of the subject. In addition, this review discuss the potential for future applications, and scientific questions that need to be addressed for EME of peptides and amino acids to be generally accepted. EME is under commercialization, and therefore we expect it will be an active area of research in the near future.
Collapse
|
7
|
Xu W, Zhong C, Zou C, Wang B, Zhang N. Analytical methods for amino acid determination in organisms. Amino Acids 2020; 52:1071-1088. [PMID: 32857227 DOI: 10.1007/s00726-020-02884-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Amino acids are important metabolites for tissue metabolism, growth, maintenance, and repair, which are basic life necessities. Therefore, summarizing analytical methods for amino acid determination in organisms is important. In the past decades, analytical methods for amino acids have developed rapidly but have not been fully explored. Thus, this article provides reference to analytical methods for amino acids in organisms for food and human research. Present amino acid analysis methods include thin-layer chromatography, high-performance liquid chromatography, liquid chromatography-mass spectrometer, gas chromatography-mass spectrometry, capillary electrophoresis, nuclear magnetic resonance, and amino acid analyzer analysis.
Collapse
Affiliation(s)
- Weihua Xu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai, 201203, China
- State Key Laboratory of Drug Research and Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai, 201203, China
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Anhui, 230013, China
| | - Congcong Zhong
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai, 201203, China
| | - Chunpu Zou
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bing Wang
- State Key Laboratory of Drug Research and Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai, 201203, China.
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai, 201203, China.
| |
Collapse
|
8
|
Review on analytical methods for analysis of porcine gelatine in food and pharmaceutical products for halal authentication. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Hansen FA, Kubáň P, Øiestad EL, Pedersen-Bjergaard S. Electromembrane extraction of highly polar bases from biological samples – Deeper insight into bis(2-ethylhexyl) phosphate as ionic carrier. Anal Chim Acta 2020; 1115:23-32. [DOI: 10.1016/j.aca.2020.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/01/2020] [Accepted: 04/10/2020] [Indexed: 01/14/2023]
|
10
|
Aghaei A, Erfani Jazi M, E Mlsna T, Kamyabi MA. A novel method for the preconcentration and determination of ampicillin using electromembrane microextraction followed by high‐performance liquid chromatography. J Sep Sci 2019; 42:3002-3008. [DOI: 10.1002/jssc.201900016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/30/2019] [Accepted: 06/30/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Ali Aghaei
- Department of ChemistryFaculty of ScienceUniversity of Zanjan Zanjan Iran
| | - Mehdi Erfani Jazi
- Department of ChemistryMississippi State University Mississippi MS USA
| | - Todd E Mlsna
- Department of ChemistryMississippi State University Mississippi MS USA
| | | |
Collapse
|
11
|
Wan L, Lin B, Zhu R, Huang C, Pedersen-Bjergaard S, Shen X. Liquid-Phase Microextraction or Electromembrane Extraction? Anal Chem 2019; 91:8267-8273. [DOI: 10.1021/acs.analchem.9b00946] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Libin Wan
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Bin Lin
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Ruiqin Zhu
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| | - Stig Pedersen-Bjergaard
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
- Faculty of Health and Medical Sciences, School of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, Hubei 430030, China
| |
Collapse
|
12
|
Seidi S, Ranjbar MH, Baharfar M, Shanehsaz M, Tajik M. A promising design of microfluidic electromembrane extraction coupled with sensitive colorimetric detection for colorless compounds based on quantum dots fluorescence. Talanta 2019; 194:298-307. [DOI: 10.1016/j.talanta.2018.10.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 11/25/2022]
|
13
|
Abstract
Saliva, as the first body fluid encountering with the exogenous materials, has good correlation with blood and plays an important role in bioanalysis. However, saliva has not been studied as much as the other biological fluids mainly due to restricted access to its large volumes. In recent years, there is a growing interest for saliva analysis owing to the emergence of miniaturized sample preparation methods. The purpose of this paper is to review all microextraction methods and their principles of operation. In the following, we examine the methods used to analyze saliva up to now and discuss the potential of the other microextraction methods for saliva analysis to encourage research groups for more focus on this important subject area.
Collapse
|
14
|
Zarghampour F, Yamini Y, Baharfar M, Faraji M. Simultaneous extraction of acidic and basic drugs via on-chip electromembrane extraction using a single-compartment microfluidic device. Analyst 2019; 144:1159-1166. [DOI: 10.1039/c8an01668b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A chip was designed for simultaneous extraction of acidic and basic drugs from biological fluids.
