1
|
Pang B, Reid MS, Wei J, Peng H, Bu L, Li J, Zhang H, Le XC. Protein-Induced DNA Dumbbell Amplification (PINDA) and its applications to food hazards detection. Biosens Bioelectron 2024; 266:116720. [PMID: 39241338 DOI: 10.1016/j.bios.2024.116720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
Quantification of trace amounts of proteins is technically challenging because proteins cannot be directly amplified like nucleic acids. To improve the analytical sensitivity and to complement conventional protein analysis methods, we developed a highly sensitive and homogeneous detection strategy called Protein-Induced DNA Dumbbell Amplification (PINDA). PINDA combines protein recognition with exponential nucleic acid amplification by using protein binding probes made of DNA strands conjugated to protein affinity ligands. When a pair of probes bind to the same target protein, complementary nucleic acid sequences that are conjugated to each probe are brought into close proximity. The increased local concentration of the probes results in the formation of a stable dumbbell structure of the nucleic acids. The DNA dumbbell is readily amplifiable exponentially using techniques such as loop-mediated isothermal amplification. The PINDA assay eliminates the need for washing or separation steps, and is suitable for on-site applications. Detection of the model protein, thrombin, has a linear range of 10 fM-100 pM and detection limit of 10 fM. The PINDA technique is successfully applied to the analysis of dairy samples for the detection of β-lactoglobulin, a common food allergen, and Salmonella enteritidis, a foodborne pathogenic bacterium. The PINDA assay can be easily modified to detect other targets by changing the affinity ligands used to bind to the specific targets.
Collapse
Affiliation(s)
- Bo Pang
- School of Public Health, Jilin University, Changchun, 130021, PR China; Division of Analytical and Environmental Toxicology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada
| | - Michael S Reid
- Division of Analytical and Environmental Toxicology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada; Alberta Precision Laboratories and Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, T2L 2K8, Canada
| | - Jia Wei
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Hanyong Peng
- Division of Analytical and Environmental Toxicology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Liangyun Bu
- School of Public Health, Jilin University, Changchun, 130021, PR China
| | - Juan Li
- School of Public Health, Jilin University, Changchun, 130021, PR China.
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada.
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
2
|
Masurier A, Sieskind R, Gines G, Rondelez Y. DNA circuit-based immunoassay for ultrasensitive protein pattern classification. Analyst 2024; 149:5052-5062. [PMID: 39206940 DOI: 10.1039/d4an00728j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cytokines are important immune modulators, and pivotal biomarkers for the diagnostic of various diseases. In standard analytical procedure, each protein is detected individually, using for instance gold standard ELISA protocols or nucleic acid amplification-based immunoassays. In recent years, DNA nanotechnology has been employed for creating sophisticated biomolecular systems that perform neuromorphic computing on molecular inputs, opening the door to concentration pattern recognition for biomedical applications. This work introduces immuno-PUMA (i-PUMA), an isothermal amplification-based immunoassay for ultrasensitive protein detection. The assay couples the convenience of supported format of an ELISA protocol with the computing capabilities of a DNA/enzyme circuit. We demonstrate a limit of detection of 2.1 fM, 8.7 fM and 450 aM for IL12, IL4 and IFNγ cytokines, respectively, outperforming the traditional ELISA format. i-PUMA's versatility extends to molecular computation, allowing the creation of 2-input perceptron-like classifiers for IL12 and IL4, with tunable weight sign and amplitude. Overall, i-PUMA represents a sensitive, low-cost, and versatile immunoassay with potential applications in multimarker-based sample classification, complementing existing molecular profiling techniques.
Collapse
Affiliation(s)
- Antoine Masurier
- Gulliver Laboratory, ESPCI Paris Université PSL, 10 rue Vauquelin, 75005 Paris, France.
| | - Rémi Sieskind
- Gulliver Laboratory, ESPCI Paris Université PSL, 10 rue Vauquelin, 75005 Paris, France.
| | - Guillaume Gines
- Gulliver Laboratory, ESPCI Paris Université PSL, 10 rue Vauquelin, 75005 Paris, France.
| | - Yannick Rondelez
- Gulliver Laboratory, ESPCI Paris Université PSL, 10 rue Vauquelin, 75005 Paris, France.
