1
|
Li S, Pi J, Huang Y, Li Y, Tan H. Reusable fluorescence nanoprobe based on DNA-functionalized metal-organic framework for ratiometric detection of mercury (II) ions. Mikrochim Acta 2024; 191:646. [PMID: 39367246 DOI: 10.1007/s00604-024-06710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024]
Abstract
A reusable fluorescent nanoprobe was developed using DNA-functionalized metal-organic framework (MOF) for ratiometric detection of Hg2+. We utilized a zirconium-based MOF (UiO-66) to encapsulate tris(bipyridine) ruthenium(II) chloride (Ru(bpy)32+), resulting in Ru(bpy)32+@UiO-66 (RU) with red fluorescence. The unsaturated metal sites in UiO-66 facilitate the attachment of thymine-rich single-strand DNA (T-ssDNA) through Zr-O-P bond, producing T-ssDNA-functionalized RU complex (RUT). The T-ssDNA selectively binds to Hg2+, forming stable T-Hg2+-T base pairs and folding into double-stranded DNA, which permits the intercalation of SYBR Green I (SGI) and activates its green fluorescence. In the presence of Hg2+, SGI fluorescence increases in a dose-dependent manner, while Ru(bpy)32+ fluorescence remains constant. This fluorescence contrast enables RUT to serve as an effective ratiometric nanoprobe for Hg2+ detection, with a detection limit of 3.37 nM. Additionally, RUT demonstrates exceptional reusability due to the ability of cysteine to remove Hg2+, given its stronger affinity for thiol groups. The RUT was successfully applied to detect Hg2+ in real water samples. This work advances the development of ratiometric fluorescence nanoprobe based on DNA-functionalized MOFs.
Collapse
Affiliation(s)
- Shenghua Li
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, P. R. China
| | - Jianhui Pi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, P. R. China.
| | - Yingjie Huang
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Yong Li
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Hongliang Tan
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, 418008, P. R. China.
- Jiangxi Provincial Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang, 330022, P. R. China.
| |
Collapse
|
2
|
Mohseni N, Moodi M, Kefayat A, Shokati F, Molaabasi F. Challenges and Opportunities of Using Fluorescent Metal Nanocluster-Based Colorimetric Assays in Medicine. ACS OMEGA 2024; 9:3143-3163. [PMID: 38284078 PMCID: PMC10809695 DOI: 10.1021/acsomega.3c06884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
Development of rapid colorimetric methods based on novel optical-active metal nanomaterials has provided methods for the detection of ions, biomarkers, cancers, etc. Fluorescent metal nanoclusters (FMNCs) have gained a lot of attention due to their unique physical, chemical, and optical properties providing numerous applications from rapid and sensitive detection to cellular imaging. However, because of very small color changes, their colorimetric applications for developing rapid tests based on the naked eye or simple UV-vis absorption spectrophotometry are still limited. FMNCs with peroxidase-like activity have significant potential in a wide variety of applications, especially for point-of-care diagnostics. In this review, the effect of using various capping agents and metals for the preparation of nanoclusters in their colorimetric sensing properties is explored, and the synthesis and detection mechanisms and the recent advances in their application for ultrasensitive chemical and biological analysis regarding human health are highlighted. Finally, the challenges that remain as well as the future perspectives are briefly discussed. Overcoming these limitations will allow us to expand the nanocluster's application for colorimetric diagnostic purposes in medical practice.
Collapse
Affiliation(s)
- Nasim Mohseni
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Moodi
- Department
of Materials Science and Engineering, Ferdowsi
University of Mashhad, Mashhad, Iran
| | - Amirhosein Kefayat
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
- Department
of Oncology, Isfahan University of Medical
Sciences, Isfahan, Iran
| | - Farhad Shokati
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Molaabasi
- Biomaterials
and Tissue Engineering Research Group, Department of Interdisciplinary
Technologies, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Irshad H, Assiri MA, Rafique S, Khan AM, Imran M, Shahzad SA. Triazine based fluorescent sensor for sequential detection of Hg 2+ and L-Cysteine in real samples and application in logic Gate: A combination of Extensive experimental and theoretical analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122934. [PMID: 37270970 DOI: 10.1016/j.saa.2023.122934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Triazine based fluorescent sensor TBT was rationally designed and synthesized to achieve sequential detection of Hg2+ and L-cysteine based on the presence of sulfur moiety and suitable cavity in the molecule. Sensor TBT exhibited excellent sensing potential for the selective detection of Hg2+ ions and L-cysteine (Cys) in real samples. Upon addition of Hg2+ to sensor TBT, enhancement in emission intensity of sensor TBT was observed which was accredited to the presence of sulfur moiety and size of cavity in the sensor. Upon interaction with Hg2+ blockage of intramolecular charge transfer (ICT) along with chelation-enhanced fluorescence (CHEF) resulted in the increase in fluorescence emission intensity of sensor TBT. Further, TBT-Hg2+ complex was employed for the selective detection of Cys through fluorescence quenching mechanism. This was attributed to the significantly stronger interaction of Cys with Hg2+, which resulted in the formation of Cys-Hg2+ complex and subsequently sensor TBT was released from TBT-Hg2+ complex. The nature of interaction between TBT-Hg2+ and Cys-Hg2+ complex was evaluated through 1H NMR titration experimentations. Extensive DFT studies were also carried out which include thermodynamic stability, frontier molecular orbitals (FMO), density of states (DOS), non-covalent interaction (NCI), quantum theory of atom in molecule (QTAIM), electron density differences (EDD) and natural bond orbital (NBO) analyses. All the studies supported the non-covalent type of interaction between analytes and sensor TBT. The limit of detection for Hg2+ ions was found to be as low as 61.9 nM. Sensor TBT was also employed for the quantitative detection of Hg2+ and Cys in real samples. Additionally, logic gate was fabricated by using sequential detection strategy.
