1
|
Wu G, Chen J, Dou J, He X, Li HF, Lin JM. An electrochemiluminescence microsensor based on DNA-silver nanoclusters amplification for detecting cellular adenosine triphosphate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2019-2024. [PMID: 38516852 DOI: 10.1039/d4ay00212a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Adenosine triphosphate (ATP), as the primary energy source, plays vital roles in many cellular events. Developing an efficient assay is crucial to rapidly evaluate the level of cellular ATP. A portable and integrated electrochemiluminescence (ECL) microsensor array based on a closed bipolar electrode (BPE) was presented. In the BPE unit, the ECL chemicals and oxidation/reduction were separated from the sensing chamber. The ATP aptamer was assembled with single-stranded DNA (ssDNA) in the sensing chamber. ATP capture made the aptamer disassemble from the ssDNA and facilitated DNA-templated silver nanocluster (Ag NC) generation by the target-rolling circle amplification (RCA) reaction. The guanine-rich padlock sequence produced tandem periodic cytosine-rich sequences by the RCA, inducing Ag NC generation in the cytosine-rich region of the produced DNA strands through Ag+ reduction. The in situ Ag NC generation enhanced the circuit conductivity of the BPE and promoted the ECL reaction of [Ru(bpy)2dppz]2+/tripropylamine in the anodic reservoir. On this ECL microsensor, a good linear relationship of ATP was achieved ranging from 30 to 1000 nM. The ATP content in HepG2 cells was selectively and sensitively determined without complex pretreatment. The ATP amount of 25 cells could be successfully detected when a sub-microliter sample was loaded.
Collapse
Affiliation(s)
- GuanQi Wu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Jian Chen
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - JinXin Dou
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - XiangWei He
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hai-Fang Li
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Yao H, Wang X, Dong Y, Ye M. Promoting effect of TiVC MXene on cathodic electrogenerated chemiluminescence of Ru(bpy) 32+ and its application in the sensitive detection of sulfite. Mikrochim Acta 2024; 191:206. [PMID: 38498074 DOI: 10.1007/s00604-024-06290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/27/2024] [Indexed: 03/19/2024]
Abstract
The enhanced cathodic ECL of Ru(bpy)32+ at a bimetallic element MXenes (TiVC MXene) modified electrode in neutral aqueous condition is reported. TiVC MXene significantly catalyzed the oxygen reduction reaction (ORR) as well as the electrochemical reduction of Ru(bpy)32+ to produce reactive oxygen species and Ru(bpy)3+. The obtained hydroxyl radical (OH∙) not only oxidized Ru(bpy)3+ to generate Ru(bpy)32+* and emit light through coreactant pathway, but also oxidized Ru(bpy)32+ to Ru(bpy)33+, which caused an annihilation ECL reaction. As a result, two pathways occurred simultaneously to generate strong cathodic ECL signal. Sulfite removes the dissolved oxygen in water and reduces the occurrence of ORR, which prohibits the generation of OH∙ to decrease the ECL signal. The decrement of ECL intensity varied linearly with the concentration of sulfite in the range 2 nM to 50 μM with a detection limit of 0.14 nM (3σ). The proposed sensor exhibited good analytical performance, and could be used in the detection of sulfite in real samples. The results revealed that the electrocatalytic behavior of TiVC MXene is the key factor for strong cathodic Ru(bpy)32+ ECL, which provides new application in ECL sensing field.
