1
|
Paesa M, Alejo T, Garcia-Alvarez F, Arruebo M, Mendoza G. New insights in osteoarthritis diagnosis and treatment: Nano-strategies for an improved disease management. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1844. [PMID: 35965293 DOI: 10.1002/wnan.1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/02/2022] [Accepted: 07/12/2022] [Indexed: 11/07/2022]
Abstract
Osteoarthritis (OA) is a common chronic joint pathology that has become a predominant cause of disability worldwide. Even though the origin and evolution of OA rely on different factors that are not yet elucidated nor understood, the development of novel strategies to treat OA has emerged in the last years. Cartilage degradation is the main hallmark of the pathology though alterations in bone and synovial inflammation, among other comorbidities, are also involved during OA progression. From a molecular point of view, a vast amount of signaling pathways are implicated in the progression of the disease, opening up a wide plethora of targets to attenuate or even halt OA. The main purpose of this review is to shed light on the recent strategies published based on nanotechnology for the early diagnosis of the disease as well as the most promising nano-enabling therapeutic approaches validated in preclinical models. To address the clinical issue, the key pathways involved in OA initiation and progression are described as the main potential targets for OA prevention and early treatment. Furthermore, an overview of current therapeutic strategies is depicted. Finally, to solve the drawbacks of current treatments, nanobiomedicine has shown demonstrated benefits when using drug delivery systems compared with the administration of the equivalent doses of the free drugs and the potential of disease-modifying OA drugs when using nanosystems. We anticipate that the development of smart and specific bioresponsive and biocompatible nanosystems will provide a solid and promising basis for effective OA early diagnosis and treatment. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement.
Collapse
Affiliation(s)
- Monica Paesa
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
| | - Teresa Alejo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
| | - Felicito Garcia-Alvarez
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Hospital Clínico Universitario Lozano Blesa, Department of Orthopedic Surgery & Traumatology, University of Zaragoza, Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering, Aragon Institute of Nanoscience (INA), University of Zaragoza, Aragón Materials Science Institute, ICMA, Zaragoza, Spain
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| | - Gracia Mendoza
- Health Research Institute Aragon (IIS Aragon), Zaragoza, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| |
Collapse
|
2
|
Application and Perspectives of MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 2021; 9:microorganisms9071539. [PMID: 34361974 PMCID: PMC8307939 DOI: 10.3390/microorganisms9071539] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of severe infections requires of a rapid and reliable diagnosis to initiate appropriate treatment, while avoiding unnecessary antimicrobial use and reducing associated morbidities and healthcare costs. It is a fact that conventional methods usually require more than 24–48 h to culture and profile bacterial species. Mass spectrometry (MS) is an analytical technique that has emerged as a powerful tool in clinical microbiology for identifying peptides and proteins, which makes it a promising tool for microbial identification. Matrix assisted laser desorption ionization–time of flight MS (MALDI–TOF MS) offers a cost- and time-effective alternative to conventional methods, such as bacterial culture and even 16S rRNA gene sequencing, for identifying viruses, bacteria and fungi and detecting virulence factors and mechanisms of resistance. This review provides an overview of the potential applications and perspectives of MS in clinical microbiology laboratories and proposes its use as a first-line method for microbial identification and diagnosis.
Collapse
|
3
|
Abstract
Nanomedicine is an interdisciplinary field of research, comprising science, engineering, and medicine. Many are the clinical applications of nanomedicine, such as molecular imaging, medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, many efforts must be done to understand the complex behavior of nanoparticles (NPs) under physiological conditions, the kinetic and thermodynamic principles, involved in the rational design of NP. Once administrated in physiological environment, NPs interact with biomolecules and they are surrounded by protein corona (PC) or biocorona. PC can trigger an immune response, affecting NPs toxicity and targeting capacity. This review aims to provide a detailed description of biocorona and of parameters that are able to control PC formation and composition. Indeed, the review provides an overview about the role of PC in the modulation of both cytotoxicity and immune response as well as in the control of targeting capacity.