Collapse
Affiliation(s)
- Hasher Irshad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia
| | - Sanwa Rafique
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Asad Muhammad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan.
| |
Collapse
|
4
|
Mahmood Khan I, Niazi S, Akhtar W, Yue L, Pasha I, Khan MKI, Mohsin A, Waheed Iqbal M, Zhang Y, Wang Z. Surface functionalized AuNCs optical biosensor as an emerging food safety indicator: Fundamental mechanism to future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Li S, Wan Y, Li Y, Liu J, Pi F, Liu L. A Competitive "On-Off-Enhanced On" AIE Fluorescence Switch for Detecting Biothiols Based on Hg 2+ Ions and Gold Nanoclusters. BIOSENSORS 2022; 13:35. [PMID: 36671870 PMCID: PMC9856123 DOI: 10.3390/bios13010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 05/31/2023]
Abstract
In this study, a novel "on-off-enhanced on" approach to highly sensitive rapid sensing of biothiols was developed, based on competitive modulation of gold nanoclusters (AuNCs) and Hg2+ ions. In our approach, the AuNCs were encapsulated into a zeolite imidazole framework (ZIF) for predesigned competitive aggregation-induced luminescence (AIE) emission. To readily operate this approach, the Hg2+ ions were selected as mediators to quench the fluorescence of AuNCs. Then, due to the stronger affinities between the interactions of Hg2+ ions with -SH groups in comparison to the AuNCs with -SH groups, the quenched probe of AuNCs@ZIF-8/Hg2+ displayed enhanced fluorescence after the Hg2+ ions were competitively interacted with -SH groups. Based on enhanced fluorescence, the probe for AuNCs@ZIF-8/Hg2+ had a sensitive and specific response to trace amounts of biothiols. The developed fluorescence strategy had limit of quantification (LOQ) values of 1.0 μM and 1.5 μM for Cys and GSH molecules in serum, respectively. This competitive AIE strategy provided a new direction for developing biological probes and a promising method for quantifying trace amounts of biothiols in serum. It could promote progress in disease diagnosis.
Collapse
Affiliation(s)
- Shuqi Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuqi Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Ling Liu
- Wuxi Institute of Technology, Wuxi 214122, China
| |
Collapse
|
6
|
Anantha Lakshmi B, Sangubotla R, Kim J, Kim YJ. Vinyl-functionalized polyphenolic-carbon dot-based fluorometric turn-off-on biosensor for the dual detection of mercury and cysteine and their in vivo sensing in zebrafish larvae. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121685. [PMID: 35908500 DOI: 10.1016/j.saa.2022.121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The fluorometric turn-off-on biosensor was developed for the ultra-sensitive detection of mercury (Hg2+) and cysteine (Cys) utilizing the highly fluorescent carbon dots (CDs). Herein, the sophisticated low-temperature reflux-mediated reaction was adopted using precursors namely citric acid (CA) and polyphenolic kaempferol (KMP) by using dimethylformamide (DMF) as a solvent. The resulting CDs (i.e., CKCDs) were in the highly negative charged groups (-OH) presented with a bright-orange fluorescence. These CKCDs were functionalized with 4-vinylaniline (4-VA) by employing EDC/NHS coupling reaction, which switched its photoluminescence (PL) towards the strong-blue colored emission and termed as V-CKCDs. The functionalized V-CKCDs can be capable enough to detect mercury via the strong electrostatic interactions between positively charged Hg2+ cations and negatively charged anions (-OH groups). Hence, an adequate fluorescence quenching was observed in V-CKCDs with the lowest concentrations of Hg2+ around 0.5 μM. Significantly, after adding the complex of V-CKCDs-Hg2+ to the Cys, the fluorescence enhancement was observed. This might be attributed from the strong interactions between Hg2+ in the fluorescence sensing system and thiol (-SH) moieties from the Cys. The developed V-CKCDs are highly sensitive for detecting Hg2+ and Cys, which showed detection limits of 10.6 and 42. 48 nM, respectively. Also, the in vivo studies were investigated in zebrafish larvae using V-CKCDs for the detection of Hg2+ and Cys. The V-CKCDs were investigated in the real water samples and human serum to detect Hg2+ and Cys, respectively.
Collapse
Affiliation(s)
- Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea
| | - Roopkumar Sangubotla
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-Daero, Seongnam, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
7
|
Alula MT, Madingwane ML, Yan H, Lemmens P, Zhe L, Etzkorn M. Biosynthesis of bifunctional silver nanoparticles for catalytic reduction of organic pollutants and optical monitoring of mercury (II) ions using their oxidase-mimic activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81938-81953. [PMID: 35739451 DOI: 10.1007/s11356-022-21619-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
In this study, an aqueous extract of Sclerocarya birrea leaves was used as a reducing agent to synthesize silver nanoparticles (AgNPs). The synthesis was carried out at room temperature and was both rapid and simple. Different characterization techniques such as UV/visible spectroscopy, surface-enhanced Raman spectroscopy, X-ray diffraction, and focused ion beam scanning electron microscopy were used to confirm the formation of AgNPs. The synthesized nanoparticles exhibited catalytic activity for the reduction of 4-nitrophenol, methyl orange, methylene blue, and rhodamine 6G. The catalytic activity was monitored by measuring the UV/visible absorbance spectra of the compounds using sodium borohydride as a reducing agent and found to be high. Additionally, the particles displayed oxidase-like activity. In the presence of AgNPs, 3, 3', 5, 5'-tetramethylbenzidine (TMB) which is colorless was transformed to oxidized TMB, which is blue, using dissolved oxygen as the oxidant. In the presence of Hg2+, the oxidase-like activity was enhanced. On the basis of this observation, an assay for the analysis of Hg2+ was developed. The linear range of the calibration curve is wide (0-600 µM) and the limit of detection (LOD) is low, as small as 34.8 nM. The method is strongly selective towards Hg2+. Tap water obtained from the laboratory where these experiments were carried out was used to study the feasibility of the method in real sample analyses.
