1
|
G V, Singh S, Kaul N, Ramamurthy PC, Naik T, Viswanath R, Kumar V, Bhojya Naik HS, A P, H A AK, Singh J, Khan NA. Green synthesis of nickel-doped magnesium ferrite nanoparticles via combustion for facile microwave-assisted optical and photocatalytic applications. ENVIRONMENTAL RESEARCH 2023; 235:116598. [PMID: 37451577 DOI: 10.1016/j.envres.2023.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
NixMg1-xFe2O4(x = 0, 0.2, 0.4, 0.6) nanoparticles were symphonized via combustion with microwave assistance in the presence of Tamarindus indica seeds extract as fuel. Nanoparticles nature, size, morphology, oxidation state, elemental composition, and optical and luminescence properties were analysed using PXRD, FTIR, SEM, EDX, and HRTEM with SAED, XPS, UV-Visible and photoluminescence spectroscopy. PXRD analysis confirms that synthesized nanoparticles are spinel cubic and have a 17-18 nm average crystalline size. Tetrahedral and octahedral sites regarding stretching vibrations were confirmed by FTIR analysis. SEM and HRTEM data it is disclosed that the morphology of synthesized nanoparticles has nano flakes-like structure with sponge-like agglomeration. Elemental compositions of prepared nanoparticles were confirmed through EDX spectroscopy. XPS Spectroscopy confirmed and revealed transition, oxidation states, and elemental composition. The band gap and absorption phenomenon were disclosed using UV-visible spectroscopy, where the band gap declines (2.1, 2, 1.6, 1.8 eV), with increase in nickel NixMg1-xFe2O4(x = 0, 0.2, 0.4, 0.6) doping. Photoluminescence intensity reduces with an incline in nickel doping, was confirmed and disclosed using photoluminescence spectroscopy. Dyes (Methylene blue and Rhodamine B) degradation activity was performed in the presence of NDMF nanoparticles as a photocatalyst, which disclosed that 98.1% of MB dye and 97.9% of RB dye were degraded in 0-120 min. Regarding initial dye concentration and catalyst load, 5 ppm was initiated as the ideal initial concentration for both RB and MB dyes. 50 mg catalyst dosage was found to be most effective for the degradation of MB and RB dyes. In comparison, pH studies revealed that photodegradation efficiency was higher in neutral (MB-98.1%, RB-97.9%) and basic (MB-99.6%, RB-99.3%) conditions than in acidic (MB-61.8%, RB-60.4%) conditions.
Collapse
Affiliation(s)
- Vishnu G
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Karnataka, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Noyonika Kaul
- Sharda University, Knowledge Park 3, Greater Noida, 201310, Uttar Pradesh, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Tssk Naik
- Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - R Viswanath
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Karnataka, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, C.C.R.A.S., Govt. of India, Jhansi, Uttar Pradesh, 284003, India
| | - H S Bhojya Naik
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Karnataka, India.