Collapse
Affiliation(s)
| | - Yadollah Yamini
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Mahroo Baharfar
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Mohammad Faraji
- Faculty of Food Industry and Agriculture
- Department of Food Science & Technology
- Standard Research Institute (SRI)
- Karaj
- Iran
| |
Collapse
|
15
|
Wang S, Deng Y, Liu B, Li X, Lin X, Yuan D, Ma J. High-performance liquid chromatographic determination of 2-aminoethylphosphonic acid and 2-amino-3-phosphonopropionic acid in seawater matrix using precolumn fluorescence derivatization with o-phthalaldehyde-ethanethiol. J Chromatogr A 2018; 1571:147-154. [PMID: 30119975 DOI: 10.1016/j.chroma.2018.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
2-Aminoethylphosphonic acid (2-AEP) and 2-amino-3-phosphonopropionic acid (2-AP3) are two types of abundant and ubiquitous naturally occurring phosphonates used as sources of phosphorus by many prokaryotic lineages. The potential utilization mechanism of 2-AEP and 2-AP3 in eukaryotic phytoplankton is currently under investigation. However, the lack of suitable analytical methods in saline samples are the limitation of such researches. Herein, a high-performance liquid chromatography (HPLC) method for monitoring 2-AEP and 2-AP3 using precolumn fluorescence derivatization with o-phthalaldehyde-ethanethiol (OPA-ET) in seawater matrix was developed. The derivatization procedure and HPLC conditions were carefully examined, which included optimization of the fluorescence excitation and emission wavelengths, the ammonium acetate concentration and pH of the mobile phase, the OPA-ET reagent content and composition and derivatization time. Because increasing salinity was observed to lower the derivatization efficiency, working standards were freshly prepared in artificial seawater with the same salinity as that of the samples for the quantification of 2-AEP and 2-AP3. The developed HPLC method showed a wide linear response with high linearity (R2 > 0.999) and high repeatability at three concentration levels. The relative standard deviation was less than 4.1% for 2-AEP and less than 1.7% for 2-AP3 (n = 7). The limits of detection for 2-AEP and 2-AP3 in artificial seawater matrix were both 12.0 μg/L. The recoveries were 83.0-104% for 2-AEP and 72.6-98.6% for 2-AP3 in different aqueous samples, including algal culture medium prepared with filtered seawater. These results indicated the matrix effect of this method was insignificant.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yao Deng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Baomin Liu
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xiaolin Li
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Dongxing Yuan
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jian Ma
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
16
|
Tabani H, Nojavan S, Alexovič M, Sabo J. Recent developments in green membrane-based extraction techniques for pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2018; 160:244-267. [DOI: 10.1016/j.jpba.2018.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/11/2023]
|
17
|
Drouin N, Rudaz S, Schappler J. New supported liquid membrane for electromembrane extraction of polar basic endogenous metabolites. J Pharm Biomed Anal 2018; 159:53-59. [PMID: 29980019 DOI: 10.1016/j.jpba.2018.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/04/2018] [Accepted: 06/17/2018] [Indexed: 11/18/2022]
Abstract
Extraction of polar endogenous compounds remains an important issue in bioanalysis although different techniques have been evaluated. Among them, electromembrane extraction (EME) is a relevant approach but supported liquid membranes (SLMs) dedicated to polar molecules are still lacking. In this study 22 organic solvents were evaluated as SLMs on a set of 45 polar basic metabolites (log P from -5.7 to 1.5) from various biochemical families. To investigate a large variety of organic solvents, a parallel electromembrane extraction device was used and a constant current approach was applied to circumvent the heterogeneous conductivities of the different SLMs. Among the tested organic solvents, 2-nitrophenyl pentyl ether (NPPE) appeared the most efficient SLM with the extraction of a large variety of polar cationic metabolites, high extraction yields, and low extraction variabilities. The applied current and the composition of the acceptor and donor solutions were also evaluated and 300 μA per well and acetic acid 1% (v/v), both as acceptor and donor compartments, were the most efficient conditions. The new SLM and the optimized experimental parameters were successfully applied to the extraction of precipitated plasma samples. Although the extraction recovery decreased for most compounds in the biological matrix, process efficiency (PE) up to 90% and low extraction variability (RSD between 2 and 18%) were obtained for several very polar compounds such as choline or acetylcholine, emphasizing the potential of EME for polar compounds.