Collapse
Affiliation(s)
- Melisew Tadele Alula
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology, Plot 10071, Private Bag 16, Palapye, Botswana.
| | - Mildred Lesang Madingwane
- Department of Chemical and Forensic Sciences, Faculty of Science, Botswana International University of Science and Technology, Plot 10071, Private Bag 16, Palapye, Botswana
| | - Hongdan Yan
- Institute for Condensed Matter Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| | - Peter Lemmens
- Institute for Condensed Matter Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| | - Liu Zhe
- Institute Applied Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| | - Markus Etzkorn
- Institute Applied Physics and Lab. for Emergent Nanometrology (LENA), Braunschweig University of Technology, Mendelssohnsstr. 3, 38106, Braunschweig, Germany
| |
Collapse
|
8
|
Lei P, Zhou Y, Zhao S, Dong C, Shuang S. Carbon-supported X-manganate (XNi, Zn, and Cu) nanocomposites for sensitive electrochemical detection of trace heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129036. [PMID: 35523097 DOI: 10.1016/j.jhazmat.2022.129036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal ion pollution has always been a stringent problem facing the global environment. Therefore, the detection of heavy metal ions has been extremely important and challenging. An efficient and simple method for the preparation of carbon-supported X-manganate (XNi, Zn, and Cu) nanocomposites was explored for the individual and simultaneous electrochemical detection of Pb(II) and Hg(II). The metallic salt solutions were mixed with graphene to form the precursors through a hydrothermal reaction, and calcined in the air to obtain the final products. The structure and morphology of the synthesized NiMn2O4-graphene (NMO-GR), ZnMn2O4-graphene (ZMO-GR), and CuMn2O4-graphene (CMO-GR) nanocomposites were characterized by various methods, and NMO-GR showed more excellent electrochemical performances by square wave anodic stripping voltammetry (SWASV) than ZMO-GR and CMO-GR. NMO-GR provided a large specific surface area, abundant reaction sites, and good electrical conductivity, thereby enhancing its electrochemical performance. The electrochemical sensor based on NMO-GR displayed the widest linear ranges (1.4-7.7 μM for Pb(II) and 0.7-6.7 μM for Hg(II)) and with the lowest detection limits (0.050 μM for Pb(II) and 0.027 μM for Hg(II)) than ZMO-GR and CMO-GR. This study offered a new way to simultaneously detect Pb(II) and Hg(II), and greatly expanded its application in the field of electrochemistry.
Collapse
Affiliation(s)
- Peng Lei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ying Zhou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shan Zhao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
9
|
Sun Y, Yuan K, Mo X, Chen X, Deng Y, Liu C, Yuan Y, Nie J, Zhang Y. Tyndall-Effect-inspired assay with gold nanoparticles for the colorimetric discrimination and quantification of mercury ions and glutathione. Talanta 2022; 238:122999. [PMID: 34857332 DOI: 10.1016/j.talanta.2021.122999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022]
Abstract
This work initially reports a new nanosening method for simple, sensitive, specific, visual detection of mercury (II) (Hg2+) and glutathione (GSH) using the Tyndall Effect (TE) of the same colloidal gold nanoparticle (GNP) probes for efficient colorimetric signaling amplification. For the TE-inspired assay (TEA) method, arginine (Arg) molecules are pre-modified on the GNPs' surfaces (Arg-GNPs). Upon the Hg2+ introduction, it can be specifically coordinated with the terminal -NH2 and -COOH groups of the Arg molecules to make the Arg-GNPs aggregate, producing a significantly-enhanced TE signal in the reaction solution after its irradiation by a 635-nm red laser pointer pen. On the other hand, the introduction of the GSH results in the production of the original Arg-GNPs' weak TE response, as it is able to bind such metal ion via mercury-thiol reactions to inhibit the above aggregation. Under the optimal conditions, the utility of the new TEA method is well demonstrated to quantitatively detect the Hg2+ and GSH with the aid of a smartphone as a portable TE reader during the linear concentration ranges of 50-3000 and 10-3000 nM, respectively. The detection limits for the Hg2+ and GSH are estimated to be as low as ∼3.5 and ∼0.3 nM, respectively. The recovery results obtained from the detection of Hg2+ in the complex tap and pond water samples and the assay of GSH in real human serum and urine samples are also satisfactory.
Collapse
Affiliation(s)
- Yao Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Kaijing Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Xiaomei Mo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Xuejiang Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Yanan Deng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Chang Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China.
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China.
| |
Collapse
|
10
|
Aghayan M, Mahmoudi A, Sazegar MR, Adhami F. A novel colorimetric sensor for naked-eye detection of cysteine and Hg 2+ based on "on-off" strategy using Co/Zn-grafted mesoporous silica nanoparticles. Dalton Trans 2021; 50:13345-13356. [PMID: 34608914 DOI: 10.1039/d1dt02084f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In an attempt to explore the significance of inorganic mimetic enzymes as sensors, this study introduces a naked-eye analytical sensing platform for the detection of L-cysteine (cys), mercury ions (Hg2+) based on (turn off/turn-on) catalytic activity of zinc and cobalt grafted mesoporous silica nanoparticles (MSNs). To this end, Zn-MSN and Co/Zn-MSN catalysts were synthesized and characterized using XRD, FT-IR, FESEM, TEM, and nitrogen adsorption-desorption methods. Then, using the intrinsic peroxidase-like activity of as-synthesized samples, the oxidation reactions of the chromogenic substrate (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS)) was designed using H2O2, which produced green colored cation radical of ABTS. Considering the high peroxidase-like activity of Co/Zn-MSN in comparison to Zn-MSN, it was employed to detect cys and then Hg2+. The results indicated that the strong interaction between cys and Co/Zn-MSN was proved by a limit of detection (LOD) down to 0.24 nM and the linear relationship from 0.8-50 nM (turn off). Given the fact that Hg2+ has a high-affinity tendency to combine with cys, we were suggested a novel colorimetric path for sensing of Hg2+ in the presence of cys (turn on). Based on this method, LOD was found 0.17 nM with the linear range of 0.57-50 nM. Taken together, results showed that the as-prepared catalysts are superior to other nanoparticles as a sensor to measure the target molecules in biological monitoring and clinical diagnostics.