| | - Prathap A
- Department of P.G. Studies and Research in Industrial Chemistry, Kuvempu University, Jnanasahyadri, Shankaraghatta, 577451, Karnataka, India
| | - Anil Kumara H A
- Department of P.G. Studies and Research in Chemistry, Sahyadri Science College, Kuvempu University, Shimoga, 577203, Karnataka, India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
2
|
Khatoon A, Khand NH, Mallah A, Solangi AR, Memon SQ, Memon AF, Karaman C, Karimi F, Karaman O. A Fast and Reliable Electrophoretic Method for Size-Based Characterization of Silver Nanoparticles. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amna Khatoon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080Jamshoro, Pakistan
| | - Nadir H. Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080Jamshoro, Pakistan
| | - Arfana Mallah
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491Trondheim, Norway
- M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro76080, Sindh, Pakistan
| | - Amber R. Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080Jamshoro, Pakistan
| | - Saima Q. Memon
- M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro76080, Sindh, Pakistan
| | - Almas F. Memon
- Department of Chemistry, Government College University, Hyderabad, Sindh71000, Pakistan
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya07070, Turkey
- School of Engineering, Lebanese American University, Byblos1102 2801, Lebanon
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan9477177870, Iran
| | - Onur Karaman
- Department of Medical Imaging Techniques, Akdeniz University, Antalya07070, Turkey
| |
Collapse
|
3
|
CUI J, LIU L, LI D, PIAO X. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales]. Se Pu 2021; 39:1157-1170. [PMID: 34677011 PMCID: PMC9404220 DOI: 10.3724/sp.j.1123.2020.12032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 11/25/2022] Open
Abstract
The micro/nanoscales concerns interactions of entities with sizes in the range of 0.1-100 μm, such as biological cells, proteins, and particles. The separation of micro/nanoscales has been of immense significance for drug development, early-stage cancer detection, and customized precision therapy. For example, in recent years, rapid advances in the field of cell therapy have necessitated the development of simple and effective cell separation techniques. The isolation technique allows the collection of the required stem cells from complex samples. With the development of materials science and precision medicine, the separation of particles is also critical. The key physicochemical properties of micro/nanoscales are highly dependent on their specific size, shape, functional group, and mobility (based on the charged characteristics), which control their performance in the separation system. The current demand has made the simultaneous innovation of a separation system and an on-line detection platform imperative. Accordingly, various analytical methods involving the use of external forces, such as the flow field, magnetic field, electric field, and acoustic field, have been used for micro/nanoscales separation. Based on the physical and chemical parameters of the separation materials, these analytical methods can select different external force fields for micro/nanoscales separation, enabling real-time, accurate, efficient, and selective separation. However, at present, most of the applied field separation technologies require complex equipment and a large sample amount. This makes it crucial to miniaturize and integrate separation technologies for low-cost, rapid, and accurate micro/nanoscales separation. Microfluidic technology is a representative micro/nanoscales separation technology. It requires only a small volume of liquid, making it cost-effective; its high throughput enables continuous separation and analysis; its fast response in a microchip can allow many reactions; and finally, the miniaturization of the device allows the coupling of multiple detectors with the microchip. With the continuous growth and progress of microfluidic technology, some microfluidic platforms are now able to achieve the non-destructive separation of cells. They also enable on-line detection, offer high separation efficiency, and allow rapid separation for different biological samples. This review primarily summarizes recent advances in microfluidic chips based on flow field, electric field, magnetic field, acoustic field, and field separation technologies to improve the micro/nanoscales separation efficiency. This review also discusses the various external force fields of micro/nanoscales, such as a microparticle, single cell separation of substances classified introduction, and summarizes the advantages and disadvantages of their application and development. Finally, the prospect of the combined application of external field separation technology and microfluidic technology in the early screening of cancer cells and for precise micro/nanoscales separation is discussed, and the advantages and potential applications of the combined technology are proposed.
Collapse
|
4
|
Hong T, Zheng R, Qiu L, Zhou S, Chao H, Li Y, Rui W, Cui P, Ni X, Tan S, Jiang P, Wang J. Fluorescence coupled capillary electrophoresis as a strategy for tetrahedron DNA analysis. Talanta 2021; 228:122225. [PMID: 33773730 DOI: 10.1016/j.talanta.2021.122225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/10/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
A strategy based on fluorescence coupled capillary electrophoresis (CE-FL) was developed for analyzing tetrahedron DNA (TD) and TD-doxorubicin (DOX) conjugate. Capillary gel electrophoresis exhibited desirable performance for separating TD and DNA strands. Under the optimized conditions, satisfactory repeatability concerning run-to-run and interday repeatability was obtained, and relative standard deviation value of resolution (n = 6) was 0.64%. Furthermore, the combination of CE and fluorescence detection provided a sensitive platform for quantifying TD concentration and calculating the damage degree of TD. The electrophoretograms indicated that CE-FL was a suitable TD assay method with high specificity and sensitivity. In addition, the application of CE-FL for TD fluorescence resonance energy transfer (FRET) research was also explored. Two types of DNA strands were utilized to interfere the formation of TD. The impact of partially complementary chain and completely complementary chain on FRET signal was explored, and the influence mechanism was discussed. After applying CE-FL for characterizing TD, we also combine CE and FRET to analyze TD-DOX conjugate. CE presented a favourable technique to monitor DOX loading and releasing processes. These noteworthy results offered a stepping stone for DNA nanomaterials assay by using CE-FL.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Ronghui Zheng
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Hufei Chao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Ying Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wen Rui
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Xinye Ni
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, PR China.