| |
Collapse
|
3
|
Kuang K, Lu Y, Chen Y, Zhang P, Jia N. Double-enhanced sandwich electrochemiluminescence aptasensor based on g-C 3N 4-Au-luminol nanocomposites and ZnCuS nanosheets for highly sensitive detection of mucin 1. Talanta 2024; 273:125867. [PMID: 38447340 DOI: 10.1016/j.talanta.2024.125867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
The traditional luminol electrochemiluminescence (ECL) sensing suffers from low signal response and instability issues. Here, an Au/ZnCuS double-enhanced g-C3N4-supported luminol ECL aptasensor is constructed for the sensitive detection of human mucin 1 (MUC1). In this platform, g-C3N4 of a large specific surface area is beneficial to load more luminol illuminants. Au nanoparticles promote the decomposition of H2O2 coreactants to generate more reactive oxygen (•OH and O2•-) intermediates, while ZnCuS can immobilize the aptamer and simultaneously catalyze H2O2 decomposition, realizing the double-wing signal amplification. Under optimal conditions, this sensor shows a good detection capability within 1.0 × 10-4-1.0 × 103 ng mL-1 and a low detection limit of 5.0 × 10-5 ng mL-1, as well as ideal stability, selectivity, and reproducibility. This double-enhanced aptasensor highlights a new signal-enhancement approach for early biomarker detection.
Collapse
Affiliation(s)
- Kaida Kuang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yao Lu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Yang Chen
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Pei Zhang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Nengqin Jia
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
4
|
Gautam SK, Khan P, Natarajan G, Atri P, Aithal A, Ganti AK, Batra SK, Nasser MW, Jain M. Mucins as Potential Biomarkers for Early Detection of Cancer. Cancers (Basel) 2023; 15:1640. [PMID: 36980526 PMCID: PMC10046558 DOI: 10.3390/cancers15061640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/10/2023] Open
Abstract
Early detection significantly correlates with improved survival in cancer patients. So far, a limited number of biomarkers have been validated to diagnose cancers at an early stage. Considering the leading cancer types that contribute to more than 50% of deaths in the USA, we discuss the ongoing endeavors toward early detection of lung, breast, ovarian, colon, prostate, liver, and pancreatic cancers to highlight the significance of mucin glycoproteins in cancer diagnosis. As mucin deregulation is one of the earliest events in most epithelial malignancies following oncogenic transformation, these high-molecular-weight glycoproteins are considered potential candidates for biomarker development. The diagnostic potential of mucins is mainly attributed to their deregulated expression, altered glycosylation, splicing, and ability to induce autoantibodies. Secretory and shed mucins are commonly detected in patients' sera, body fluids, and tumor biopsies. For instance, CA125, also called MUC16, is one of the biomarkers implemented for the diagnosis of ovarian cancer and is currently being investigated for other malignancies. Similarly, MUC5AC, a secretory mucin, is a potential biomarker for pancreatic cancer. Moreover, anti-mucin autoantibodies and mucin-packaged exosomes have opened new avenues of biomarker development for early cancer diagnosis. In this review, we discuss the diagnostic potential of mucins in epithelial cancers and provide evidence and a rationale for developing a mucin-based biomarker panel for early cancer detection.
Collapse
Affiliation(s)
- Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Abhijit Aithal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Apar K. Ganti
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Oncology-Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd W. Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred & Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Torabi M, Aghanejad A, Savadi P, Barzegari A, Omidi Y, Barar J. Targeted Delivery of Sunitinib by MUC-1 Aptamer-Capped Magnetic Mesoporous Silica Nanoparticles. Molecules 2023; 28:molecules28010411. [PMID: 36615606 PMCID: PMC9824472 DOI: 10.3390/molecules28010411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Magnetic mesoporous silica nanoparticles (MMSNPs) are being widely investigated as multifunctional novel drug delivery systems (DDSs) and play an important role in targeted therapy. Here, magnetic cores were synthesized using the thermal decomposition method. Further, to improve the biocompatibility and pharmacokinetic behavior, mesoporous silica was synthesized using the sol-gel process to coat the magnetic cores. Subsequently, sunitinib (SUN) was loaded into the MMSNPs, and the particles were armed with amine-modified mucin 1 (MUC-1) aptamers. The MMSNPs were characterized using FT-IR, TEM, SEM, electrophoresis gel, DLS, and EDX. MTT assay, flow cytometry analysis, ROS assessment, and mitochondrial membrane potential analysis evaluated the nanoparticles' biological impacts. The physicochemical analysis revealed that the engineered MMSNPs have a smooth surface and spherical shape with an average size of 97.6 nm. The biological in vitro analysis confirmed the highest impacts of the targeted MMSNPs in MUC-1 overexpressing cells (OVCAR-3) compared to the MUC-1 negative MDA-MB-231 cells. In conclusion, the synthesized MMSNP-SUN-MUC-1 nanosystem serves as a unique multifunctional targeted delivery system to combat the MUC-1 overexpressing ovarian cancer cells.