Collapse
Affiliation(s)
- Morvarid Aghayan
- Dept. of Chemistry, Faculty of science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Ali Mahmoudi
- Dept. of Chemistry, Faculty of science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Mohammad Reza Sazegar
- Dept. of Chemistry, Faculty of science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Forogh Adhami
- Dep. of chemistry, Faculty of science, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH), Shahre rey Branch, Tehran, Iran
| |
Collapse
|
11
|
Das B, Franco JL, Logan N, Balasubramanian P, Kim MI, Cao C. Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. NANO-MICRO LETTERS 2021; 13:193. [PMID: 34515917 PMCID: PMC8438099 DOI: 10.1007/s40820-021-00717-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/13/2021] [Indexed: 05/19/2023]
Abstract
Nanomaterial-based artificial enzymes (or nanozymes) have attracted great attention in the past few years owing to their capability not only to mimic functionality but also to overcome the inherent drawbacks of the natural enzymes. Numerous advantages of nanozymes such as diverse enzyme-mimicking activities, low cost, high stability, robustness, unique surface chemistry, and ease of surface tunability and biocompatibility have allowed their integration in a wide range of biosensing applications. Several metal, metal oxide, metal-organic framework-based nanozymes have been exploited for the development of biosensing systems, which present the potential for point-of-care analysis. To highlight recent progress in the field, in this review, more than 260 research articles are discussed systematically with suitable recent examples, elucidating the role of nanozymes to reinforce, miniaturize, and improve the performance of point-of-care diagnostics addressing the ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to the end user) criteria formulated by World Health Organization. The review reveals that many biosensing strategies such as electrochemical, colorimetric, fluorescent, and immunological sensors required to achieve the ASSURED standards can be implemented by using enzyme-mimicking activities of nanomaterials as signal producing components. However, basic system functionality is still lacking. Since the enzyme-mimicking properties of the nanomaterials are dictated by their size, shape, composition, surface charge, surface chemistry as well as external parameters such as pH or temperature, these factors play a crucial role in the design and function of nanozyme-based point-of-care diagnostics. Therefore, it requires a deliberate exertion to integrate various parameters for truly ASSURED solutions to be realized. This review also discusses possible limitations and research gaps to provide readers a brief scenario of the emerging role of nanozymes in state-of-the-art POC diagnosis system development for futuristic biosensing applications.
Collapse
Affiliation(s)
- Bhaskar Das
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Javier Lou Franco
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Natasha Logan
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Paramasivan Balasubramanian
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, Seongnam, Korea
| | - Cuong Cao
- School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
12
|
Ye ML, Zhu Y, Lu Y, Gan L, Zhang Y, Zhao YG. Magnetic nanomaterials with unique nanozymes-like characteristics for colorimetric sensors: A review. Talanta 2021; 230:122299. [PMID: 33934768 DOI: 10.1016/j.talanta.2021.122299] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022]
Abstract
Colorimetric sensors for the rapid detection of numerous analytes have been widely applied in many fields such as biomedicine, food industry and environmental science due to their highly sensitive and selective response, easy operation and visual identification by naked eyes. In this review, the recent progress of the colorimetric sensors based on the magnetic nanomaterials with unique nanozymes-like catalytic activity (magnetic nanozyme) and their colorimetric sensing applications are presented. Emerging magnetic nanozyme-based colorimetric sensors, such as metal oxide/sulfides-based, metal-based, carbon-based, and aptamer-conjugated magnetic nanomaterials, offer many desirable features for target analytes detection. And due to the unique nanoscale physical-chemical properties, magnetic nanozymes have been used to mimic the catalytic activity of natural enzymes such as peroxidases, oxidases and catalases. This review also highlights the catalytic mechanisms of enzyme-like reactions, and promising colorimetric sensing system for the detection of chemical compounds like H2O2, pesticide, ascorbic acid, dopamine, tetracyclines, perfluorooctane sulfonate, phenolic compounds, heavy metal ion and sulfite have been deeply discussed. In addition, the remaining challenges and future directions in utilizing magnetic nanozyme for colorimetric sensors are addressed.
Collapse
Affiliation(s)
- Ming-Li Ye
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China; Department of Environmental Engineering, Wuchang University of Technology, Wuhan, 430223, China
| | - Yan Zhu
- Department of Environmental Engineering, Wuchang University of Technology, Wuhan, 430223, China
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lu Gan
- Zhejiang University Hospital, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yun Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China.
| | - Yong-Gang Zhao
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang, 315010, China.
| |
Collapse
|
13
|
Li JJ, Qiao D, Yang SZ, Weng GJ, Zhu J, Zhao JW. Colorimetric determination of cysteine based on inhibition of GSH-Au/Pt NCs as peroxidase mimic. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119257. [PMID: 33296750 DOI: 10.1016/j.saa.2020.119257] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
In this work, we reported a facile and highly sensitive strategy for colorimetric detection of cysteine (Cys) based on the inhibition of catalytic activity of bimetallic nanoclusters induced by Cys. Glutathione-modified gold-platinum nanoclusters (GSH-Au/Pt NCs) with different Au/Pt molar ratios were prepared via one-pot approach and utilized as peroxidase mimics to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2. It has been found that Cys could inhibit the peroxidase-like activity of GSH-Au/Pt NCs efficiently, which leads to a decrease of the absorption intensity of the system at 652 nm with a fading of the blue color. These findings provide a worthy method for visualization and quantitative detection of Cys with different concentrations in the range from 0.5 to 30 μM, and the detection limit is 0.154 μM. Moreover, this method displays a promising application in colorimetric analysis of Cys in urine samples.
Collapse
Affiliation(s)
- Jian-Jun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dan Qiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shou-Zhi Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guo-Jun Weng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun-Wu Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
14
|
Niu Y, Ding T, Liu J, Zhang G, Tong L, Cheng X, Yang Y, Chen Z, Tang B. Fluorescence switch of gold nanoclusters stabilized with bovine serum albumin for efficient and sensitive detection of cysteine and copper ion in mice with Alzheimer's disease. Talanta 2021; 223:121745. [PMID: 33298269 DOI: 10.1016/j.talanta.2020.121745] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 12/20/2022]
Abstract
The near-infrared fluorescence of gold nanoclusters stabilized with bovine serum albumin (BSA -AuNCs) centered at 675 nm could be enhanced by cysteine and then effectively quenched by copper ion (Cu2+), therefore, cysteine and copper ion could be detected in sequence. At "on" state, fluorescence enhancement of BSA-AuNCs is generated due to the reaction between cysteine and BSA-AuNCs, via filling the surface defect of gold nanoclusters, while Cu2+ can further oxidize the reductive sulfydryl of cysteine and interact with amino acids presented in the BSA chain, inducing gold nanoclusters to aggregate, thus causing "off" state with fluorescence quenching. Fluorescence switch of BSA-AuNCs can be used for cysteine and Cu2+ detection in mice brain with Alzheimer's disease (AD) in vitro, with fast response, high chemical stability and sensitivity. Besides, it was able to image the endogenous Cu2+ in liver and heart of AD mice in situ. The results are promising, especially in the framework of early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Yaxin Niu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Tong Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Junmin Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Guanglu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Xiufen Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
15
|
Rohilla D, Chaudhary S, Kaur N, Shanavas A. Dopamine functionalized CuO nanoparticles: A high valued “turn on” colorimetric biosensor for detecting cysteine in human serum and urine samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110724. [DOI: 10.1016/j.msec.2020.110724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 01/12/2023]
|
16
|
Colorimetric sensing platform based on MnO2 nanosheets for the detection of reducing substances and alkaline phosphatase activity in whole Hela cells. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-1752-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Sharifi M, Hosseinali SH, Yousefvand P, Salihi A, Shekha MS, Aziz FM, JouyaTalaei A, Hasan A, Falahati M. Gold nanozyme: Biosensing and therapeutic activities. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110422. [DOI: 10.1016/j.msec.2019.110422] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 01/12/2023]
|
18
|
Zhang Y, Song J, Pan Q, Zhang X, Shao W, Zhang X, Quan C, Li J. An Au@NH2-MIL-125(Ti)-based multifunctional platform for colorimetric detections of biomolecules and Hg2+. J Mater Chem B 2020; 8:114-124. [DOI: 10.1039/c9tb02183c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Au@NH2-MIL-125(Ti) was fabricated and explored as a multifunctional platform for sensitive colorimetric detections of biomolecules and Hg2+.
