1
|
Ning X, Du N, Zhang X, Wang S, Zhi Y, Li Z, Ren Z, Ku T, Li G, Sang N. Metastatic effects of hydroxy-polycyclic aromatic hydrocarbons on liver cancer cells mediated by estrogen receptor α. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175878. [PMID: 39222821 DOI: 10.1016/j.scitotenv.2024.175878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Hydroxy-polycyclic aromatic hydrocarbons (OH-PAHs) are a growing worldwide concern because of their persistence, ubiquity, and toxicity. Nonetheless, research on the toxicological mechanisms of OH-PAHs remains sparse, particularly concerning the risk of liver cancer. This study evaluated the effects of OH-PAHs on disrupting estrogen receptor α (ERα) and subsequently facilitating hepatocellular invasion and metastasis. Results revealed that all six OH-PAHs exhibited ERα agonistic activities at noncytotoxic levels, which were partially validated using molecular docking (MD) and molecular dynamics simulations (MDS). Furthermore, OH-PAHs with ERα agonistic properties stimulated a concentration-dependent increase in the migration and invasion of HepG2 cells. In addition, they disturbed the expression of target genes associated with epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM), and the invasion effects were significantly reversed by adding an ERα antagonist. Our results suggest an essential role of ERα in the metastasis of liver cancer cells induced by OH-PAHs and emphasize their potential ecological and health hazards.
Collapse
Affiliation(s)
- Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Du
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xiaofeng Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shuo Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yan Zhi
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhaoli Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
2
|
Jin R, Liu G, Zhou X, Zhang Z, Lin B, Liu Y, Qi Z, Zheng M. Analysis of polycyclic aromatic hydrocarbon derivatives in environment. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Jouyban A, Nemati M, Farazajdeh MA, Yazdani A, Afshar Mogaddam MR. Salt-induced homogenous solid phase extraction of hydroxylated metabolites of polycyclic aromatic hydrocarbons from urine samples using a deep eutectic solvent as an elution solvent prior to HPLC-FLD analysis. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Jouyban A, Nemati M, Farazajdeh MA, Alizadeh Nabil AA, Afshar Mogaddam MR. A polymer-based dispersive solid phase extraction combined with deep eutectic solvent based-dispersive liquid-liquid microextraction for the determination of four hydroxylated polycyclic aromatic hydrocarbons from urine samples. J Sep Sci 2021; 44:4025-4036. [PMID: 34459108 DOI: 10.1002/jssc.202100269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/31/2021] [Accepted: 08/23/2021] [Indexed: 11/07/2022]
Abstract
A new and efficient extraction procedure was proposed and used for the simultaneous extraction of four hydroxylated metabolites polycyclic aromatic hydrocarbons from urine samples. The extraction procedure was started by dissolving an organic polymer into a water-miscible organic solvent (iso-propanol) and its injection into the sample solution. The sorbent was re-precipitated in all parts of the solution as tiny particles and the analytes were adsorbed onto the sorbent. After that, the sorbent was separated and the adsorbed analytes were eluted by choline chloride: dichloroacetic acid deep eutectic solvent. The elution solvent was mixed with choline chloride-3,3-dimethyl butyric acid deep eutectic solvent and the mixture was applied in dispersive liquid-liquid microextraction procedure for more concentration of the analytes. After optimization, the method validation was followed according to International Council Harmonization guidelines and the results showed that wide linear ranges (26-500 000 ng/L) and low limits of detection (3.6-7.2 ng/L) and quantification (11-26 ng/L) were obtained. Satisfactory enrichment factors (435-475) and extraction recoveries (87-95%), and acceptable relative standard deviations (equal or less than 8.6%) were obtained. Finally, the introduced method was successfully applied for determination of the analytes in urine samples obtained from tobacco smokers.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Halal Research Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Mir Ali Farazajdeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Mersin, Turkey
| | | | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
5
|
Xiao Y, Deng J, Fang L, Tu L, Luan T. Mapping the distribution of perfluoroalkyl substances in zebrafishes by liquid extraction surface analysis mass spectrometry. Talanta 2021; 231:122377. [PMID: 33965041 DOI: 10.1016/j.talanta.2021.122377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 10/21/2022]
Abstract
Investigation on the distribution of persistent organic pollutants (POPs) in aquatic organisms is of great importance for exploring the biological toxicity and health risks of environmental pollutants. In this study, a liquid extraction surface analysis mass spectrometry (LESA-MS) method was developed for rapid and in situ analysis of the spatial distribution of perfluoroalkyl substances (PFASs) in zebrafish. By combining the high-precision automated moving platform of LESA device and the high-resolution MS, quantitative analysis of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in zebrafish tissue section were easily achieved. A tissue-specific ionization efficiency factor (TSF) strategy was also proposed to correct the matrix effect in different parts of zebrafish tissue. By using the developed method, high sensitive and efficient imaging of PFOA and PFOS in zebrafish tissue was achieved, and the distributions of PFOA and PFOS in descending order were gills, organs, roes, pelvic fin, muscle, and brain. The experimental results demonstrated that the coupling of LESA-MS method with TFS strategy is an efficient and reliable approach for monitoring the content distribution of environmental pollutants in biological tissues.
Collapse
Affiliation(s)
- Yipo Xiao
- State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou, 510275, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China.
| | - Ling Fang
- State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou, 510275, China
| | - Lanyin Tu
- State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou, 510275, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences, Sun Yat-Sen University, 135 Xingangxi Road, Guangzhou, 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou, 510006, China.
| |
Collapse
|
6
|
On-line coupling of two-phase microelectroextraction to capillary electrophoresis – Mass spectrometry for metabolomics analyses. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
George MJ, Madala NE, Dubery IA. Application of an agitation-assisted dispersed solvent microextraction for analysis of naphthalene and its derivatives from aqueous matrices. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:494. [PMID: 32642872 DOI: 10.1007/s10661-020-08457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Agitation-assisted dispersive liquid-liquid extraction without a dispersing solvent is lately receiving considerable attention owing to the low to no solvent loss relative to its predecessor, which suffers severe extracting solvent loss. Herein, we report the application of a simple agitation-assisted dispersive liquid-liquid microextraction method, without a disperser solvent, for the extraction of naphthalene and its derivatives from aqueous solutions. Under the optimised conditions, namely, 25 μL 3:1 mixture of dichloroethane and ethylacetate with 20 s agitation, in 2-mL aqueous solutions containing 10% NaCl, the method demonstrated acceptable figures of merit: linearity-R2 ≥ 0.9914 in the concentration range 0.5-50 ng/mL, repeatability (%RSD ≤ 12.9 for n = 15) and limits of detection (0.034-0.081 ng/mL). The recoveries obtained from the spiked dam water sample were also satisfactory (94-103%). These parameters are comparable with those reported in literature, especially for dispersive liquid-liquid microextraction techniques albeit for different analytes. Despite only naphthol being detected in one of the three sampled sites, the method shows considerable promise for routine monitoring of river and dam water quality subject to accuracy validation using certified reference materials.
Collapse
Affiliation(s)
- Mosotho J George
- Department of Chemistry and Chemical Technology, National University of Lesotho, P.O. Roma, Roma, 180, Lesotho.