Collapse
Affiliation(s)
- Nicolas Drouin
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Julie Schappler
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
18
|
Electromembrane Extraction Using a Round-Headed Platinum Wire as the Inner Electrode: A Simple and Practical Way to Enhance the Performance of Extraction. Chromatographia 2018. [DOI: 10.1007/s10337-018-3537-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
|
20
|
Sedehi S, Tabani H, Nojavan S. Electro-driven extraction of polar compounds using agarose gel as a new membrane: Determination of amino acids in fruit juice and human plasma samples. Talanta 2018; 179:318-325. [DOI: 10.1016/j.talanta.2017.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022]
|
21
|
Fakhari AR, Mohammadi Kosalar H, Asadi S, Hasheminasab KS. Surfactant-assisted electromembrane extraction combined with cyclodextrin-modified capillary electrophoresis for the separation and quantification of Tranylcypromine enantiomers in biological samples. J Sep Sci 2018; 41:475-482. [DOI: 10.1002/jssc.201700488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Sajad Asadi
- Faculty of Chemistry; Shahid Beheshti University; Tehran Iran
| | - Kobra Sadat Hasheminasab
- Faculty of Chemistry; Shahid Beheshti University; Tehran Iran
- Soil and Water Research Institute; Agricultural Research, Education and Extension Organization (AREEO); Karaj Iran
| |
Collapse
|
22
|
Ali E, Sultana S, Hamid SBA, Hossain M, Yehya WA, Kader A, Bhargava SK. Gelatin controversies in food, pharmaceuticals, and personal care products: Authentication methods, current status, and future challenges. Crit Rev Food Sci Nutr 2017; 58:1495-1511. [PMID: 28033035 DOI: 10.1080/10408398.2016.1264361] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gelatin is a highly purified animal protein of pig, cow, and fish origins and is extensively used in food, pharmaceuticals, and personal care products. However, the acceptability of gelatin products greatly depends on the animal sources of the gelatin. Porcine and bovine gelatins have attractive features but limited acceptance because of religious prohibitions and potential zoonotic threats, whereas fish gelatin is welcomed in all religions and cultures. Thus, source authentication is a must for gelatin products but it is greatly challenging due to the breakdown of both protein and DNA biomarkers in processed gelatins. Therefore, several methods have been proposed for gelatin identification, but a comprehensive and systematic document that includes all of the techniques does not exist. This up-to-date review addresses this research gap and presents, in an accessible format, the major gelatin source authentication techniques, which are primarily nucleic acid and protein based. Instead of presenting these methods in paragraph form which needs much attention in reading, the major methods are schematically depicted, and their comparative features are tabulated. Future technologies are forecasted, and challenges are outlined. Overall, this review paper has the merit to serve as a reference guide for the production and application of gelatin in academia and industry and will act as a platform for the development of improved methods for gelatin authentication.
Collapse
Affiliation(s)
- Eaqub Ali
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia.,b Centre for Research in Biotechnology for Agriculture (CEBAR) , University of Malaya , Kuala Lumpur , Malaysia
| | - Sharmin Sultana
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia
| | - Sharifah Bee Abd Hamid
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia
| | - Motalib Hossain
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia
| | - Wageeh A Yehya
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia
| | - Abdul Kader
- c School of Aquaculture and Fisheries , University of Malaysia Terrenganu , Kuala Terrenganu , Terrenganu , Malaysia
| | - Suresh K Bhargava
- d College of Science, Engineering and Health , RMIT University , Melbourne , VIC , Australia
| |
Collapse
|
23
|
Oliveira AM, Loureiro HC, de Jesus FFS, de Jesus DP. Electromembrane extraction and preconcentration of carbendazim and thiabendazole in water samples before capillary electrophoresis analysis. J Sep Sci 2017; 40:1532-1539. [DOI: 10.1002/jssc.201601305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | - Dosil Pereira de Jesus
- Institute of Chemistry, University of Campinas; UNICAMP; Campinas, SP Brazil
- Instituto Nacional de Ciência e Tecnologia de Bioanalítica; Campinas, SP Brazil
| |
Collapse
|
24
|
Kamyabi MA, Aghaei A. Electromembrane extraction coupled to square wave anodic stripping voltammetry for selective preconcentration and determination of trace levels of As(III) in water samples. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.04.127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
|
26
|
Oedit A, Ramautar R, Hankemeier T, Lindenburg PW. Electroextraction and electromembrane extraction: Advances in hyphenation to analytical techniques. Electrophoresis 2016; 37:1170-86. [PMID: 26864699 PMCID: PMC5071742 DOI: 10.1002/elps.201500530] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/06/2016] [Accepted: 01/31/2016] [Indexed: 12/16/2022]
Abstract
Electroextraction (EE) and electromembrane extraction (EME) are sample preparation techniques that both require an electric field that is applied over a liquid-liquid system, which enables the migration of charged analytes. Furthermore, both techniques are often used to pre-concentrate analytes prior to analysis. In this review an overview is provided of the body of literature spanning April 2012-November 2015 concerning EE and EME, focused on hyphenation to analytical techniques. First, the theoretical aspects of concentration enhancement in EE and EME are discussed to explain extraction recovery and enrichment factor. Next, overviews are provided of the techniques based on their hyphenation to LC, GC, CE, and direct detection. These overviews cover the compounds and matrices, experimental aspects (i.e. donor volume, acceptor volume, extraction time, extraction voltage, and separation time) and the analytical aspects (i.e. limit of detection, enrichment factor, and extraction recovery). Techniques that were either hyphenated online to analytical techniques or show high potential with respect to online hyphenation are highlighted. Finally, the potential future directions of EE and EME are discussed.