Collapse
Affiliation(s)
- Yanmei Zhang
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Jie Song
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Qiaoling Pan
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Xin Zhang
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Wenhui Shao
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Xiang Zhang
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Chunshan Quan
- College of Life Science
- Dalian Minzu University
- Economical and Technological Development Zone
- Dalian
- China
| | - Jun Li
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian 116023
- China
| |
Collapse
|
19
|
Chen Y, Qin X, Yuan C, Wang Y. Switch on fluorescence mode for determination of l-cysteine with carbon quantum dots and Au nanoparticles as a probe. RSC Adv 2020; 10:1989-1994. [PMID: 35494606 PMCID: PMC9047951 DOI: 10.1039/c9ra09019c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/05/2020] [Indexed: 12/28/2022] Open
Abstract
Citric acid and urea were used as precursors for the preparation of carbon quantum dots (CQDs) which exhibited a maximum emission wavelength at 515 nm when excited at 410 nm. Upon addition of citrate-stabilized Au nanoparticles (AuNPs) with the maximum absorption wavelength at 520 nm, the fluorescence of the CQDs could be efficiently quenched, attributed to the energy transfer between CQDs and AuNPs. However, the further introduction of l-cysteine (Cys) could cause the aggregation of AuNPs along with a drop in absorption at 520 nm, resulting in the fluorescence recovery of the CQDs–AuNPs system. Therefore, a simple and reliable switch on fluorescence sensing platform for determination of Cys was constructed. The significant factors, such as pH and incubation time, that affected the detection of Cys were optimized with the AuNP concentration set as 2.50 nM at room temperature. Under the optimized conditions, the fluorescence recoveries (ΔF) were strongly correlated with Cys concentration in the 0.20 to 4.0 μM range, and the detection limit is 0.012 μM. More importantly, our CQD-based sensing platform was successfully used for the detection of Cys in milk samples with high precision and accuracy, indicating the potential of the probe in practical applications. We demonstrated a fluorescence probe composed of CQDs and AuNPs for switch on detection of Cys, where CQDs as fluorescence reporters and AuNPs as fluorescence quenchers were chosen.![]()
Collapse
Affiliation(s)
- Yuye Chen
- School of Chemistry and Chemical Engineering
- Guangxi Key Laboratory of Biorefinery
- Guangxi University
- Nanning 530004
- China
| | - Xiu Qin
- School of Chemistry and Chemical Engineering
- Guangxi Key Laboratory of Biorefinery
- Guangxi University
- Nanning 530004
- China
| | - Chunling Yuan
- School of Chemistry and Chemical Engineering
- Guangxi Key Laboratory of Biorefinery
- Guangxi University
- Nanning 530004
- China
| | - Yilin Wang
- School of Chemistry and Chemical Engineering
- Guangxi Key Laboratory of Biorefinery
- Guangxi University
- Nanning 530004
- China
| |
Collapse
|
20
|
Suo Z, Hou X, Hu Z, Liu Y, Xing F, Feng L. Fibrinogen-templated gold nanoclusters for fluorometric determination of cysteine and mercury(II). Mikrochim Acta 2019; 186:799. [DOI: 10.1007/s00604-019-3919-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
|
21
|
Meng X, Zare I, Yan X, Fan K. Protein-protected metal nanoclusters: An emerging ultra-small nanozyme. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1602. [PMID: 31724330 DOI: 10.1002/wnan.1602] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
Protein-protected metal nanoclusters (MNCs), typically consisting of several to a hundred metal atoms with a protein outer layer used for protecting clusters from aggregation, are excellent fluorescent labels for biomedical applications due to their extraordinary photoluminescence, facile synthesis and good biocompatibility. Interestingly, many protein-protected MNCs have also been reported to exhibit intrinsic enzyme-like activities, namely peroxidase, oxidase and catalase activities, and are consequently used for biological analysis and environmental treatment. These findings have extended the horizon of protein-protected MNCs' properties as well as their application in various fields. Furthermore, in the field of nanozymes, protein-protected MNCs have emerged as an outstanding new addition. Due to their ultra-small size (<2 nm), they usually have higher catalytic activity, more suitable size for in vivo application, better biocompatibility and photoluminescence in comparison with large size nanozymes. In this review, we will systematically introduce the significant advances in this field and critically discuss the challenges that lie ahead. Ultra-small nanozymes based on protein-protected MNCs are on the verge of attracting great interest across various disciplines and will stimulate research in the fields of nanotechnology and biology. This article is characterized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Xiangqin Meng
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Iman Zare
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Xiyun Yan
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Joint Laboratory of Nanozymes in Zhengzhou University, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Gan Y, Liang T, Hu Q, Zhong L, Wang X, Wan H, Wang P. In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system. Talanta 2019; 208:120231. [PMID: 31816705 DOI: 10.1016/j.talanta.2019.120231] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 12/01/2022]
Abstract
Cadmium is a heavy metal pollutant in environment with high toxicity that severely threats human health. A simple and sensitive method for rapid detection of cadmium ions in water sample is of significant importance. In this paper, a colorimetric method based on aptamer-functionalized gold nanoparticles (AuNPs) for specific recognition were proposed to realize Cd2+ detection. AuNPs aggregate in high-salt solutions because of the shielding of salt to electrostatic repulsion among AuNPs, while aptamers can strengthen the stability of AuNPs and avoid the aggregation. After adding Cd2+ ions, the specific interaction between aptamers and Cd2+ leads to a decrease of free aptamers, which weakens the stability of the AuNPs and results in the color change of the solution. The colorimetric change can be rapidly captured and analyzed by a self-developed smartphone-based colorimetric system (SBCS) within 10 min, which implements the quantitative detection of Cd2+. The results show that Cd2+ ions can be detected with high selectivity and sensitivity with a linear range of 2-20 μg/L and a detection limit of 1.12 μg/L. Compared with other methods, the proposed approach features high sensitivity, high simplicity, easy implementation and high throughout, which provides a promising means for in-situ determination of Cd2+ in practical applications.