Collapse
Affiliation(s)
- Haifeng Yao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Xinyi Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Yongping Dong
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| | - Mingfu Ye
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| |
Collapse
|
3
|
Ma T, Ren S, Wang Y, Yu H, Li L, Li X, Zhang L, Yu J, Zhang Y. Paper-based bipolar electrode electrochemiluminescence sensors for point-of-care testing. Biosens Bioelectron 2023; 235:115384. [PMID: 37244092 DOI: 10.1016/j.bios.2023.115384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
In the past few years, point-of-care testing (POCT) technology has crossed the boundaries of laboratory determination and entered the stage of practical applications. Herein, the latest advances and principal issues in the design and fabrication of paper-based bipolar electrode electrochemiluminescence (BPE-ECL) sensors, which are widely used in the POCT field, are highlighted. After introducing the attractive physical and chemical properties of cellulose paper, various approaches aimed at enhancing the functions of the paper, and their underlying principles are described. The materials typically employed for fabricating paper-based BPE are also discussed in detail. Subsequently, the universal method of enhancing BPE-ECL signal and improving detection accuracy is put forward, and the ECL detector widely used is introduced. Furthermore, the application of paper-based BPE-ECL sensors in biomedical, food, environmental and other fields are displayed. Finally, future opportunities and the remaining challenges are analyzed. It is expected that more design concepts and working principles for paper-based BPE-ECL sensors will be developed in the near future, paving the way for the development and application of paper-based BPE-ECL sensors in the POCT field and providing certain guarantee for the development of human health.
Collapse
Affiliation(s)
- Tinglei Ma
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Suyue Ren
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yixiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Luqing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
4
|
Zhao D, Liu Y, Jiang H, Yang H, Yu H, Qiao J, Li Z, Jin B, Wu M. Insights into the Mechanism of Bipolar Electrodeposition of Au Films and Its Application in Visual Detection of Prostate Specific Antigens. BIOSENSORS 2023; 13:158. [PMID: 36831924 PMCID: PMC9953799 DOI: 10.3390/bios13020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Au particles are commonly used for deposition on the surface of a bipolar electrode (BPE) in order to amplify electrochemical and electrochemiluminescence (ECL) signal because of their excellent conductivity, biocompatibility, and large surface area. In this work, a closed BPE device was fabricated and Au particles were deposited on the two poles of a BPE via bipolar deposition. Results indicated that the electrochemical stability of Au film on the anode part of the BPE and the reduction of AuCl4- to Au on the cathode part of the BPE depended on the conductivity of the solution. The prepared Au-Au BPE exhibited a remarkable amplification effect on the ECL signal. Then, a specific sensing interface was constructed on one pole of the BPE for the visual detection of prostate-specific antigens (PSA) based on sandwich-type immunoreactions between primary PSA antibodies (Ab1) on the electrode surface, PSA, and SiO2 nanoparticles labeled secondary PSA antibodies (SiO2-Ab2). The designed biosensor exhibited a good linear relationship for the ECL detection of PSA in the range of 1 × 10-6 to 1 × 10-10 g/mL with a correlation coefficient of 0.9866; the limit of detection (LOD) was 1.5 × 10-11 g/mL. Additionally, the biosensor can realize the electrochemical imaging of PSA by regulating the electrochemical oxidation of the Au anode with the immunoreactions on the cathode part of BPE. Therefore, the small, portable and highly sensitive biosensors have great potential for on-site detection.