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, Gauteng, 2006, South Africa.
| | - Ntakadzeni E Madala
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, Gauteng, 2006, South Africa
- Department of Biochemistry, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Ian A Dubery
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg, Gauteng, 2006, South Africa
| |
Collapse
|
8
|
Delove Tegladza I, Qi T, Chen T, Alorku K, Tang S, Shen W, Kong D, Yuan A, Liu J, Lee HK. Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: A review. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122403. [PMID: 32126428 DOI: 10.1016/j.jhazmat.2020.122403] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Single-drop microextraction (SDME) techniques are efficient approaches to pretreatment of aqueous samples. The main advantage of SDME lies in the miniaturization of the solvent extraction process, minimizing the hazards associated with the use of toxic organic solvents. Thus, SDME techniques are cost-effective, and represent less harm to the environment, subscribing to green analytical chemistry principles. In practice, two main approaches can be used to perform SDME - direct immersion (DI)-SDME and headspace (HS)-SDME. Even though the DI-SDME has been shown to be quite effective for extraction and enrichment of various organic compounds, applications of DI-SDME are normally more suitable for moderately polar and non-polar semi-volatile organic compounds (SVOCs) using organic solvents which are immiscible with water. In this review, we present a historical overview and current advances in DI-SDME, including the common analytical tools which are usually coupled with DI-SDME. The review also focuses on applications concerning SVOCs in environmental samples. Currents trends in DI-SDME and possible future direction of the procedure are discussed.
Collapse
Affiliation(s)
- Isaac Delove Tegladza
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tong Qi
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Tianyu Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Kingdom Alorku
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Jianfeng Liu
- Shanghai Waigaoqiao Shipbuilding Co., Ltd, Shanghai, 200137, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
9
|
Jinadasa BKKK, Monteau F, Morais S. Critical review of micro-extraction techniques used in the determination of polycyclic aromatic hydrocarbons in biological, environmental and food samples. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1004-1026. [PMID: 32186468 DOI: 10.1080/19440049.2020.1733103] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous environmental contaminants and their accurate determination is very important to human health and environment safety. In this review, sorptive-based micro-extraction techniques [such as Solid-Phase Micro-extraction (SPME), Stir Bar Sorptive Extraction (SBSE), Micro-extraction in Packed Sorbent (MEPS)] and solvent-based micro-extraction [Membrane-Mediated Liquid-Phase Micro-extraction (MM-LPME), Dispersive Liquid-Liquid Micro-extraction (DLLME), and Single Drop Micro-extraction (SDME)] developed for quantification of PAHs in environmental, biological and food samples are reviewed. Moreover, recent micro-extraction techniques that have been coupled with other sample extraction strategies are also briefly discussed. The main objectives of these micro-extraction techniques are to perform extraction, pre-concentration and clean up together as one step, and the reduction of the analysis time, cost and solvent following the green chemistry guidelines.
Collapse
Affiliation(s)
- B K K K Jinadasa
- Laboratoire D'étude Des Résidus Et Contaminants Dans Les Aliments (LABERCA), Nantes-Atlantic National College of Veterinary Medicine, Food Science, and Engineering (ONIRIS) , Nantes, France
| | - Fabrice Monteau
- Laboratoire D'étude Des Résidus Et Contaminants Dans Les Aliments (LABERCA), Nantes-Atlantic National College of Veterinary Medicine, Food Science, and Engineering (ONIRIS) , Nantes, France
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior De Engenharia Do Porto, Instituto Politécnico Do Porto , Porto, Portugal
| |
Collapse
|
10
|
Synthesis and characterization of deep eutectic solvents (five hydrophilic and three hydrophobic), and hydrophobic application for microextraction of environmental water samples. Anal Bioanal Chem 2019; 411:7489-7498. [DOI: 10.1007/s00216-019-02143-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 10/25/2022]
|
11
|
Xia L, Du Y, Xiao X, Li G. One-step membrane protected micro-solid-phase extraction and derivatization coupling to high-performance liquid chromatography for selective determination of aliphatic aldehydes in cosmetics and food. Talanta 2019; 202:580-590. [DOI: 10.1016/j.talanta.2019.05.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 01/19/2023]
|
12
|
Metal azolate framework-66-coated fiber for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. J Chromatogr A 2019; 1584:57-63. [DOI: 10.1016/j.chroma.2018.11.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
|
13
|
Zhang W, Zhang Y, Zhang G, Liu J, Zhao W, Zhang W, Hu K, Xie F, Zhang S. Facile preparation of a cationic COF functionalized magnetic nanoparticle and its use for the determination of nine hydroxylated polycyclic aromatic hydrocarbons in smokers’ urine. Analyst 2019; 144:5829-5841. [DOI: 10.1039/c9an01188a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel cationic-COF coated double-shell magnetic sorbent, possessing excellent dispersive capability, high stability, and desirable absorption affinity, was prepared.