Collapse
Affiliation(s)
- Ying Gan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Tao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiongwen Hu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Longjie Zhong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
23
|
Wu H, Qiao J, Hwang YH, Xu C, Yu T, Zhang R, Cai H, Kim DP, Qi L. Synthesis of ficin-protected AuNCs in a droplet-based microreactor for sensing serum ferric ions. Talanta 2019; 200:547-552. [DOI: 10.1016/j.talanta.2019.03.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/15/2022]
|
24
|
Copper(II) ions enhance the peroxidase-like activity and stability of keratin-capped gold nanoclusters for the colorimetric detection of glucose. Mikrochim Acta 2019; 186:271. [DOI: 10.1007/s00604-019-3395-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
|
25
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 271.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|
26
|
Song W, Zhao B, Wang C, Ozaki Y, Lu X. Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J Mater Chem B 2019; 7:850-875. [DOI: 10.1039/c8tb02878h] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We highlight the recent developments in functional nanomaterials with unique enzyme-like characteristics for sensing applications.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ce Wang
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yukihiro Ozaki
- School of Science and Technology
- Kwansei Gakuin Universty
- Hyogo 660-1337
- Japan
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
27
|
Sun Y, Liu H, Tan X, Li Z, Du Y, Zheng A, Liu X, Peng N. Highly efficient redox reaction between potassium permanganate and 3,3′,5,5′-tetramethylbenzidine for application in hydrogen peroxide based colorimetric assays. RSC Adv 2019; 9:1889-1894. [PMID: 35516118 PMCID: PMC9059746 DOI: 10.1039/c8ra07758d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/23/2018] [Indexed: 11/21/2022] Open
Abstract
Potassium permanganate (KMnO4) is one of the most important oxidants, which plays important roles in many fields. Here, we found that KMnO4 could directly induce the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to generate an oxidized product with a color change. This redox reaction is highly efficient, and 1 μM KMnO4 is enough to cause detectable changes in the absorbance signal. Meanwhile, this reaction is very fast and the generated blue product can stabilize for a relatively long period, which has great advantages in practical applications. Since hydrogen peroxide (H2O2) is able to react with KMnO4 under acidic conditions, the KMnO4-TMB system can be used for the detection of H2O2; the absorbance signal induced by 5 μM H2O2 can be easily detected in this method. Meanwhile, the KMnO4-TMB system can also be used for the detection of glucose by monitoring the generation of H2O2, which is the main product of glucose oxidation; this method permits detection of concentrations as low as 10 μM glucose, and the sensitivity is comparable to or higher than most peroxidase mimetic based methods, but avoiding the preparation and storage of the nanomaterials. Furthermore, the KMnO4-TMB system can even be used for analyzing glucose in serum samples, which can also be expected to be used in immunoassays. The redox reaction between potassium permanganate and 3,3′,5,5′-tetramethylbenzidine is fast and highly efficient, which can be used for different biosensing.![]()
Collapse
Affiliation(s)
- Ying Sun
- College of Life Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- P. R. China
- Fujian Institute of Research on the Structure of Matter
| | - Hui Liu
- Fifth People's Hospital
- Ganzhou City
- China
| | - Xionghong Tan
- College of Life Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- P. R. China
- Fujian Institute of Research on the Structure of Matter
| | - Zheng Li
- State Key Laboratory for Manufacturing Systems Engineering
- School of Mechanical Engineering
- Xi'an Jiaotong University
- Xi'an 710054
- P. R. China
| | - Yanlin Du
- College of Life Science
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- P. R. China
- Fujian Institute of Research on the Structure of Matter
| | - Aixian Zheng
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
| | - Xiaolong Liu
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering
- School of Mechanical Engineering
- Xi'an Jiaotong University
- Xi'an 710054
- P. R. China
| |
Collapse
|
28
|
Thakur N, Mandal N, Banerjee UC. Esterase-Mediated Highly Fluorescent Gold Nanoclusters and Their Use in Ultrasensitive Detection of Mercury: Synthetic and Mechanistic Aspects. ACS OMEGA 2018; 3:18553-18562. [PMID: 31458426 PMCID: PMC6643912 DOI: 10.1021/acsomega.8b02505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/17/2018] [Indexed: 06/10/2023]
Abstract
The fast, accurate, and ultrasensitive detection of toxic mercury in real water samples is still challenging without the use of expensive sophisticated instruments. Herein, highly fluorescent gold nanoclusters (AuNCs) were synthesized using a newer protein templet, esterase (EST). The EST-AuNCs consisted of ∼25 Au atoms in the nanocluster having ∼2 nm size. EST-AuNCs were found to be highly stable in aqueous buffer with a wide range of pH (pH 4-12) and were also stable in powdered form. The fluorescence quantum yield of EST-AuNCs in deionized water was 6.2% which had increased to 7.8% upon the addition of 1 M NaCl (an increase of 23%). The EST-AuNCs selectively sense the toxic Hg2+ ions with higher sensitivity (limit of detection; 0.88 nM) with the linear range 1-30 nM. The test strips for rapid sensing of Hg2+ in real water samples were developed on the polymeric surface. The validation of sensing ability of EST-AuNCs suggested 94-98% recovery with linearity. Moreover, because of the widely reported applications of EST, the developed EST-AuNCs could also be used for another sensing, catalytic, and biomedical applications.
