1
|
Wu F, Zhang C, Chen R, Chu Z, Han B, Zhai R. Research Progress in Isotope Labeling/Tags-Based Protein Quantification and Metrology Technologies. J Proteome Res 2025; 24:13-26. [PMID: 39628444 DOI: 10.1021/acs.jproteome.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Advanced liquid chromatogram-mass spectrometry (LC-MS) and automated large-scale data processing have made MS-based quantitative analysis increasingly useful for research in fields such as biology, medicine, food safety, and beyond. This is because MS-based quantitative analysis can accurately and sensitively analyze thousands of proteins and peptides in a single experiment. However, the precision, coverage, complexity, and resilience of conventional quantification methods vary as a result of the modifications to the analytic environment and the physicochemical characteristics of analytes. Therefore, specially designed approaches are necessary for sample preparation. Dozens of methods have been developed and adapted for these needs based on stable isotopic labeling or isobaric tagging, each with distinct characteristics. In this review, we will summarize the leading strategies and techniques used thus far for MS-based protein quantification as well as analyze the advantages and shortcomings of different approaches. Additionally, we provide an overview of protein metrology development.
Collapse
Affiliation(s)
- Fan Wu
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Chenhuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, PR China
| | - Rui Chen
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Zhanying Chu
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| | - Bin Han
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Marker Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, PR China
| |
Collapse
|
2
|
Aveilla N, Feraudet-Tarisse C, Marcé D, Fatihi A, Fenaille F, Hennekinne JA, Simon S, Nia Y, Becher F. Quantification of Staphylococcal Enterotoxin A Variants at Low Level in Dairy Products by High-Resolution Top-Down Mass Spectrometry. Toxins (Basel) 2024; 16:535. [PMID: 39728793 DOI: 10.3390/toxins16120535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
Food poisoning outbreaks frequently involve staphylococcal enterotoxins (SEs). SEs include 33 distinct types and multiple sequence variants per SE type. Various mass spectrometry methods have been reported for the detection of SEs using a conventional bottom-up approach. However, the bottom-up approach cannot differentiate between all sequence variants due to partial sequence coverage, and it requires a long trypsin digestion time. While the alternative top-down approach can theoretically identify any sequence modifications, it generally provides lower sensitivity. In this study, we optimized top-down mass spectrometry conditions and incorporated a fully 15N-labeled SEA spiked early in the protocol to achieve sensitivity and repeatability comparable to bottom-up approaches. After robust immunoaffinity purification of the SEA, mass spectrometry signals were acquired on a Q-Orbitrap instrument operated in full-scan mode and targeted acquisition by parallel reaction monitoring (PRM), enabling the identification of sequence variants and precise quantification of SEA. The protocol was evaluated in liquid and solid dairy products and demonstrated detection limits of 0.5 ng/mL or ng/g in PRM and 1 ng/mL or ng/g in full-scan mode for milk and Roquefort cheese. The top-down method was successfully applied to various dairy products, allowing discrimination of contaminated versus non-contaminated food, quantification of SEA level and identification of the variant involved.
Collapse
Affiliation(s)
- Nina Aveilla
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - Cécile Feraudet-Tarisse
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Dominique Marcé
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Abdelhak Fatihi
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - François Fenaille
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Jacques-Antoine Hennekinne
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - Stéphanie Simon
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Yacine Nia
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université Paris-Est, 94700 Maisons-Alfort, France
| | - François Becher
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Sun H, Li Q, Jin Z, Lu Y, Ju Y. Simultaneous determination of multiple urine biomarkers for kidney injury using SPE combined with LC-MS/MS. Clin Chim Acta 2024; 555:117790. [PMID: 38246210 DOI: 10.1016/j.cca.2024.117790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND AND OBJECTIVES Urinary biomarkers such as low molecular weight proteins and small molecular weight metabolites are crucial in the diagnosis of kidney injury. The objective of this study was to develop and preliminarily validate a sensitive and specific method using solid-phase extraction (SPE) in conjunction with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous measurement of these biomarkers in human urine. METHOD This study presents the development of a solid-phase extraction method integrated with LC-MS/MS analyzing biomarkers including creatinine, urea, β2-microglobulin, α1-microglobulin, and cystatin C in human urine. An enhanced solid-phase cartridge technique was employed for peptide purification and dilution of small molecule metabolites during sample preparation. RESULTS The developed LC-MS/MS method achieved satisfactory separation of the five analytes within 15 min. Accuracy levels ranged from -8.6% to 13.6%. Both intra-assay and inter-assay imprecision rates were maintained below 7.9% for all analytes. CONCLUSIONS The established LC-MS/MS method effectively quantifies creatinine, urea, β2-microglobulin, α1-microglobulin and cystatin C concurrently. This offers a viable alternative for the detection of kidney injury biomarkers in human urine, demonstrating potential for clinical application in kidney injury diagnosis.