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China; Jiangsu Dawning Pharmaceutical Co., Ltd., Changzhou, Jiangsu, 213100, China.
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China; Changzhou Le Sun Pharmaceuticals Co., Ltd., Changzhou, Jiangsu, 213125, China; Jiangsu Yue Zhi Biopharmaceutical Co., Ltd., Changzhou, Jiangsu, 213125, China.
| |
Collapse
|
5
|
Oszwałdowski S. Capillary electrophoresis study on evolution of phase of mixed micelles. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Adelantado C, Zougagh M, Ríos Á. Contributions of Capillary Electrophoresis in Analytical Nanometrology: A Critical View. Crit Rev Anal Chem 2021; 52:1094-1111. [PMID: 33427485 DOI: 10.1080/10408347.2020.1859983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An overview on the increasing role of capillary electrophoresis in characterization and direct analysis of nanomaterials is herein presented. The niche of electrophoretic approaches in nanometrology is so relevant that nonmetallic, metal, metal oxide nanoparticles, and quantum dots have been analyzed to be targeted via capillary electrophoresis with conventional detection systems or coupling arrangements aimed at increasing selectivity and sensitivity toward either pristine or conjugated nanoparticles. Moreover, parameters altering intrinsic properties of nanoparticles may be optimized to gather the desired results and identify nanomaterials according to their size, shape, or associations with binding agents. The usefulness and quickness of capillary electrophoresis for quantifying or screening ultrasmall-sized particles enables this technique to set an example for analysis of standards or previously synthesized nanostructures in research or routine laboratories. Abundant evidence of the suitability of electrophoretic approaches for characterization and direct determination of nanomaterials in actual samples has been provided in this review, together with a discussion about hyphenation with state-of-the art detectors and comparison between capillary electrophoresis with other separation approaches. This permits scientific community to be optimistic in the short term.
Collapse
Affiliation(s)
- Carlos Adelantado
- Department of Analytical Chemistry and Food Technology, Faculty of Science and chemical Technologies, University of Castilla-La Mancha, Ciudad Real, Spain.,Regional Institute for Applied Scientific Research, IRICA, Ciudad Real, Spain
| | - Mohammed Zougagh
- Regional Institute for Applied Scientific Research, IRICA, Ciudad Real, Spain.,Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Albacete, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Science and chemical Technologies, University of Castilla-La Mancha, Ciudad Real, Spain.,Regional Institute for Applied Scientific Research, IRICA, Ciudad Real, Spain
| |
Collapse
|
7
|
Dzherayan TG, Ermolin MS, Vanifatova NG. Effectiveness of the Simultaneous Application of Capillary Zone Electrophoresis and Static Light Scattering in the Study of Volcanic Ash Nano- and Submicroparticles. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Kartsova L, Makeeva D, Davankov V. Nano-sized polymer and polymer-coated particles in electrokinetic separations. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Oszwałdowski S. Capillary electrophoresis study on segment/segment system and its role in characterization of nanoparticles. J Chromatogr A 2019; 1601:365-374. [DOI: 10.1016/j.chroma.2019.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 05/26/2019] [Indexed: 12/22/2022]
|
10
|
Capillary electrophoresis with dual detection UV/C 4D for monitoring myrosinase-mediated hydrolysis of thiol glucosinolate designed for gold nanoparticle conjugation. Anal Chim Acta 2019; 1085:117-125. [PMID: 31522725 DOI: 10.1016/j.aca.2019.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 12/23/2022]
Abstract
Capillary electrophoresis (CE) with dual UV and conductivity detection was used for the first time to monitor the functionalization of gold nanoparticles (AuNPs), a process catalyzed by an enzyme, myrosinase (Myr). A thiol glucosinolate (GL-SH) designed by our group was used as substrate. Hydrolysis of free and immobilized GL-SH was characterized using off-line and on-line CE-based enzymatic assays. The developed approaches were validated using sinigrin, a well-referenced substrate of Myr. Michaelis-Menten constant of the synthetized GL-SH was comparable to sinigrin, showing that they both have similar affinity towards Myr. It was demonstrated that transverse diffusion of laminar flow profiles was well adapted for in-capillary Mixing of nanoparticles (AuNPs) with proteins (Myr) provided that the incubation time is inferior to 20 min. Only low reaction volume (nL to few μL) and short analysis time (<5 min) were required. The electrophoretic conditions were optimized in order to evaluate and to confirm the AuNPs stability before and after functionalization by CE/UV based on surface plasmon resonance band red-shifting. The hydrolysis of the functionalized AuNPs was subsequently evaluated using the developed CE-C4D/UV approach. Repeatabilities of enzymatic assays, of electrophoretic analyses and of batch-to-batch functionalized AuNPs were excellent.