Collapse
Affiliation(s)
| | | | - Uttam C. Banerjee
- Department of Pharmaceutical Technology
(Biotechnology), National Institute of Pharmaceutical
Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| |
Collapse
|
29
|
Jiang R, Liu N, Li F, Fu W, Zhou Y, Zhang Y. Novel PSMA-Coated On-Off-On Fluorescent Chemosensor Based on Organic Dots with AIEgens for Detection of Copper (II), Iron (III) and Cysteine. Polymers (Basel) 2018; 10:E786. [PMID: 30960711 PMCID: PMC6403782 DOI: 10.3390/polym10070786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/08/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
Herein, a novel on-off-on fluorescent chemosensor for copper (II) ion (Cu2+), iron (III) ion (Fe3+) and cysteine is developed simply by the nano-precipitation method. The prepared organic dots with AIEgens (AIE dots) are advantageous over other metal ions in detecting Cu2+, Fe3+ with high selectivity and sensitivity by forming agglomerations (on-off). The agglomerations formed by AIE dots and Cu2+ redistributed and the fluorescence was obviously recovered in the presence of cysteine (off-on). This sensor has a wide linear range for Cu2+, Fe3+ and cysteine. The fluorescent detection limits of AIE dots are calculated to be 107 nM for Cu2+, 120 nM for Fe3+ and 78 nM for cysteine, respectively. These results indicate that the AIE dots can be used as a potential probe for Cu2+, Fe3+ and cysteine detection.
Collapse
Affiliation(s)
- Rui Jiang
- Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Na Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Fan Li
- Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Yun Zhou
- Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| | - Yan Zhang
- Chongqing Key Laboratory of Green Synthesis and Applications, and Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
30
|
Dai R, Deng W, Hu P, You C, Yang L, Jiang X, Xiong X, Huang K. One-pot synthesis of bovine serum albumin protected gold/silver bimetallic nanoclusters for ratiometric and visual detection of mercury. Microchem J 2018. [DOI: 10.1016/j.microc.2018.02.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Jiang C, Li Z, Wu Y, Guo W, Wang J, Jiang Q. Colorimetric Detection of Hg2+
Based on Enhancement of Peroxidase-like Activity of Chitosan-Gold Nanoparticles. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11441] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cuifeng Jiang
- School of Materials Science and Engineering; Yancheng Institute of Technology; Yancheng 224051 China
| | - Zhuojian Li
- School of Materials Science and Engineering; Yancheng Institute of Technology; Yancheng 224051 China
| | - Yinxing Wu
- Materials Science and Chemical Engineering College; Anhui Jianzhu University; Hefei 230022 People's Republic of China
| | - Wei Guo
- School of Materials Science and Engineering; Yancheng Institute of Technology; Yancheng 224051 China
| | - Jinshan Wang
- School of Materials Science and Engineering; Yancheng Institute of Technology; Yancheng 224051 China
| | - Qiong Jiang
- School of Materials Science and Engineering; Yancheng Institute of Technology; Yancheng 224051 China
| |
Collapse
|
32
|
Kong Y, Shen J, Fan A. Colorimetric Method for the Detection of Mercury Ions Based on Gold Nanoparticles and Mercaptophenyl Boronic Acid. ANAL SCI 2018; 33:925-930. [PMID: 28794329 DOI: 10.2116/analsci.33.925] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study, we found that phenylboronic acid derivatives including benzene-1,4-diboronic acid (BDBA) and mercaptophenyl boronic acid (MPBA) can induce the aggregation of citrate-capped gold nanoparticles (Au NPs). However, the speed of Au NP aggregation induced by MPBA was much faster than that of BDBA. The reaction between MPBA and Hg2+ ions resulted in the formation of MPBA-Hg2+-MPBA, which was similar to BDBA having two free boronic acid groups. Based on the above phenomenon, a sensitive and selective colorimetric method for the detection of mercury ions (Hg2+) in aqueous solution was developed. The linear range for the detection of Hg2+ ions was from 0.08 to 1.25 μmol dm-3 with a detection limit of 37 nmol dm-3. The strategy offered excellent selectivity toward Hg2+ against other metal ions. Meanwhile, this simple and cost-effective sensor was applied to determine the Hg2+ in the lake water samples with satisfactory recoveries (91.3 - 100.7%).
Collapse
Affiliation(s)
- Yafang Kong
- School of Pharmaceutical Science and Technology, Tianjin University
| | - Jianguo Shen
- School of Electronic Information Engineering, Tianjin University
| | - Aiping Fan
- School of Pharmaceutical Science and Technology, Tianjin University
| |
Collapse
|
33
|
MA XM, SUN M, LIN Y, LIU YJ, LUO F, GUO LH, QIU B, LIN ZY, CHEN GN. Progress of Visual Biosensor Based on Gold Nanoparticles. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(17)61061-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Li C, Chen H, Chen B, Zhao G. Highly fluorescent gold nanoclusters stabilized by food proteins: From preparation to application in detection of food contaminants and bioactive nutrients. Crit Rev Food Sci Nutr 2017; 58:689-699. [PMID: 27558793 DOI: 10.1080/10408398.2016.1213698] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Applications of nanotechnology in food have rapidly increased in the past decades. Ultra-small gold nanoclusters (Au NCs), composed of several to roughly a hundred atoms, represent a kind of novel nanomaterials. The Au NCs directed by food proteins have drawn considerable research attention due to their environment-friendly preparation, strong fluorescence, excellent photo-stability, and favorable biocompatibility. These interesting protein-Au hybrids have opened up a new area at the nano-bio-food interface, not only did they provide the missing link between single metal atoms and plasmonic metal nanoparticles, but also developed the hybrid system between biomacromolecule and inorganic ions. In this review, we highlighted the synthesis strategies and optical properties of the Au NCs stabilized by typical food proteins as well as their applications in detection of food contaminants or bioactive nutrients. In addition, we discussed current challenges and future development in food proteins- directed gold nanoclusters for size-controlled synthesis and multifunctional applications.