Collapse
Affiliation(s)
- Mitra Torabi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 516664-14766, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
- Correspondence: (A.A.); or (J.B.); Tel./Fax: +98-41-33367929 (A.A.); +1-(954)-262-1878 (J.B.)
| | - Pouria Savadi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (Di.S.T.A.Bi.F.), University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 516664-14766, Iran
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Correspondence: (A.A.); or (J.B.); Tel./Fax: +98-41-33367929 (A.A.); +1-(954)-262-1878 (J.B.)
| |
Collapse
|
6
|
Fernandes LP, Rocha MN, Duarte CG, Minozzo JC, do Monte-Neto RL, Felicori LF. Validation of a colorimetric LAMP to detect Loxosceles experimental envenomation. Toxicon 2022; 216:50-56. [PMID: 35787893 DOI: 10.1016/j.toxicon.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Diagnostic tests for brown spider accidents are unavailable and impact treatment decisions, increasing costs and patient risks. In this work, we used for the first time a fast, simple, and visual method based on the loop-mediated isothermal amplification assay (LAMP) to detect Loxosceles envenomation. Using the DNA from L. similis legs, we observed a high sensitivity using this test since as low as 0.32 pg of DNA could be detected. This pH-dependent colorimetric assay was 64 times more sensitive than PCR to detect spider DNA. The test was specific for Loxosceles once no cross-reaction was observed when testing DNA from different agents that cause similar dermonecrotic injuries. The test allowed the detection of Loxosceles intermedia DNA from hair, serum, and exudate samples obtained from experimentally-envenomed rabbit within 72 h. The method sensitivity varied according to the sample and the collection time, reaching 100% sensitivity in serum and hair, respectively, 1 h and 24 h after the experimental envenomation. Due to its ease of execution, speed, sensitivity, and specificity, LAMP presents an excellent potential for identifying Loxosceles spp. Envenomation. This can reduce the burden on the Health System and the morbidity for the patient by implementing the appropriate therapy immediately.In addition, this work opens up the perspective to other venomous animal accident identification using LAMP.
Collapse
Affiliation(s)
- Luana Paula Fernandes
- Laboratory of Synthetic Biology and Biomimetics, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marcele Neves Rocha
- Laboratory of Synthetic Biology and Biomimetics, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Clara Guerra Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - João Carlos Minozzo
- Production and Research Centre of Immunobiological Products, Department of Health of the State of Paraná, Piraquara 83302-200, Brazil
| | - Rubens L do Monte-Neto
- Biotechnology Applied to Patogens (BAP) - Instituto René Rachou - Fundação Oswaldo Cruz, Belo Horizonte, 30190-009, Minas Gerais, Brazil
| | - Liza F Felicori
- Laboratory of Synthetic Biology and Biomimetics, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
7
|
Savonnet M, Aubret M, Laurent P, Roupioz Y, Cubizolles M, Buhot A. Kinetics of Isothermal Dumbbell Exponential Amplification: Effects of Mix Composition on LAMP and Its Derivatives. BIOSENSORS 2022; 12:bios12050346. [PMID: 35624647 PMCID: PMC9138685 DOI: 10.3390/bios12050346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is an exponential amplification method of DNA strands that is more and more used for its high performances. Thanks to its high sensitivity and selectivity, LAMP found numerous applications from the detection of pathogens or viruses through their genome amplification to its incorporation as an amplification strategy in protein or miRNA biomarker quantification. The LAMP method is composed of two stages: the first one consists in the transformation of the DNA strands into dumbbell structures formed of two stems and loops thanks to four primers; then, in the second stage, only two primers are required to amplify the dumbbells exponentially in numerous hairpins of increasing lengths. In this paper, we propose a theoretical framework to analyze the kinetics of the second stage of LAMP, the isothermal dumbbell exponential amplification (IDEA) as function of the physico-chemical parameters of the amplification reaction. Dedicated experiments validate the models. We believe these results may help the optimization of LAMP performances by reducing the number of experiments necessary to find the best parameters.