Collapse
|
11
|
Feng J, Cao X, Pan Q, He Y. Direct observation of single plasmonic metal nanoparticle reaction in microcolumn with chromatic‐aberration‐free LASER light‐sheet scattering imaging. Electrophoresis 2019; 40:2227-2234. [DOI: 10.1002/elps.201900071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jingjing Feng
- Department of chemistry Tsinghua University Beijing P. R. China
| | - Xuan Cao
- College of pharmacy, Institute of pharmacy and pharmacology University of South China Hengyang Hunan P. R. China
| | - Qi Pan
- Department of chemistry Tsinghua University Beijing P. R. China
| | - Yan He
- Department of chemistry Tsinghua University Beijing P. R. China
| |
Collapse
|
12
|
Dziomba S, Ciura K, Dawid M. The on-line preconcentration of nanoparticles in electromigration techniques. J Chromatogr A 2019; 1606:360332. [PMID: 31262513 DOI: 10.1016/j.chroma.2019.06.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Electromigration techniques have recently emerged as an alternative analytical tool for nanoparticles characterization. Due to the high throughput capability and separation efficiency their application for detection/quantification of nanomaterials in samples of various origin has attracted much attention. While the electromigration techniques are known to suffer from insufficient detection sensitivity, a number of papers investigating on-line preconcentration of nanoparticles in capillary electrophoresis was addressed to the issue. In this work the available literature on nanoparticles stacking in electrodriven separation techniques was reviewed. The discussion was supported by theoretical background. A special emphasis was put on the stability of nanoparticles dispersion during electrophoretic process. The considerations on future perspectives were included in final remarks.
Collapse
Affiliation(s)
- Szymon Dziomba
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 107 Hallera Street, 80-416 Gdansk, Poland.
| | - Krzesimir Ciura
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdansk, 107 Hallera Street, 80-416 Gdansk, Poland
| | - Marta Dawid
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 107 Hallera Street, 80-416 Gdansk, Poland
| |
Collapse
|
13
|
López-Sanz S, Guzmán Bernardo FJ, Rodríguez Martín-Doimeadios RC, Ríos Á. Analytical metrology for nanomaterials: Present achievements and future challenges. Anal Chim Acta 2019; 1059:1-15. [DOI: 10.1016/j.aca.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 02/01/2023]
|
14
|
Kitte SA, Fereja TH, Halawa MI, Lou B, Li H, Xu G. Recent advances in nanomaterial-based capillary electrophoresis. Electrophoresis 2019; 40:2050-2057. [PMID: 31062878 DOI: 10.1002/elps.201800534] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023]
Abstract
This review gives a summary of applications of different nanomateials, such as gold nanoparticles (AuNPs), carbon-based nanoparticles, magnetic nanoparticles (MNPs), and nano-sized metal organic frameworks (MOFs), in electrophoretic separations. This review also emphasizes the recent works in which nanoparticles (NPs) are used as pseudostationary phase (PSP) or immobilized on the capillary surface for enhancement of separation in CE, CEC, and microchips electrophoresis.