Collapse
Affiliation(s)
- Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
4
|
Famta P, Famta M, Kaur J, Khursheed R, Kaur A, Khatik GL, Pawde DM, Rahman SNR, Shunmugaperumal T. Protecting the Normal Physiological Functions of Articular and Periarticular Structures by Aurum Nanoparticle-Based Formulations: an Up-to-Date Insight. AAPS PharmSciTech 2020; 21:95. [PMID: 32096106 DOI: 10.1208/s12249-020-1636-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/05/2020] [Indexed: 12/25/2022] Open
Abstract
Taking the articular and periarticular structures as a litmus test for gold-based nanoformulations, the potential of gold nanoparticles in protecting the normal physiological functions of these structures particularly in geriatric patients is one of the research areas of current interest. Aside from its use to make the traditional and fashionable ornaments for human usage, the gold metal is also known for its rich therapeutic activity. This is especially true when the gold is converted from its bulk form into nanosized form before its administering into the human body. Since it is the age of nanocomponents in medical and pharmaceutical research areas, this review is therefore mainly focused on nanoparticulate systems consisting of aurum. Accumulating research reports nevertheless show concrete evidence indicating the potential of gold-based nanoformulations to manage joint syndromes such as osteoarthritis and rheumatoid arthritis. This review embarks from preparation techniques and characterization methods to therapeutical application potentials of gold-based nanoformulations.
Collapse
|
5
|
Potential clinical applications of the personalized, disease-specific protein corona on nanoparticles. Clin Chim Acta 2019; 501:102-111. [PMID: 31678275 DOI: 10.1016/j.cca.2019.10.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Nanoscale objects lose their original identity once in contact with biological fluids and get a new biological identity, referred to as a protein corona (PC). The PC modifies many of the physicochemical properties of nanoparticles (NPs), including surface charge, size, and aggregation state. These changes, in turn, affect the biological fate of NPs, including their biodistribution, pharmacokinetics, and therapeutic efficacy. It is well known that even small differences in the composition of a protein source (e.g., plasma and serum) can considerably change the composition of the corona formed on the surface of the same NPs. Recently, it has been shown that the PC is intensely affected by the patient's specific disease. Consequently, the same nanomaterial incubated with proteins of biological fluids belonging to patients with different pathologies adsorbs protein coronas with different compositions, giving rise to the concept of the personalized protein corona (PPC). Herein, we review recent advances on the topic of PPC, with a particular focus on their clinical significance.
Collapse
|
6
|
Watt FE. Osteoarthritis biomarkers: year in review. Osteoarthritis Cartilage 2018; 26:312-318. [PMID: 29107060 DOI: 10.1016/j.joca.2017.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To summarise important findings from biomarker studies relevant to osteoarthritis (OA), published between April 2016 and March 2017; to consider these findings in the context of new discoveries and technologies, and clinical and scientific need in OA. DESIGN Studies were selected by PubMed search, conducted between 01/04/2016 and 01/03/2017. MeSH terms [biomarker] AND [OA] were used; the search was restricted to Human, English language and Full Text Available publications, which yielded 50 eligible publications. Any biomarker was considered, including non-proteins and other clinical measurements. RESULTS Three main areas are overviewed: 1) Studies examining highly validated biomarkers, in the FNIH OA Biomarkers Consortium and elsewhere, particularly their ongoing application and validation. Control reference intervals, work on predictive validity and other longitudinal studies examining prognostic value of biomarkers in large cohorts are reviewed. 2) Novel studies relating to biomarkers of inflammation are discussed, including complement, the performance of markers of so-called 'cold inflammation' and results from clinical trials including biomarkers. 3) Discovery studies, including whole blood RNA, proteomics and metabolomics are reviewed, with an emphasis on new technologies. CONCLUSIONS Discovery, characterisation and qualification of various biomarkers is ongoing; several novel protein and non-protein candidate biomarkers have been reported this year. Biomarkers provide us with an opportunity to better diagnose and stratify the disease, via established panels or new discovery approaches. Improving quality of sampling and testing, and measuring large numbers of markers simultaneously in large cohorts would seem likely to identify new clinically applicable biomarkers, which are still much needed in this disease.
Collapse
Affiliation(s)
- F E Watt
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7FY, United Kingdom.