Collapse
Affiliation(s)
- Daoyuan Zhao
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yujing Liu
- College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hong Jiang
- College of Life Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Haijian Yang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Huihui Yu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jingtang Qiao
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhiwen Li
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Bing Jin
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
5
|
Deng G, Zha H, Luo H, Zhou Y. Aptamer-conjugated gold nanoparticles and their diagnostic and therapeutic roles in cancer. Front Bioeng Biotechnol 2023; 11:1118546. [PMID: 36741760 PMCID: PMC9892635 DOI: 10.3389/fbioe.2023.1118546] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
The burden of incidence rate and mortality of cancer is increasing rapidly, and the development of precise intervention measures for cancer detection and treatment will help reduce the burden and pain of cancer. At present, the sensitivity and specificity of tumor markers such as CEA and CA-125 used clinically are low, while PET, SPECT, and other imaging diagnoses with high sensitivity possess shortcomings, including long durations to obtain formal reports and the inability to identify the molecular pathological type of cancer. Cancer surgery is limited by stage and easy to recur. Radiotherapy and chemotherapy often cause damage to normal tissues, leading to evident side effects. Aptamers can selectively and exclusively bind to biomarkers and have, therefore, gained attention as ligands to be targeted for cancer detection and treatment. Gold nanoparticles (AuNPs) are considered as promising nano carriers for cancer diagnosis and treatment due to their strong light scattering characteristics, effective biocompatibility, and easy surface modification with targeted agents. The aptamer-gold nanoparticles targeting delivery system developed herein can combine the advantages of aptamers and gold nanoparticles, and shows excellent targeting, high specificity, low immunogenicity, minor side effects, etc., which builds a bridge for cancer markers to be used in early and efficient diagnosis and precise treatment. In this review, we summarize the latest progress in the application of aptamer-modified gold nanoparticles in cancer targeted diagnosis and delivery of therapeutic agents to cancer cells and emphasize the prospects and challenges of transforming these studies into clinical applications.
Collapse
Affiliation(s)
- Guozhen Deng
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - He Zha
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Hongzhi Luo
- Department of Laboratory Medicine, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, Guizhou, China
| | - Yi Zhou
- Department of Orthopaedics, Jian Yang Hospital of Traditional Chinese Medicine, JianYang, Sichuan, China
| |
Collapse
|
6
|
Dou Y, Li Z, Su J, Song S. A Portable Biosensor Based on Au Nanoflower Interface Combined with Electrochemical Immunochromatography for POC Detection of Prostate-Specific Antigen. BIOSENSORS 2022; 12:bios12050259. [PMID: 35624559 PMCID: PMC9138250 DOI: 10.3390/bios12050259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 05/23/2023]
Abstract
Serum prostate-specific antigen (PSA) is a widely used for the detection of prostate cancer and is considered the most reliable biomarker. However, the currently reported detection methods cannot achieve rapid monitoring. Here, we report a novel electrochemical immunochromatography (EIC) system for clinically accurate PSA detection. First, we constructed a carbon interface modified with gold nanoflowers (Au NFs) based on screen-printed carbon electrodes (SPCE), which acted as nanostructures with larger specific surface area that increased the number of PSA capture antibodies and can further improve detection signal-to-noise (S/N) ratio. Then, we fabricated detection chips by combining the SPCE/Au NFs with EIC. Under optimized conditions, the proposed biosensor exhibits high accuracy, taking only 15 minutes to complete detection. By measuring the levels of PSA in clinical blood samples, the biosensor can successfully discriminate clinically diagnosed prostate cancer patients from healthy controls.
Collapse
Affiliation(s)
- Yanzhi Dou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Y.D.); (Z.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Y.D.); (Z.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Su
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China;
| | - Shiping Song
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; (Y.D.); (Z.L.)
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Correspondence:
| |
Collapse
|
7
|
Che ZY, Wang XY, Ma X, Ding SN. Bipolar electrochemiluminescence sensors: From signal amplification strategies to sensing formats. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214116] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Li M, Zhang W, Zhang Y. Aptamer-gold nanoparticle-signal probe bioconjugates amplify electrochemical signal for the detection of prostate specific antigen. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4150-4156. [PMID: 34554161 DOI: 10.1039/d1ay01175h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we reported a simple and sensitive electrochemical immunosensor for the detection of PSA, a prostate cancer biomarker. In the design protocol, gold nanoparticles (Au NPs) were used a carrier to load an aptamer and the binding DNA labeled with methylene blue (MB, signal probe) for signal amplification (denoted as aptamer-Au NP-signal probe bioconjugate). The immunosensor was fabricated by immobilizing antibodies on the electrode surface modified with Au NPs to capture the PSA antigen, and then sandwiched with the aptamer-Au NP-signal probe (AASp) bioconjugates. Square wave voltammetry (SWV) was employed to record the detection signal in phosphate-buffered solution (PBS, pH 7.4). As a result, a well-shaped peak was obtained at about -0.45 V (vs. SCE) corresponding to the oxidation of MB, and the peak intensity was related to the concentration of PSA. Because of the amplification of the detection signal by the as-synthesized AASp bioconjugates, the immunosensor achieved a wide linear response range (0.001 to 75.0 ng mL-1) and a low detection limit of 3.0 pg mL-1 (at S/N = 3). Further, the immunoassay exhibited excellent selectivity.