Collapse
Affiliation(s)
- Shimeles Addisu Kitte
- Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Mohamed Ibrahim Halawa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Mansoura, 35516, Mansoura, Egypt
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Science and Technology of China, Anhui, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Mansoura, 35516, Mansoura, Egypt
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,University of Science and Technology of China, Anhui, P. R. China
| |
Collapse
|
15
|
Wan T, Tang F, Yin Y, Zhang M, Choi MMF, Yang X. Size‐dependent electrophoretic migration and separation of water‐soluble gold nanoclusters by capillary electrophoresis. Electrophoresis 2019; 40:1345-1352. [PMID: 30680763 DOI: 10.1002/elps.201800347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/29/2018] [Accepted: 01/21/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Ting Wan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| | - Fenglin Tang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| | - Yanru Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| | - Maoxue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| | - Martin M. F. Choi
- Department of ChemistryHong Kong Baptist University Hong Kong SAR P. R. China
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical EngineeringChina West Normal University Nanchong P. R. China
| |
Collapse
|
16
|
|
17
|
Dziomba S, Ciura K, Kocialkowska P, Prahl A, Wielgomas B. Gold nanoparticles dispersion stability under dynamic coating conditions in capillary zone electrophoresis. J Chromatogr A 2018; 1550:63-67. [DOI: 10.1016/j.chroma.2018.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 03/18/2018] [Indexed: 11/24/2022]
|
18
|
Chetwynd AJ, Guggenheim EJ, Briffa SM, Thorn JA, Lynch I, Valsami-Jones E. Current Application of Capillary Electrophoresis in Nanomaterial Characterisation and Its Potential to Characterise the Protein and Small Molecule Corona. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E99. [PMID: 29439415 PMCID: PMC5853730 DOI: 10.3390/nano8020099] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
Due to the increasing use and production of nanomaterials (NMs), the ability to characterise their physical/chemical properties quickly and reliably has never been so important. Proper characterisation allows a thorough understanding of the material and its stability, and is critical to establishing dose-response curves to ascertain risks to human and environmental health. Traditionally, methods such as Transmission Electron Microscopy (TEM), Field Flow Fractionation (FFF) and Dynamic Light Scattering (DLS) have been favoured for size characterisation, due to their wide-availability and well-established protocols. Capillary Electrophoresis (CE) offers a faster and more cost-effective solution for complex dispersions including polydisperse or non-spherical NMs. CE has been used to rapidly separate NMs of varying sizes, shapes, surface modifications and compositions. This review will discuss the literature surrounding the CE separation techniques, detection and NM characteristics used for the analysis of a wide range of NMs. The potential of combining CE with mass spectrometry (CE-MS) will also be explored to further expand the characterisation of NMs, including the layer of biomolecules adsorbed to the surface of NMs in biological or environmental compartments, termed the acquired biomolecule corona. CE offers the opportunity to uncover new/poorly characterised low abundance and polar protein classes due to the high ionisation efficiency of CE-MS. Furthermore, the possibility of using CE-MS to characterise the poorly researched small molecule interactions within the NM corona is discussed.
Collapse
Affiliation(s)
- Andrew J. Chetwynd
- AB Sciex UK Ltd., Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, UK;
| | - Emily J. Guggenheim
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - Sophie M. Briffa
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - James A. Thorn
- AB Sciex UK Ltd., Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, UK;
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| | - Eugenia Valsami-Jones
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.J.G.); (S.M.B.); (E.V.-J.)