Collapse
Affiliation(s)
- Hewei Sun
- Shanghai Center for Clinical Laboratory, Shanghai, PR China
| | - Qing Li
- Shanghai Center for Clinical Laboratory, Shanghai, PR China
| | - Zhonggan Jin
- Shanghai Center for Clinical Laboratory, Shanghai, PR China
| | - Yide Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University Medical School, Shanghai, PR China
| | - Yi Ju
- Shanghai Center for Clinical Laboratory, Shanghai, PR China.
| |
Collapse
|
4
|
Liang LH, Ma YD, Yang Y, Yu HL, Xia JM, Zhang T, Liu CC, Liu SL. A protein standard absolute quantification strategy for enhanced absolute quantification of ricin in complex matrices using in vitro synthesized mutant holoprotein as internal standard by ultra-high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1708:464373. [PMID: 37717454 DOI: 10.1016/j.chroma.2023.464373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Ricin is a highly toxic protein toxin that poses a potential bioterrorism threat due to its potency and widespread availability. However, the accurate quantification of ricin through absolute mass spectrometry (MS) using a protein standard absolute quantification (PSAQ) strategy is not widely practiced. This limitation primarily arises from the presence of interchain disulfide bonds, which hinder the production of full-length isotope-labeled ricin as an internal standard (IS) in vitro. In this study, we have developed a novel approach for the absolute quantification of ricin in complex matrices using recombinant single-chain and full-length mutant ricin as the protein IS, instead of isotope-labeled ricin, in conjunction with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The amino acid sequence of the ricin mutant internal standard (RMIS) was designed by introducing site mutations in specific amino acids of trypsin/Glu-C enzymatic digestion marker peptides of ricin. To simplify protein expression, the A-chain and B-chain of RMIS were directly linked to replace the original interchain disulfide bonds. The RMISs were synthesized using an Escherichia coli expression system. An appropriate RMIS was selected as the protein IS based on consistent digestion efficiency, UHPLC-MS/MS behavior, antibody recognition function, lectin activity, and proper depurination activity with intact ricin. The RMIS was utilized to simultaneously quantify A- and B-chain marker peptides of ricin through UHPLC-MS/MS. This method was thoroughly validated using a milk matrix. By employing internal protein standards, this quantitative strategy overcomes the challenges posed by variations in extraction recoveries, matrix effects, and digestion efficiency encountered when working with different matrices. Consequently, calibration curves generated from milk matrix-spiked samples were utilized to accurately and precisely quantify ricin in river water and plasma samples. Moreover, the established method successfully detected intact ricin in samples obtained from the sixth Organization for the Prohibition of Chemical Weapons (OPCW) exercise on biotoxin analysis. This study presents a novel PSAQ strategy that enables the accurate quantification of ricin in complex matrices.
Collapse
Affiliation(s)
- Long-Hui Liang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yang-De Ma
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yang Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui-Lan Yu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Jun-Mei Xia
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Tao Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Shi-Lei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
5
|
van Duijl TT, Ruhaak LR, Smit NPM, Pieterse MM, Romijn FPHTM, Dolezal N, Drijfhout JW, de Fijter JW, Cobbaert CM. Development and Provisional Validation of a Multiplex LC-MRM-MS Test for Timely Kidney Injury Detection in Urine. J Proteome Res 2021; 20:5304-5314. [PMID: 34735145 PMCID: PMC8650098 DOI: 10.1021/acs.jproteome.1c00532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
![]()
Kidney injury is
a complication frequently encountered in hospitalized
patients. Early detection of kidney injury prior to loss of renal
function is an unmet clinical need that should be targeted by a protein-based
biomarker panel. In this study, we aim to quantitate urinary kidney
injury biomarkers at the picomolar to nanomolar level by liquid chromatography
coupled to tandem mass spectrometry in multiple reaction monitoring
mode (LC-MRM-MS). Proteins were immunocaptured from urinary samples,
denatured, reduced, alkylated, and digested into peptides before LC-MRM-MS
analysis. Stable-isotope-labeled peptides functioned as internal standards,
and biomarker concentrations were attained by an external calibration
strategy. The method was evaluated for selectivity, carryover, matrix
effects, linearity, and imprecision. The LC-MRM-MS method enabled
the quantitation of KIM-1, NGAL, TIMP2, IGFBP7, CXCL9, nephrin, and
SLC22A2 and the detection of TGF-β1, cubilin, and uromodulin.