Collapse
Affiliation(s)
- Wenfen Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
- Mechanical Engineering and Materials Science
| | - Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- Hong Kong
| | - Guangrui Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Jiying Liu
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Wuduo Zhao
- Center of Advanced Analysis and Computational Science
- Key Laboratory of Molecular Sensing and Harmful Substances Detection Technology
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Wenjing Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| | - Kai Hu
- Henan University of Traditional Chinese Medicine
- Zhengzhou
- P. R. China
| | - Fuwei Xie
- Zhengzhou Tobacco Research Institute of CNTC
- Zhengzhou
- P. R. China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou
- P. R. China
| |
Collapse
|
14
|
Tang S, Qi T, Ansah PD, Nalouzebi Fouemina JC, Shen W, Basheer C, Lee HK. Single-drop microextraction. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Influence of relevant parameters on the extraction efficiency and the stability of the microdrop in the single drop microextraction. ACTA CHIMICA SLOVACA 2018. [DOI: 10.2478/acs-2018-0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Single drop microextraction technique uses microamounts of organic solvents. Simplicity, low cost, low environmental impact, compatibility with chromatographic systems as well as its applicability to different matrices are main advantages of single drop microextraction. This technique has become frequently used for the extraction of a broad scope of compounds for numerous analytical applications. This review provides an overview of the existing single drop microextraction modes of realisation and the main scope is devoted to the optimization of parameters influencing the efficiency. The state of the art is discussed on the basis of examples selected from representative application areas. Extraction parameters for toxic organic compounds extraction and microdrop stability were evaluated.
Collapse
|
16
|
|
17
|
Determination of ochratoxin A in fruit juice by high-performance liquid chromatography after vortex-assisted emulsification microextraction based on solidification of floating organic drop. Mycotoxin Res 2017; 34:15-20. [DOI: 10.1007/s12550-017-0294-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/26/2017] [Accepted: 08/31/2017] [Indexed: 01/17/2023]
|
18
|
Wejnerowska G. Development of a Single-Drop Microextraction with Derivatization Procedure for Analysis of Volatile Fatty Acids in Water Samples. Chromatographia 2017; 80:1115-1120. [PMID: 28725084 PMCID: PMC5486468 DOI: 10.1007/s10337-017-3316-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 01/19/2023]
Abstract
A single-drop microextraction (SDME) was developed for the analysis of volatile fatty acids (VFAs) (C2–C7) in water by gas chromatography (GC) with flame ionization detection. The significant parameters affecting the SDME performance such as selection of microextraction solvent, extraction time, stirring rate, sample pH and temperature, and ionic strength were studied and optimized. To lower limits of detection, derivatization of VFAs by N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA) was performed. The method developed requires very short time of extraction and derivatization (13 min) and it is characterized by a good precision (max RSD = 11.4%), linearity and relatively low limits of detection (from 8.3 mg L−1 for acetic acid to 0.008 mg L−1 for heptanoic acid). The results of the SDME in combination with GC show promising potential for the analysis of VFAs in water samples.
Collapse
Affiliation(s)
- Grażyna Wejnerowska
- Department of Food Analytics and Environmental Protection, Faculty of Chemical Technology and Engineering, University of Science and Technology in Bydgoszcz, Seminaryjna 3 St., 85-326 Bydgoszcz, Poland
| |
Collapse
|