Collapse
Affiliation(s)
- Mengyao Li
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| | - Wenjuan Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| | - Yuzhong Zhang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, People's Republic of China.
| |
Collapse
|
9
|
Bouffier L, Zigah D, Sojic N, Kuhn A. Bipolar (Bio)electroanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:65-86. [PMID: 33940930 DOI: 10.1146/annurev-anchem-090820-093307] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This contribution reviews a selection of the most recent studies on the use of bipolar electrochemistry in the framework of analytical chemistry. Despite the fact that the concept is not new, with several important studies dating back to the middle of the last century, completely novel and very original approaches have emerged over the last decade. This current revival illustrates that scientists still (re)discover some exciting virtues of this approach, which are useful in many different areas, especially for tackling analytical challenges in an unconventional way. In several cases, this "wireless" electrochemistry strategy enables carrying out measurements that are simply not possible with classic electrochemical approaches. This review will hopefully stimulate new ideas and trigger scientists to integrate some aspects of bipolar electrochemistry in their work in order to drive the topic into yet unexplored and eventually completely unexpected directions.
Collapse
Affiliation(s)
- Laurent Bouffier
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Dodzi Zigah
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Alexander Kuhn
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| |
Collapse
|
10
|
Masturah binti Fakhruddin S, Ino K, Inoue KY, Nashimoto Y, Shiku H. Bipolar Electrode‐based Electrochromic Devices for Analytical Applications – A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Kosuke Ino
- Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
| | - Kumi Y. Inoue
- Graduate School of Environmental Studies Tohoku University Sendai 980-8579 Japan
- Center for Basic Education Faculty of Engineering Graduate Faculty of Interdisciplinary Research University of Yamanashi Kofu 400-8511 Japan
| | - Yuji Nashimoto
- Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
- Frontier Research Institute for Interdisciplinary Sciences Tohoku University Sendai 980-8578 Japan
| | - Hitoshi Shiku
- Graduate School of Environmental Studies Tohoku University Sendai 980-8579 Japan
- Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
| |
Collapse
|
11
|
Yang XY, Bai YY, Huangfu YY, Guo WJ, Yang YJ, Pang DW, Zhang ZL. Ultrasensitive Electrochemiluminescence Biosensor Based on Closed Bipolar Electrode for Alkaline Phosphatase Detection in Single Liver Cancer Cell. Anal Chem 2020; 93:1757-1763. [DOI: 10.1021/acs.analchem.0c04517] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao-Yan Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi-Yan Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yue-Yue Huangfu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Jing Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yan-Ju Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
12
|
Jin L, Qiao J, Chen J, Xu N, Wu M. Combination of area controllable sensing surface and bipolar electrode-electrochemiluminescence approach for the detection of tetracycline. Talanta 2020; 208:120404. [DOI: 10.1016/j.talanta.2019.120404] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 11/29/2022]
|
13
|
Wang D, Zhou J, Guo L, Qiu B, Lin Z. A surface-enhanced electrochemiluminescence sensor based on Au-SiO2 core–shell nanocomposites doped with Ru(bpy)32+ for the ultrasensitive detection of prostate-specific antigen in human serum. Analyst 2020; 145:132-138. [DOI: 10.1039/c9an01935a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study reports a surface-enhanced electrochemiluminescence (SEECL) sensor for the ultrasensitive detection of prostate-specific antigen (PSA) in human serum.