| |
Collapse
|
19
|
González-Curbelo MÁ, Varela-Martínez DA, Socas-Rodríguez B, Hernández-Borges J. Recent applications of nanomaterials in capillary electrophoresis. Electrophoresis 2017; 38:2431-2446. [DOI: 10.1002/elps.201700178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/09/2017] [Accepted: 06/26/2017] [Indexed: 12/29/2022]
Affiliation(s)
| | - Diana Angélica Varela-Martínez
- Departamento de Ciencias Básicas, Facultad de Ingeniería; Universidad EAN; Bogotá D.C. Colombia
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias; Universidad de La Laguna (ULL); San Cristóbal de La Laguna España
| | - Bárbara Socas-Rodríguez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias; Universidad de La Laguna (ULL); San Cristóbal de La Laguna España
| | - Javier Hernández-Borges
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias; Universidad de La Laguna (ULL); San Cristóbal de La Laguna España
| |
Collapse
|
20
|
Adam V, Vaculovicova M. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials. Electrophoresis 2017; 38:2389-2404. [DOI: 10.1002/elps.201700097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
21
|
Liu Y, Hu J, Li Y, Shang YT, Wang JQ, Zhang Y, Wang ZL. Microwave assisted synthesis of metal-organic framework MIL-101 nanocrystals as sorbent and pseudostationary phase in capillary electrophoresis for the separation of anthraquinones in environmental water samples. Electrophoresis 2017; 38:2521-2529. [PMID: 28719053 DOI: 10.1002/elps.201700116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 11/07/2022]
Abstract
In this work, a CE method was developed to separate five anthraquinones: aloe-emodin, rhein, emodin, chrysophanol, and physcion. The CE method used a nano-sized metal organic framework MIL-101 (nMIL-101) as pseudostationary phase (PSP) and sorbent for dispersed particle extraction (DPE). The nMIL-101 was synthesized by microwave technique and was characterized by UV-vis, TEM, Zeta potential, X-ray diffraction spectrometry and micropore physisorption. In this method, anthraquinones were adsorbed by nMIL-101 of a fast kinetics within 10 min and then separated by CE. The CE conditions were optimized considering time, pH, buffer ionic strength, and nanoparticles concentration. The optimal CE condition is using 20 mM sodium borate buffer (pH 9.1) containing 15% methanol (v/v) and 400 mg/L nMIL-101 as additives within 8 min. The LODs varied from 24 to 57 μg/L, which were lower than those previously reported. Our method has been successfully applied to determine trace anthraquinones in environmental water samples.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, P. R. China
| | - Jia Hu
- State Power Economic Research Institute, Beijing, P. R. China
| | - Yan Li
- Department of Chemistry, Nankai University, Tianjin, P. R. China
| | - Yun-Tao Shang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, P. R. China
| | - Jia-Qi Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, P. R. China
| | - Ye Zhang
- Tianjin Textile Fibre Inspection Institute, Tianjin, P. R. China
| | - Zhong-Liang Wang
- Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, P. R. China
| |
Collapse
|
22
|
Aleksenko SS, Matczuk M, Timerbaev AR. Characterization of interactions of metal-containing nanoparticles with biomolecules by CE: An update (2012-2016). Electrophoresis 2017; 38:1661-1668. [DOI: 10.1002/elps.201700132] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Svetlana S. Aleksenko
- Institute of Nanostructures and Biosystems; Saratov State University; Russian Federation
| | - Magdalena Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry; Warsaw University of Technology; Warsaw Poland
| | - Andrei R. Timerbaev
- Chair of Analytical Chemistry, Faculty of Chemistry; Warsaw University of Technology; Warsaw Poland
- Vernadsky Institute of Geochemistry and Analytical Chemistry; Moscow Russian Federation
| |
Collapse
|
23
|
Guihen E. Recent highlights in electro-driven separations- selected applications of alkylthiol gold nanoparticles in capillary electrophoresis and capillary electro-chromatography. Electrophoresis 2017; 38:2184-2192. [DOI: 10.1002/elps.201600564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Elizabeth Guihen
- Graduate Entry Medical School (GEMS) and the Materials and Surface Science Institute (MSSI); Faculty of Education and Health Sciences; University of Limerick; Ireland
| |
Collapse
|
24
|
Ciriello R, Iallorenzi PT, Laurita A, Guerrieri A. Improved separation and size characterization of gold nanoparticles through a novel capillary zone electrophoresis method using poly(sodium4-styrenesulfonate) as stabiliser and a stepwise field strength gradient. Electrophoresis 2017; 38:922-929. [DOI: 10.1002/elps.201600478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Rosanna Ciriello
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | | | - Alessandro Laurita
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - Antonio Guerrieri
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| |
Collapse
|
25
|
Salafi T, Zeming KK, Zhang Y. Advancements in microfluidics for nanoparticle separation. LAB ON A CHIP 2016; 17:11-33. [PMID: 27830852 DOI: 10.1039/c6lc01045h] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanoparticles have been widely implemented for healthcare and nanoscience industrial applications. Thus, efficient and effective nanoparticle separation methods are essential for advancement in these fields. However, current technologies for separation, such as ultracentrifugation, electrophoresis, filtration, chromatography, and selective precipitation, are not continuous and require multiple preparation steps and a minimum sample volume. Microfluidics has offered a relatively simple, low-cost, and continuous particle separation approach, and has been well-established for micron-sized particle sorting. Here, we review the recent advances in nanoparticle separation using microfluidic devices, focusing on its techniques, its advantages over conventional methods, and its potential applications, as well as foreseeable challenges in the separation of synthetic nanoparticles and biological molecules, especially DNA, proteins, viruses, and exosomes.