Two to three peptides were included per protein, and three transitions
were monitored per peptide for analytical selectivity. The analytical
carryover was <1%, and minimal urine matrix effects were observed
by combining immunocapture and targeted LC-MRM-MS analysis. The average
total CV of all quantifier peptides was 26%. The linear measurement
range was determined per measurand and found to be 0.05–30
nmol/L. The targeted MS-based method enables the multiplex quantitation
of low-abundance urinary kidney injury biomarkers for future clinical
evaluation.
Collapse
Affiliation(s)
- Tirsa T van Duijl
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - L Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Nico P M Smit
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Mervin M Pieterse
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Fred P H T M Romijn
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Natasja Dolezal
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Johan W de Fijter
- Department of Nephrology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Christa M Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
6
|
Wu Q, Fenton RA. Urinary proteomics for kidney dysfunction: insights and trends. Expert Rev Proteomics 2021; 18:437-452. [PMID: 34187288 DOI: 10.1080/14789450.2021.1950535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: Kidney dysfunction poses a high burden on patients and health care systems. Early detection and accurate prediction of kidney disease progression remains a major challenge. Compared to existing clinical parameters, urinary proteomics has the potential to reveal molecular alterations within the kidney that may alter its function before the onset of clinical symptoms. Thus, urinary proteomics has greater prognostic potential for assessment of kidney dysfunction progression.Areas covered: Advances in urinary proteomics for major causes of kidney dysfunction are discussed. The application of urinary extracellular vesicles for studying kidney dysfunction are discussed. Technological advances in urinary proteomics are discussed. The literature was identified using a database search for titles containing 'proteom*' and 'urin*' and published within the past 5 years. Retrieved literature was manually filtered to retain kidney dysfunctions-related studies.Expert opinion: Despite major advances, diagnosis by urinary proteomics has not been fully applied in any clinical settings. This could be attributed to the complex nature of kidney diseases, in addition to the constraints on study power and feasibility of incorporating mass spectrometry techniques in daily routine analysis. Nevertheless, we are confident that advances in urinary proteomics will soon provide superior insights into kidney disease beyond existing clinical parameters.
Collapse
Affiliation(s)
- Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Detailed Method for Performing the ExSTA Approach in Quantitative Bottom-Up Plasma Proteomics. Methods Mol Biol 2021; 2228:353-384. [PMID: 33950503 DOI: 10.1007/978-1-0716-1024-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The use of stable isotope-labeled standards (SIS) is an analytically valid means of quantifying proteins in biological samples. The nature of the labeled standards and their point of insertion in a bottom-up proteomic workflow can vary, with quantification methods utilizing curves in analytically sound practices. A promising quantification strategy for low sample amounts is external standard addition (ExSTA). In ExSTA, multipoint calibration curves are generated in buffer using serially diluted natural (NAT) peptides and a fixed concentration of SIS peptides. Equal concentrations of SIS peptides are spiked into experimental sample digests, with all digests (control and experimental) subjected to solid-phase extraction prior to liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Endogenous peptide concentrations are then determined using the regression equation of the standard curves. Given the benefits of ExSTA in large-scale analysis, a detailed protocol is provided herein for quantifying a multiplexed panel of 125 high-to-moderate abundance proteins in undepleted and non-enriched human plasma samples. The procedural details and recommendations for successfully executing all phases of this quantification approach are described. As the proteins have been putatively correlated with various noncommunicable diseases, quantifying these by ExSTA in large-scale studies should help rapidly and precisely assess their true biomarker efficacy.