Collapse
Affiliation(s)
- Amar Oedit
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Rawi Ramautar
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | - Petrus W Lindenburg
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
27
|
Abstract
Sample preparation is a vital and inseparable part of an analytical procedure. This issue has motivated the analytical research community around the world to develop new, fast and cost-effective extraction methods which can eliminate interfering substances, provide high preconcentration factors and increase the determination sensitivity. Electrical field induced extraction technique is a topic that has received major attention in recent years. This fact can be attributed to the considerable advantages provided by imposition of an electrical driving force especially control of different properties of an extraction system such as selectivity, cleanup, rate and efficiency. In this review, focus is centered on the electrical field induced liquid phase extraction techniques and their potential for bioanalysis.
Collapse
|
28
|
Simultaneous micro-electromembrane extractions of anions and cations using multiple free liquid membranes and acceptor solutions. Anal Chim Acta 2016; 908:113-20. [DOI: 10.1016/j.aca.2016.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/17/2015] [Accepted: 01/02/2016] [Indexed: 11/20/2022]
|
29
|
Shamsayei M, Yamini Y, Rezazadeh M, Asiabi H, Seidi S. Self-assembled benzyl mercaptan monolayer as a coating in electromembrane surrounded solid-phase microextraction of antihistamines in urine and plasma samples. NEW J CHEM 2016. [DOI: 10.1039/c5nj03334a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electromembrane extraction based on a monolayer of benzyl mercaptan on a copper wire was applied to extract naphazoline and antazoline from biological samples.
Collapse
Affiliation(s)
| | | | | | - Hamid Asiabi
- Department of Chemistry
- Tarbiat Modares University
- Tehran
- Iran
| | - Shahram Seidi
- Department of Analytical Chemistry
- Faculty of Chemistry
- K. N. Toosi University of Technology
- Tehran 16315-1355
- Iran
| |
Collapse
|
30
|
Tukiran NA, Ismail A, Mustafa S, Hamid M. Development of antipeptide enzyme-linked immunosorbent assay for determination of gelatin in confectionery products. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nur Azira Tukiran
- Laboratory of Halal Science Research; Halal Products Research Institute; Universiti Putra Malaysia (UPM); 43400 Serdang Selangor Malaysia
- International Institute for Halal Research and Training (INHART); International Islamic University Malaysia (IIUM); P.O. Box 10 50728 Kuala Lumpur Malaysia
| | - Amin Ismail
- Laboratory of Halal Science Research; Halal Products Research Institute; Universiti Putra Malaysia (UPM); 43400 Serdang Selangor Malaysia
- Department of Nutrition and Dietetics; Faculty of Medicine and Health Sciences; Universiti Putra Malaysia (UPM); 43400 Serdang Selangor Malaysia
| | - Shuhaimi Mustafa
- Laboratory of Halal Science Research; Halal Products Research Institute; Universiti Putra Malaysia (UPM); 43400 Serdang Selangor Malaysia
- Department of Microbiology; Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia (UPM); 43400 Serdang Selangor Malaysia
| | - Muhajir Hamid
- Department of Microbiology; Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia (UPM); 43400 Serdang Selangor Malaysia
| |
Collapse
|
31
|
Rapid and sensitive analysis of 27 underivatized free amino acids, dipeptides, and tripeptides in fruits of Siraitia grosvenorii Swingle using HILIC-UHPLC-QTRAP®/MS2 combined with chemometrics methods. Amino Acids 2015; 47:1589-603. [DOI: 10.1007/s00726-015-2002-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
|