Collapse
Affiliation(s)
- Daifang Wang
- Fujian Vocational College of Bioengineering
- Fuzhou
- China
| | - Jin Zhou
- Fujian Vocational College of Bioengineering
- Fuzhou
- China
| | - Longhua Guo
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety
- College of Chemistry
- Fuzhou University
- Fuzhou
| |
Collapse
|
14
|
Liu R, Ye X, Cui T. Recent Progress of Biomarker Detection Sensors. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7949037. [PMID: 33123683 PMCID: PMC7585038 DOI: 10.34133/2020/7949037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Early cancer diagnosis and treatment are crucial research fields of human health. One method that has proven efficient is biomarker detection which can provide real-time and accurate biological information for early diagnosis. This review presents several biomarker sensors based on electrochemistry, surface plasmon resonance (SPR), nanowires, other nanostructures, and, most recently, metamaterials which have also shown their mechanisms and prospects in application in recent years. Compared with previous reviews, electrochemistry-based biomarker sensors have been classified into three strategies according to their optimizing methods in this review. This makes it more convenient for researchers to find a specific fabrication method to improve the performance of their sensors. Besides that, as microfabrication technologies have improved and novel materials are explored, some novel biomarker sensors-such as nanowire-based and metamaterial-based biomarker sensors-have also been investigated and summarized in this review, which can exhibit ultrahigh resolution, sensitivity, and limit of detection (LoD) in a more complex detection environment. The purpose of this review is to understand the present by reviewing the past. Researchers can break through bottlenecks of existing biomarker sensors by reviewing previous works and finally meet the various complex detection needs for the early diagnosis of human cancer.
Collapse
Affiliation(s)
- Ruitao Liu
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Xiongying Ye
- State Key Lab Precise Measurement Technology & Instrument, Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
15
|
Dinel M, Tartaggia S, Wallace GQ, Boudreau D, Masson J, Polo F. The Fundamentals of Real‐Time Surface Plasmon Resonance/Electrogenerated Chemiluminescence. Angew Chem Int Ed Engl 2019; 58:18202-18206. [DOI: 10.1002/anie.201909806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Marie‐Pier Dinel
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Stefano Tartaggia
- Farmacologia Sperimentale e ClinicaIRCCS Centro di Riferimento Oncologico Via Franco Gallini 2 33081 Aviano Italy
| | - Gregory Q. Wallace
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Denis Boudreau
- Department of Chemistry and Centre for Optics, Photonics and Lasers (COPL)Université Laval 1045, av. de la Médecine Québec Qc G1V 0A6 Canada
| | - Jean‐Francois Masson
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Federico Polo
- Department of Molecular Sciences and NanosystemsCa' Foscari University of Venice Via Torino 155B 30172 Venezia Italy
| |
Collapse
|
16
|
Proença CA, Freitas TA, Baldo TA, Materón EM, Shimizu FM, Ferreira GR, Soares FLF, Faria RC, Oliveira ON. Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2171-2181. [PMID: 31807403 PMCID: PMC6880837 DOI: 10.3762/bjnano.10.210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/07/2019] [Indexed: 05/03/2023]
Abstract
Diagnosis of cancer using electroanalytical methods can be achieved at low cost and in rapid assays, but this may require the combination with data treatment for determining biomarkers in real samples. In this paper, we report an immunomagnetic nanoparticle-based microfluidic sensor (INμ-SPCE) for the amperometric detection of the prostate-specific antigen (PSA) biomarker, the data of which were treated with information visualization methods. The INμ-SPCE consists of eight working electrodes, reference and counter electrodes. On the working electrodes, magnetic nanoparticles with secondary antibodies with the enzyme horseradish peroxidase were immobilized for the indirect detection of PSA in a sandwich-type procedure. Under optimal conditions, the immunosensor could operate within a wide range from 12.5 to 1111 fg·L-1, with a low detection limit of 0.062 fg·L-1. Multidimensional projections combined with feature selection allowed for the distinction of cell lysates with different levels of PSA, in agreement with results from the traditional enzyme-linked immunosorbent assay. The approaches for immunoassays and data processing are generic, and therefore the strategies described here may provide a simple platform for clinical diagnosis of cancers and other types of diseases.