Collapse
Affiliation(s)
- Maud Savonnet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France; (M.S.); (M.A.); (Y.R.)
- Microfluidic Systems and Bioengineering Lab, Technologies for Healthcare and Biology Department, Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France;
| | - Mathilde Aubret
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France; (M.S.); (M.A.); (Y.R.)
- Microfluidic Systems and Bioengineering Lab, Technologies for Healthcare and Biology Department, Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France;
| | - Patricia Laurent
- Microfluidic Systems and Bioengineering Lab, Technologies for Healthcare and Biology Department, Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France;
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France; (M.S.); (M.A.); (Y.R.)
| | - Myriam Cubizolles
- Microfluidic Systems and Bioengineering Lab, Technologies for Healthcare and Biology Department, Univ. Grenoble Alpes, CEA, LETI, 38000 Grenoble, France;
- Correspondence: (M.C.); (A.B.)
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France; (M.S.); (M.A.); (Y.R.)
- Correspondence: (M.C.); (A.B.)
| |
Collapse
|
8
|
Aubret M, Savonnet M, Laurent P, Roupioz Y, Cubizolles M, Buhot A. Development of an Innovative Quantification Assay Based on Aptamer Sandwich and Isothermal Dumbbell Exponential Amplification. Anal Chem 2022; 94:3376-3385. [PMID: 35143170 DOI: 10.1021/acs.analchem.1c05532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detecting blood biomarkers such as proteins with high sensitivity and specificity is of the utmost importance for early and reliable disease diagnosis. As molecular probes, aptamers are raising increasing interest for biosensor applications as an alternative to antibodies, which are used in classical enzyme-linked immuno-sorbent assays (ELISA). We have developed a sensitive and antibody-free molecular quantification assay that combines the specificity of aptamers and the sensitivity of the loop-mediated isothermal amplification (LAMP). For the proof-of-concept, we consider two types of biomarkers: (i) a model of oligonucleotide mimicking nucleic acid targets and (ii) the thrombin involved in the complex coagulation cascade as a model protein for which two relevant aptamers form a stable sandwich. The assay protocol is based on a few successive steps, similar to sandwich ELISA. First, aptamer-coated magnetic beads are added to the sample to specifically capture the targets. Then, the sandwich complex is formed by adding the second aptamer. This secondary aptamer is integrated in a larger oligonucleotide dumbbell sequence designed for LAMP detection using only two primers. After a proper rinsing step, the isothermal dumbbell exponential amplification is performed to detect and quantify a low amount of targets (limit of detection ∼ 1 pM for the oligonucleotide and ∼100 pM for thrombin). This study demonstrates that our innovative aptamero-LAMP assay could be relevant for the detection of different types of biomarkers and their quantification at physiological levels. This may also pave the way for antibody-free molecular assays.