Collapse
Affiliation(s)
- Changan Li
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources , Beijing , P. R. China
| | - Hai Chen
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources , Beijing , P. R. China
| | - Bin Chen
- b Key Laboratory of Space Nutrition and Food Engineering , China Astronaut Research and Training Center , Beijing , China
| | - Guanghua Zhao
- a Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources , Beijing , P. R. China
| |
Collapse
|
35
|
Vaishnav SK, Patel K, Chandraker K, Korram J, Nagwanshi R, Ghosh KK, Satnami ML. Surface plasmon resonance based spectrophotometric determination of medicinally important thiol compounds using unmodified silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 179:155-162. [PMID: 28242444 DOI: 10.1016/j.saa.2017.02.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Abstract
The determination of thiol based biological molecules and drugs, such as cysteine (Cys) (I), α-lipoic acid (II), and sodium 2-sulfanylethane sulphonate (Mesna (III)) in human plasma are becoming progressively more important due to the growing body of knowledge about their essential role in numerous biological pathways. Herein we demonstrate a sensitive colorimetric sensor for the determination of medicinally important thiol drugs based on aggregation of the citrate capped silver nanoparticles (Ag NPs). This approach exploited the high affinity of thiols towards the Ag NPs surface which could tempt replacement of the citrate shell by the thiolate shell of target molecules, resulting in aggregation of the NPs through intermolecular electrostatic interaction or hydrogen-bonding. Because of aggregation, the plasmon band at around 400nm decreases gradually, along with the appearance of a new band connoting a red shift. The calibration curves are derived from the intensity ratios of A530/A400, which display a linear relation in the range of 1μM-150μM, 5μM-200μM and 10μM-130μM, respectively. The obtained detection limits (3σ) were found to be 1.5μM, 5.6μM and 10.2μM for compound I-III, respectively. The proposed method has been successfully applied for the detection of thiol compounds in real samples.
Collapse
Affiliation(s)
- Sandeep K Vaishnav
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India; State Forensic Science Laboratory, Tikra Para, Raipur, C.G. 492013, India
| | - Kuleshwar Patel
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India
| | - Kumudini Chandraker
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India
| | - Jyoti Korram
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India
| | - Rekha Nagwanshi
- Department of Chemistry, Govt. Madhav Science P. G. College, Ujjain, M.P. 456010, India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, C.G. 492010, India.
| |
Collapse
|
36
|
Nanohybrids consisting of magnetic nanoparticles and gold nanoclusters as effective peroxidase mimics and their application for colorimetric detection of glucose. Biointerphases 2017; 12:01A401. [PMID: 28095700 DOI: 10.1116/1.4974198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although protein-stabilized gold nanoclusters (AuNCs) have gathered recent attention as biocompatible peroxidase mimics, their practical utility has been critically limited by the low catalytic activity. Here, the authors have developed a nanohybrid material to significantly enhance the catalytic activity of AuNCs by combining them with other inorganic enzyme mimetics, Fe3O4 magnetic nanoparticles (MNPs), through electrostatic attraction. Owing to the synergistic effect by incorporating AuNCs and MNPs, the constructed nanohybrids yielded highly enhanced catalytic activity and enabled rapid catalytic oxidation of 3,3',5,5'-tetramethylbenzidine substrate to produce a blue-colored solution in proportional to the amount of H2O2. Moreover, a highly sensitive and selective glucose biosensing strategy was developed based on the coupled catalytic action between glucose oxidase and the nanohybrids. Using this method, target glucose was successfully detected in a linear concentration range from 150 to 750 μM with a detection limit as low as 100 μM. Along with excellent linearity, high precision and reproducibility were achieved by employing real human blood serums, which enables its use for the reliable quantification of glucose in practical use. Based on these results, the authors anticipate that the nanohybrids consisting of MNPs and AuNCs can serve as potent peroxidase mimics for the detection of clinically important target molecules.
Collapse
|
37
|
Liu K, Du G, Zhao M, Ye L, Shen H, Jiang L. A polymer-based probe for specific discrimination of cysteine. Org Biomol Chem 2017; 15:4859-4866. [DOI: 10.1039/c7ob00956a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A kind of polymer-based turn-on fluorescent probe for specific detection of cysteine with high sensitivity has been developed.
Collapse
Affiliation(s)
- Keyuan Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Ganhong Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Mengna Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Long Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Huifang Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Liming Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
38
|
Saleem M, Rafiq M, Hanif M. Organic Material Based Fluorescent Sensor for Hg2+: A Brief Review on Recent Development. REVIEWS IN FLUORESCENCE 2016 2017. [DOI: 10.1007/978-3-319-48260-6_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Qing T, He X, He D, Qing Z, Wang K, Lei Y, Liu T, Tang P, Li Y. Oligonucleotide-templated rapid formation of fluorescent gold nanoclusters and its application for Hg2+ ions sensing. Talanta 2016; 161:170-176. [DOI: 10.1016/j.talanta.2016.08.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/02/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
|
40
|
Zhang Y, Jiang J, Li M, Gao P, Zhou Y, Zhang G, Shuang S, Dong C. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles. Talanta 2016; 161:520-527. [DOI: 10.1016/j.talanta.2016.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/23/2016] [Accepted: 09/03/2016] [Indexed: 01/24/2023]
|
41
|
|
42
|
Martinis EM, Wuilloud RG. Enhanced spectrophotometric detection of Hg in water samples by surface plasmon resonance of Au nanoparticles after preconcentration with vortex-assisted liquid-liquid microextraction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 167:111-115. [PMID: 27262659 DOI: 10.1016/j.saa.2016.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/05/2016] [Accepted: 05/22/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Estefanía M Martinis
- Laboratory of Analytical Chemistry for Research and Development (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre J. Contreras 1300, (5500) Mendoza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Rodolfo G Wuilloud
- Laboratory of Analytical Chemistry for Research and Development (QUIANID), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Padre J. Contreras 1300, (5500) Mendoza, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
43
|
Saleem M, Rafiq M, Hanif M. Organic Material Based Fluorescent Sensor for Hg2+: a Brief Review on Recent Development. J Fluoresc 2016; 27:31-58. [DOI: 10.1007/s10895-016-1933-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/07/2016] [Indexed: 11/30/2022]
|
44
|
Tianyu H, Xu Y, Weidan N, Xingguang S. Aptamer-based aggregation assay for mercury(II) using gold nanoparticles and fluorescent CdTe quantum dots. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1831-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
45
|
Wang J, Chang Y, Wu WB, Zhang P, Lie SQ, Huang CZ. Label-free and selective sensing of uric acid with gold nanoclusters as optical probe. Talanta 2016; 152:314-20. [DOI: 10.1016/j.talanta.2016.01.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/29/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
|
46
|
Biocompatible glutathione-capped gold nanoclusters for dual fluorescent sensing and imaging of copper(II) and temperature in human cells and bacterial cells. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1854-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|