| |
Collapse
|
7
|
Jorge S, Araújo J, Pimentel-Santos F, Branco JC, Santos HM, Lodeiro C, Capelo J. Unparalleled sample treatment throughput for proteomics workflows relying on ultrasonic energy. Talanta 2018; 178:1067-1076. [DOI: 10.1016/j.talanta.2017.07.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
8
|
Fernández-Lodeiro J, Rodríguez-González B, Santos HM, Bertolo E, Capelo JL, Dos Santos AA, Lodeiro C. Unraveling the Organotellurium Chemistry Applied to the Synthesis of Gold Nanomaterials. ACS OMEGA 2016; 1:1314-1325. [PMID: 31457198 PMCID: PMC6640781 DOI: 10.1021/acsomega.6b00309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/05/2016] [Indexed: 06/10/2023]
Abstract
Long-term preservation of the properties of gold nanoparticles in both solution and the dry powder form can be difficult. We have overcome this challenge by using organotellurium derivatives as both reducing agents and stabilizers in the synthesis of gold nanoparticles. This new synthetic protocol takes advantage of the photochemical and oxidative properties of diphenyl ditelluride (Ph2Te2), which, so far, have never been exploited in the synthesis of gold nanoparticles. The Au/Te core/shell (inorganic/organic) hybrid nanomaterial can be obtained in a one-step reaction, using only Ph2Te2 and HAuCl4. By modifying the reaction conditions, different resonance conditions of the gold core are achieved due to the formation of external shells with different thicknesses. The organotellurium shell can be easily removed by resuspension of the nanoparticles in environmentally friendly solvents, such as water or ethanol, making the Au core available for subsequent applications. A mechanism for the formation of core/shell nanoparticles has also been discussed.
Collapse
Affiliation(s)
- Javier Fernández-Lodeiro
- BIOSCOPE
Group, UCIBIO@REQUIMTE, Chemistry Department, Faculty of Science and
Technology, University NOVA of Lisbon, Caparica 2829-516, Portugal
- ProteoMass
Scientific Society, Faculty of
Science and Technology, Madan Parque, Building VI, Office 23, Campus de Caparica, Caparica 2829-516, Portugal
- Instituto
de Química, Universidade de São
Paulo, Av. Prof. Lineu
Prestes, 748, CxP.26077, São Paulo 05508-000, Brazil
| | - Benito Rodríguez-González
- Scientific
and Technological Research Assistance Centre (CACTI), University of
Vigo, Lagoas-Marcosende, Vigo 36310, Spain
| | - Hugo M. Santos
- BIOSCOPE
Group, UCIBIO@REQUIMTE, Chemistry Department, Faculty of Science and
Technology, University NOVA of Lisbon, Caparica 2829-516, Portugal
- ProteoMass
Scientific Society, Faculty of
Science and Technology, Madan Parque, Building VI, Office 23, Campus de Caparica, Caparica 2829-516, Portugal
| | - Emilia Bertolo
- Biomolecular
Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, U.K.
| | - José Luis Capelo
- BIOSCOPE
Group, UCIBIO@REQUIMTE, Chemistry Department, Faculty of Science and
Technology, University NOVA of Lisbon, Caparica 2829-516, Portugal
- ProteoMass
Scientific Society, Faculty of
Science and Technology, Madan Parque, Building VI, Office 23, Campus de Caparica, Caparica 2829-516, Portugal
| | - Alcindo A. Dos Santos
- Instituto
de Química, Universidade de São
Paulo, Av. Prof. Lineu
Prestes, 748, CxP.26077, São Paulo 05508-000, Brazil
| | - Carlos Lodeiro
- BIOSCOPE
Group, UCIBIO@REQUIMTE, Chemistry Department, Faculty of Science and
Technology, University NOVA of Lisbon, Caparica 2829-516, Portugal
- ProteoMass
Scientific Society, Faculty of
Science and Technology, Madan Parque, Building VI, Office 23, Campus de Caparica, Caparica 2829-516, Portugal
| |
Collapse
|
9
|
Challenges in biomarker discovery with MALDI-TOF MS. Clin Chim Acta 2016; 458:84-98. [PMID: 27134187 DOI: 10.1016/j.cca.2016.04.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/21/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022]
Abstract
MALDI-TOF MS technique is commonly used in system biology and clinical studies to search for new potential markers associated with pathological conditions. Despite numerous concerns regarding a sample preparation or processing of complex data, this strategy is still recognized as a popular tool and its awareness has risen in the proteomic community over the last decade. In this review, we present comprehensive application of MALDI mass spectrometry with special focus on profiling research. We also discuss major advantages and disadvantages of universal sample preparation methods such as micro-SPE columns, immunodepletion or magnetic beads, and we show the potential of nanostructured materials in capturing low molecular weight subproteomes. Furthermore, as the general protocol considerably affects spectra quality and interpretation, an alternative solution for improved ion detection, including hydrophobic constituents, data processing and statistical analysis is being considered in up-to-date profiling pattern. In conclusion, many reports involving MALDI-TOF MS indicated highly abundant proteins as valuable indicators, and at the same time showed the inaccuracy of available methods in the detection of low abundant proteome that is the most interesting from the clinical perspective. Therefore, the analytical aspects of sample preparation methods should be standardized to provide a reproducible, low sample handling and credible procedure.
Collapse
|