Collapse
Affiliation(s)
- Thoriq Salafi
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), National University of Singapore, 05-01 28 Medical Drive, 117456 Singapore. and Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| | - Kerwin Kwek Zeming
- Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), National University of Singapore, 05-01 28 Medical Drive, 117456 Singapore. and Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, Block EA #03-12, 117576 Singapore
| |
Collapse
|
26
|
Characterization of phthalocyanine functionalized quantum dots by dynamic light scattering, laser Doppler, and capillary electrophoresis. Anal Bioanal Chem 2016; 409:1707-1715. [DOI: 10.1007/s00216-016-0120-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/20/2016] [Accepted: 11/25/2016] [Indexed: 12/25/2022]
|
27
|
Mikšík I. Capillary electrochromatography of proteins and peptides (2006-2015). J Sep Sci 2016; 40:251-271. [DOI: 10.1002/jssc.201600908] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/01/2016] [Accepted: 10/01/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Ivan Mikšík
- Institute of Physiology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|
28
|
García-Carmona L, Martín A, Sierra T, González MC, Escarpa A. Electrochemical detectors based on carbon and metallic nanostructures in capillary and microchip electrophoresis. Electrophoresis 2016; 38:80-94. [DOI: 10.1002/elps.201600232] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Laura García-Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Aida Martín
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Tania Sierra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - María Cristina González
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcalá; Madrid Spain
| |
Collapse
|
29
|
Pallotta A, Boudier A, Leroy P, Clarot I. Characterization and stability of gold nanoparticles depending on their surface chemistry: Contribution of capillary zone electrophoresis to a quality control. J Chromatogr A 2016; 1461:179-84. [DOI: 10.1016/j.chroma.2016.07.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022]
|
30
|
Mebert AM, Tuttolomondo MV, Echazú MIA, Foglia ML, Alvarez GS, Vescina MC, Santo‐Orihuela PL, Desimone MF. Nanoparticles and capillary electrophoresis: A marriage with environmental impact. Electrophoresis 2016; 37:2196-207. [DOI: 10.1002/elps.201600132] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Andrea Mathilde Mebert
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- IQUIMEFA‐CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Victoria Tuttolomondo
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- IQUIMEFA‐CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Inés Alvarez Echazú
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- IQUIMEFA‐CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Lucia Foglia
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- IQUIMEFA‐CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Gisela Solange Alvarez
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- IQUIMEFA‐CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - María Cristina Vescina
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
| | - Pablo Luis Santo‐Orihuela
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- Centro de Investigaciones en Plagas e Insecticidas (CIPEIN)Instituto de Investigaciones Científicas y Técnicas para la Defensa CITEDEF/UNIDEF Consejo Nacional de Investigaciones Científicas y Técnicas Buenos Aires Argentina
| | - Martín Federico Desimone
- Facultad de Farmacia y BioquimicaUniversidad de Buenos Aires Ciudad Autónoma de Buenos Aires Argentina
- IQUIMEFA‐CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
31
|
Oszwałdowski S, Kubáň P. Capillary electrophoresis study on segment/segment system for segments based on phase of mixed micelles and its role in transport of particles between the two segments. J Chromatogr A 2015; 1412:139-50. [DOI: 10.1016/j.chroma.2015.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022]
|