Collapse
Affiliation(s)
- Mathilde Aubret
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, 38000 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France
| | - Maud Savonnet
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, 38000 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France
| | - Patricia Laurent
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, 38000 Grenoble, France
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France
| | - Myriam Cubizolles
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, 38000 Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France
| |
Collapse
|
9
|
Chen Z, Ma L, Bu S, Zhang W, Chen J, Li Z, Hao Z, Wan J. CRISPR/Cas12a and immuno-RCA based electrochemical biosensor for detecting pathogenic bacteria. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Ruan L, Li X. Applications of Aptamers in the Diagnosis and Treatment of Ovarian Cancer: Progress From 2016 to 2020. Front Genet 2021; 12:683542. [PMID: 34589111 PMCID: PMC8473910 DOI: 10.3389/fgene.2021.683542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023] Open
Abstract
Nucleic acid aptamers are short single-stranded DNA or RNA oligonucleotides selected from a random single-stranded nucleic acid library using systematic evolution of ligands by exponential enrichment technology. To allow them to bind to molecular targets with the same specificity and precision as that of antibodies, aptamers are folded into secondary or tertiary structures. However, compared to antibodies, aptamers are not immunogenic and are easier to synthesize. Furthermore, they are chemically modified, which protects them from degradation by nucleases. Hence, due to their stability and favorable targeting ability, aptamers are promising for the diagnosis and treatment of diseases. Ovarian cancer has the worst prognosis among all gynecological diseases and is usually diagnosed at the medium and advanced stages due to its nonspecific symptoms. Relapse is common, even if patients receive a standard therapeutic regimen including surgery and chemotherapy; simultaneously, drug resistance and adverse effects are reported in a several patients. Therefore, the safer and more efficient diagnostic and treatment method for ovarian cancer is imperative. Scientists have been trying to utilize aptamer technology for the early diagnosis and accurate treatment of ovarian cancer and some progress has been made in this field. This review discusses the screening of nucleic acid aptamers by targeting ovarian cancer cells and the application of aptamers in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Luoshan Ruan
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Li
- Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Daems E, Moro G, Campos R, De Wael K. Mapping the gaps in chemical analysis for the characterisation of aptamer-target interactions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Li J, Yang F, Jiang B, Zhou W, Xiang Y, Yuan R. The synchronization of multiple signal amplifications for label-free and sensitive aptamer-based sensing of a protein biomarker. Analyst 2021; 145:7858-7863. [PMID: 33020770 DOI: 10.1039/d0an01491e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The abnormal variation of the mucin 1 (MUC1) protein level is associated with the development of multiple cancers, and the monitoring of trace MUC1 can be useful for early disease diagnosis. Here, on the basis of the synchronization of DNA-fueled sequence recycling and dual rolling circle amplification (RCA), the establishment of a non-label and highly sensitive fluorescent aptamer-based detection strategy for the MUC1 protein biomarker is described. The target MUC1 binds the aptamer hairpin probe and causes its structure switching to release an ssDNA tail to trigger the recycling of the complex via two toehold-mediated strand displacement reactions under assistance of a fuel DNA. Such a recycling amplification leads to the formation of a partial dsDNA duplex with two primers at both ends, which cooperatively bind the circular DNA ring template to start the dual RCA to produce many G-quadruplex sequences. The protoporphyrin IX dye further associates with the G-quadruplex structures to show a dramatically elevated fluorescent signal for sensitively detecting MUC1 with a low detection limit of 0.5 pM. The established aptamer-based detecting strategy is also highly selective and can realize assay of MUC1 in diluted human serums, highlighting its potential for the detection of different protein biomarkers at low contents.
Collapse
Affiliation(s)
- Jin Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | | | | | | | | | | |
Collapse
|
13
|
Ding X, Yin K, Li Z, Pandian V, Smyth JA, Helal Z, Liu C. Cleavable hairpin beacon-enhanced fluorescence detection of nucleic acid isothermal amplification and smartphone-based readout. Sci Rep 2020; 10:18819. [PMID: 33139727 PMCID: PMC7608614 DOI: 10.1038/s41598-020-75795-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Fluorescence detection of nucleic acid isothermal amplification utilizing energy-transfer-tagged oligonucleotide probes provides a highly sensitive and specific method for pathogen detection. However, currently available probes suffer from relatively weak fluorescence signals and are not suitable for simple, affordable smartphone-based detection at the point of care. Here, we present a cleavable hairpin beacon (CHB)-enhanced fluorescence detection for isothermal amplification assay. The CHB probe is a single fluorophore-tagged hairpin oligonucleotide with five continuous ribonucleotides which can be cleaved by the ribonuclease to specifically initiate DNA amplification and generate strong fluorescence signals. By coupling with loop-mediated isothermal amplification (LAMP), the CHB probe could detect Borrelia burgdorferi (B. burgdorferi) recA gene with a sensitivity of 100 copies within 25 min and generated stronger specific fluorescence signals which were easily read and analysed by our programmed smartphone. Also, this CHB-enhanced LAMP (CHB-LAMP) assay was successfully demonstrated to detect B. burgdorferi DNA extracted from tick species, showing comparable results to real-time PCR assay. In addition, our CHB probe was compatible with other isothermal amplifications, such as isothermal multiple-self-matching-initiated amplification (IMSA). Therefore, CHB-enhanced fluorescence detection is anticipated to facilitate the development of simple, sensitive smartphone-based point-of-care pathogen diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Xiong Ding