Collapse
Affiliation(s)
- Camila A Proença
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Tayane A Freitas
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Thaísa A Baldo
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Elsa M Materón
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| | - Flávio M Shimizu
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, São Paulo, Brazil
| | - Gabriella R Ferreira
- Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, São Paulo, Brazil
| | - Frederico L F Soares
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
- Chemistry Department, Federal University of Paraná, Curitiba, 81531-980, Paraná, Brazil
| | - Ronaldo C Faria
- Chemistry Department, Federal University of São Carlos, CP 676, São Carlos 13565-905, São Paulo, Brazil
| | - Osvaldo N Oliveira
- São Carlos Institute of Physics, University of São Paulo, CP 369, São Carlos 13560-970, São Paulo, Brazil
| |
Collapse
|
17
|
Dinel M, Tartaggia S, Wallace GQ, Boudreau D, Masson J, Polo F. The Fundamentals of Real‐Time Surface Plasmon Resonance/Electrogenerated Chemiluminescence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Marie‐Pier Dinel
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Stefano Tartaggia
- Farmacologia Sperimentale e ClinicaIRCCS Centro di Riferimento Oncologico Via Franco Gallini 2 33081 Aviano Italy
| | - Gregory Q. Wallace
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Denis Boudreau
- Department of Chemistry and Centre for Optics, Photonics and Lasers (COPL)Université Laval 1045, av. de la Médecine Québec Qc G1V 0A6 Canada
| | - Jean‐Francois Masson
- Department of ChemistryUniversité de Montréal C.P. 6128 Succ. Centre-Ville Montreal Qc H3C 3J7 Canada
| | - Federico Polo
- Department of Molecular Sciences and NanosystemsCa' Foscari University of Venice Via Torino 155B 30172 Venezia Italy
| |
Collapse
|
18
|
Sensitive determination of bromhexine hydrochloride based on its quenching effect on luminol/H2
O2
electrochemiluminescence system. LUMINESCENCE 2018; 33:698-703. [DOI: 10.1002/bio.3466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 01/10/2023]
|
19
|
CdS:Mn quantum dot-functionalized g-C3N4 nanohybrids as signal-generation tags for photoelectrochemical immunoassay of prostate specific antigen coupling DNAzyme concatamer with enzymatic biocatalytic precipitation. Biosens Bioelectron 2017; 95:34-40. [DOI: 10.1016/j.bios.2017.04.005] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/10/2017] [Accepted: 04/10/2017] [Indexed: 11/21/2022]
|
20
|
Feng J, Li Y, Li M, Li F, Han J, Dong Y, Chen Z, Wang P, Liu H, Wei Q. A novel sandwich-type electrochemical immunosensor for PSA detection based on PtCu bimetallic hybrid (2D/2D) rGO/g-C3N4. Biosens Bioelectron 2017; 91:441-448. [DOI: 10.1016/j.bios.2016.12.070] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 12/01/2022]
|
21
|
Zhang X, Zhai Q, Xing H, Li J, Wang E. Bipolar Electrodes with 100% Current Efficiency for Sensors. ACS Sens 2017; 2:320-326. [PMID: 28723210 DOI: 10.1021/acssensors.7b00031] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A bipolar electrode (BPE) is an electron conductor that is embedded in the electrolyte solution without the direct connection with the external power source (driving electrode). When the sufficient voltage was provided, the two poles of BPE promote different oxidation and reduction reactions. During the past few years, BPEs with wireless feature and easy integration showed great promise in the various fields including asymmetric modification/synthesis, motion control, targets enrichment/separation, and chemical sensing/biosensing combined with the quantitative relationship between two poles of BPE. In this perspective paper, we first describe the concept and history of the BPE for analytical chemistry and then review the recent developments in the application of BPEs for sensing with ultrahigh current efficiency (ηc = iBPE/ichannel) including the open and closed bipolar system. Finally, we offer the guide for possible challenge faced and solution in the future.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Qingfeng Zhai
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Huanhuan Xing
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Jing Li
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| | - Erkang Wang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100039, P. R. China
| |
Collapse
|
22
|
Tham SM, Esuvaranathan K, Mahendran R. A Murine Orthotopic Bladder Tumor Model and Tumor Detection System. J Vis Exp 2017. [PMID: 28117816 DOI: 10.3791/55078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This protocol describes the generation of bladder tumors in female C57BL/6J mice using the murine bladder cancer cell line MB49, which has been modified to secrete human Prostate Specific Antigen (PSA), and the procedure for the confirmation of tumor implantation. In brief, mice are anesthetized using injectable drugs and are made to lay in the dorsal position. Urine is vacated from the bladder and 50 µL of poly-L-lysine (PLL) is slowly instilled at a rate of 10 µL/20 s using a 24 G IV catheter. It is left in the bladder for 20 min by stoppering the catheter. The catheter is removed and PLL is vacated by gentle pressure on the bladder. This is followed by instillation of the murine bladder cancer cell line (1 x 105 cells/50 µL) at a rate of 10 µL/20 s. The catheter is stoppered to prevent premature evacuation. After 1 h, the mice are revived with a reversal drug, and the bladder is vacated. The slow instillation rate is important, as it reduces vesico-ureteral reflux, which can cause tumors to occur in the upper urinary tract and in the kidneys. The cell line should be well re-suspended to reduce clumping of cells, as this can lead to uneven tumor sizes after implantation. This technique induces tumors with high efficiency. Tumor growth is monitored by urinary PSA secretion. PSA marker monitoring is more reliable than ultrasound or fluorescence imaging for the detection of the presence of tumors in the bladder. Tumors in mice generally reach a maximum size that negatively impacts health by about 3 - 4 weeks if left untreated. By monitoring tumor growth, it is possible to differentiate mice that were cured from those that were not successfully implanted with tumors. With only end-point analysis, the latter may be mistakenly assumed to have been cured by therapy.
Collapse
Affiliation(s)
- Sin Mun Tham
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System
| | - Kesavan Esuvaranathan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System; Department of Urology, National University Hospital
| | - Ratha Mahendran
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System;
| |
Collapse
|
23
|
Ju HX, Zhuang QK, Long YT. The Preface. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Shi HW, Zhao W, Liu Z, Liu XC, Xu JJ, Chen HY. Temporal Sensing Platform Based on Bipolar Electrode for the Ultrasensitive Detection of Cancer Cells. Anal Chem 2016; 88:8795-801. [DOI: 10.1021/acs.analchem.6b02204] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hai-Wei Shi
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Zhao
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Liu
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xi-Cheng Liu
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key
Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Rahi A, Sattarahmady N, Heli H. Label-free electrochemical aptasensing of the human prostate-specific antigen using gold nanospears. Talanta 2016; 156-157:218-224. [PMID: 27260456 DOI: 10.1016/j.talanta.2016.05.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/03/2016] [Accepted: 05/05/2016] [Indexed: 12/22/2022]
Abstract
Gold nanospears were electrodeposited with the assistance of arginine as a soft template and precise selection of experimental parameters. The nanospears were then employed as a transducer to immobilize an aptamer of prostate-specific antigen (PSA) and fabrication of a label-free electrochemical aptasensor. The aptasensor was employed for the detection of PSA with a linear concentration range of 0.125-200ngmL(-1) and a limit of detection of 50pgmL(-1). The aptasensor was successfully applied to detect PSA in blood serum samples of healthy and patient persons.
Collapse
Affiliation(s)
- A Rahi
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - H Heli
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|