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Kun Yin
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Ziyue Li
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Vikram Pandian
- Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Joan A Smyth
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Zeinab Helal
- Connecticut Veterinary Medical Diagnostic Laboratory, Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Changchun Liu
- Department of Biomedical Engineering, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
14
|
Şahin S, Caglayan MO, Üstündağ Z. Recent advances in aptamer-based sensors for breast cancer diagnosis: special cases for nanomaterial-based VEGF, HER2, and MUC1 aptasensors. Mikrochim Acta 2020; 187:549. [PMID: 32888061 DOI: 10.1007/s00604-020-04526-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most common and important diseases with a high mortality rate. Breast cancer is among the three most common types of cancer in women, and the mortality rate has reached 0.024% in some countries. For early-stage preclinical diagnosis of breast cancer, sensitive and reliable tools are needed. Today, there are many types of biomarkers that have been identified for cancer diagnosis. A wide variety of detection strategies have also been developed for the detection of these biomarkers from serum or other body fluids at physiological concentrations. Aptamers are single-stranded DNA or RNA oligonucleotides and promising in the production of more sensitive and reliable biosensor platforms in combination with a wide range of nanomaterials. Conformational changes triggered by the target analyte have been successfully applied in fluorometric, colorimetric, plasmonic, and electrochemical-based detection strategies. This review article presents aptasensor approaches used in the detection of vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), and mucin-1 glycoprotein (MUC1) biomarkers, which are frequently studied in the diagnosis of breast cancer. The focus of this review article is on developments of the last decade for detecting these biomarkers using various sensitivity enhancement techniques and nanomaterials.
Collapse
Affiliation(s)
- Samet Şahin
- Department of Bioengineering, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | | | - Zafer Üstündağ
- Department of Chemistry, Kütahya Dumlupınar University, 43100, Kütahya, Turkey
| |
Collapse
|
15
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. Recombinase polymerase amplification combined with a magnetic nanoparticle-based immunoassay for fluorometric determination of troponin T. Mikrochim Acta 2019; 186:549. [DOI: 10.1007/s00604-019-3686-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
|
16
|
Zhang GQ, Zhong LP, Yang N, Zhao YX. Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer. World J Gastroenterol 2019; 25:3359-3369. [PMID: 31341361 PMCID: PMC6639558 DOI: 10.3748/wjg.v25.i26.3359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/02/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023] Open
Abstract
Aptamers are a class of single oligonucleotide molecules (DNA or RNA) that are screened from random DNA or RNA oligonucleotide chain libraries by the systemic evolution of ligands by exponential enrichment technology. The selected aptamers are capable of specifically binding to different targeting molecules, which is achieved by the three-dimensional structure of aptamers. Aptamers are similar in function to monoclonal antibodies, and therefore, they are also referred to as "chemical antibodies". Due to their high affinity and specificity and low immunogenicity, aptamers are topics of intense interest in today's biological targeting research especially in tumor research. They not only have high potential for clinical advances in tumor targeting detection but also are highly promising as targeted tumor drug carriers for use in tumor therapy. Various experimental studies have shown that aptamer-based diagnostic and therapeutic methods for liver cancer have great potential for application. This paper summarizes the structure, characteristics, and screening methods of aptamers and reviews the recent research progress on nucleic acid aptamers in the targeted diagnosis and treatment of liver cancer.
Collapse
Affiliation(s)
- Guo-Qing Zhang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li-Ping Zhong
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Nuo Yang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong-Xiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
17
|
Hori SI, Herrera A, Rossi JJ, Zhou J. Current Advances in Aptamers for Cancer Diagnosis and Therapy. Cancers (Basel) 2018; 10:cancers10010009. [PMID: 29301363 PMCID: PMC5789359 DOI: 10.3390/cancers10010009] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/24/2022] Open
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that interact with target molecules with high affinity and specificity in unique three-dimensional structures. Aptamers are generally isolated by a simple selection process called systematic evolution of ligands by exponential enrichment (SELEX) and then can be chemically synthesized and modified. Because of their high affinity and specificity, aptamers are promising agents for biomarker discovery, as well as cancer diagnosis and therapy. In this review, we present recent progress and challenges in aptamer and SELEX technology and highlight some representative applications of aptamers in cancer therapy.
Collapse
Affiliation(s)
- Shin-Ichiro Hori
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Drug Discovery & Disease Research Laboratory, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| | - Alberto Herrera
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| | - Jiehua Zhou
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA.
| |
Collapse
|
18
|
Chen C, Zhou S, Cai Y, Tang F. Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology. NPJ Precis Oncol 2017; 1:37. [PMID: 29872716 PMCID: PMC5871892 DOI: 10.1038/s41698-017-0041-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid aptamers are a class of high-affinity nucleic acid ligands. They serve as “chemical antibodies” since their high affinity and specificity. Nucleic acid aptamers are generated from nucleic acid random-sequence using a systematic evolution of ligands by exponential enrichment (SELEX) technology. SELEX is a process of effectively selecting aptamers from different targets. A newly developed cell-based SELEX technique has been widely used in biomarker discovery, early diagnosis and targeted cancer therapy, particular at colorectal cancer (CRC). Combined with nanostructures, nano-aptamer-drug delivery system was constructed for drug delivery. Various nanostructures functionalized with aptamers are highly efficient and has been used in CRC therapeutic applications. In the present, we introduce a cell- SELEX technique, and summarize the potential application of aptamers as biomarkers in CRC diagnosis and therapy. And some characteristics of aptamer-targeted nanocarriers in CRC have been expatiated. The challenges and perspectives for cell-SELEX are also discussed.
Collapse
Affiliation(s)
- Chan Chen
- 1Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, 519000 Zhuhai, Guangdong China
| | - Shan Zhou
- 1Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, 519000 Zhuhai, Guangdong China
| | - Yongqiang Cai
- 1Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, 519000 Zhuhai, Guangdong China
| | - Faqing Tang
- 1Clinical Laboratory and Medical Research Center, Zhuhai Hospital of Jinan University, Zhuhai People's Hospital, 519000 Zhuhai, Guangdong China.,2Clinical Laboratory, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410006 Changsha, China
| |
Collapse
|
19
|
Cao H, Fang X, Liu P, Li H, Chen W, Liu B, Kong J. Magnetic-Immuno-Loop-Mediated Isothermal Amplification Based on DNA Encapsulating Liposome for the Ultrasensitive Detection of P-glycoprotein. Sci Rep 2017; 7:9312. [PMID: 28839228 PMCID: PMC5571029 DOI: 10.1038/s41598-017-10133-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/02/2017] [Indexed: 11/17/2022] Open
Abstract
Determination of proteins, especially low-abundance proteins with high sensitivity and specificity, is essential for characterizing proteomes and studying their biochemical functions. Herein, a novel Magnetic-Immuno-Loop-Mediated Isothermal Amplification (Im-LAMP) based on DNA-encapsulating liposomes (liposome-Im- LAMP), was developed for trace amounts of proteins. To the best of our knowledge, this is our first report about the magnetic Im-LAMP approach based on liposomes encapsulated template DNA as the detection reagent. The DNA template was released from liposomes and then initiated an Im-LAMP reaction, generating the fluorescence signal with high sensitivity and rapidity. This technique was applied for the determination of P-glycoprotein as a model protein. It was demonstrated that the technique exhibited a dynamic response to P-glycoprotein ranging from 1.6*10−2 to 160 pg/ml with a greatly low detection limit of 5*10−3 pg/ml (5 fg/ml) which is substantially better than conventional enzyme-linked immunosorbent assays (ELISA). This ultra sensitivity was attributed to the LAMP reaction initiated by the enormous DNA targets encapsulated in liposomes. This magnetic liposome-Im–LAMP as an alternative approach is attractive for applications in other low-abundance proteins detection in clinical diagnostics.
Collapse
Affiliation(s)
- Hongmei Cao
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Xueen Fang
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China.
| | - Peng Liu
- Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, 168 Changhai road, Shanghai, 200433, China
| | - Hua Li
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Weiwei Chen
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Baohong Liu
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China
| | - Jilie Kong
- Department of Chemistry and Institute of Biomedical Sciences, Fudan University, Shanghai, 200433, P.R. China.
| |
Collapse
|