Collapse
|
8
|
LIANG L, XIA J, LIU C, LIU S. [Highly toxic type Ⅱ ribosome-inactivating proteins ricin and abrin and their detection methods: a review]. Se Pu 2021; 39:260-270. [PMID: 34227307 PMCID: PMC9403808 DOI: 10.3724/sp.j.1123.2020.10001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Indexed: 11/25/2022] Open
Abstract
Type Ⅱ ribosome-inactivating proteins (RIPs) are an important class of protein toxins that consist of A and B chains linked by an interchain disulfide bond. The B-chain with lectin-like activity is responsible for binding to the galactose-containing receptors on eukaryotic cell surfaces, which is essential for A-chain internalization by endocytosis. The A-chain has N-glycosidase activity that irreversibly depurinates a specific adenine from 28S ribosomal RNA (28S rRNA) and terminates protein synthesis. The synergistic effect of the A-B chain inactivates the ribosome, inhibits protein synthesis, and exhibits high cytotoxicity. Ricin and abrin that are expressed by the plants Ricinus communis and Abrus precatorius, respectively, are typical type Ⅱ RIPs. The toxicity of ricin and abrin are 385 times and 2885 times, respectively, more that of the nerve agent VX. Owing to their ease of preparation, wide availability, and potential use as a bioterrorism agent, type Ⅱ RIPs have garnered increasing attention in recent years. Ricin is listed as a prohibited substance under schedule 1A of the Chemical Weapons Convention (CWC). The occurrence of ricin-related bioterrorism incidents in recent years has promoted the development of accurate, sensitive, and rapid detection and identification technology for type Ⅱ RIPs. Significant progress has been made in the study of toxicity mechanisms and detection methods of type Ⅱ RIPs, which primarily involve qualitative and quantitative analysis methods including immunological assays, mass spectrometry analysis methods, and toxin activity detection methods based on depurination and cytotoxicity. Immunoassays generally involve the specific recognition of antigens and antibodies, which is based on oligonucleotide molecular recognition elements called aptamers. These methods are fast and highly sensitive, but for highly homologous proteins in complex samples, they provide false positive results. With the rapid development of biological mass spectrometry detection technology, techniques such as electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are widely used in the identification of proteins. These methods not only provide accurate information on molecular weight and structure of proteins, but also demonstrate accurate quantification. Enzyme digestion combined with mass spectrometry is the predominantly used detection method. Accurate identification of protein toxins can be achieved by fingerprint analysis of enzymatically digested peptides. For analysis of protein toxins in complex samples, abundant peptide markers are obtained using a multi-enzyme digestion strategy. Targeted mass spectrometry analysis of peptide markers is used to obtain accurate qualitative and quantitative information, which effectively improves the accuracy and sensitivity of the identification of type Ⅱ RIP toxins. Although immunoassay and mass spectrometry detection methods can provide accurate identification of type Ⅱ RIPs, they cannot determine whether the toxins will retain potency. The widely used detection methods for activity analysis of type Ⅱ RIPs include depurination assay based on N-glycosidase activity and cytotoxicity assay. Both the methods provide simple, rapid, and sensitive analysis of type Ⅱ RIP toxicity, and complement other detection methods. Owing to the importance of type Ⅱ RIP toxins, the Organization for the Prohibition of Chemical Weapons (OPCW) has proposed clear technical requirements for the identification and analysis of relevant samples. We herein reviewed the structural characteristics, mechanism of action, and the development and application of type Ⅱ RIP detection methods; nearly 70 studies on type Ⅱ RIP toxins and their detection methods have been cited. In addition to the technical requirements of OPCW for the unambiguous identification of biotoxins, the trend of future development of type Ⅱ RIP-based detection technology has been explored.
Collapse
|
9
|
Ji H, Xu L, Su J, Shen L, Wang H, Wang J, Wang F, Ju S. Absolute quantification of urinary neutrophil gelatinase-associated lipocalin by ultra-high-performance liquid chromatography/tandem mass spectrometry and the diagnostic efficacy of acute kidney injury. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8637. [PMID: 31659853 DOI: 10.1002/rcm.8637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/27/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE To establish an absolute quantification method for neutrophil gelatinase-associated lipocalin (NGAL) by ultra-high-performance liquid chromatography tandem positive ion electrospray ionization mass spectrometry (UHPLC/MS/MS) and evaluate its diagnostic efficacy for acute kidney injury (AKI). METHODS Three target peptides of NGA were prescreened by Skyline software, and two of them could be detected in tryptic peptides of NGAL recombinant protein and human urinary NGAL (uNGAL). Peptide (WYVVGLAGNAILR) was then selected as surrogate peptide. The corresponding isotope-labeled peptide as the internal standard was next synthesized. Quantification of uNGAL was based on equations of linear regression, and method validation was then conducted. The diagnostic efficacy of uNGAL for AKI was also evaluated using receiver operating characteristic curve (ROC) analysis. Lastly, the UHPLC/MS/MS and the particle-enhanced turbidimetric immunoassay (PETIA) methods for uNGAL quantification were compared. RESULTS For the y9 and y10 product ions, the linear regression equations were y = 2.5519x-4.6955 (R2 = 0.994, P<.01) and y = 2.4619x-4.3 (R2 =0.993, P<.01), respectively, and both of the linear ranges were from 0.5 to 15 mg/L. The limits of detection and quantification were 0.037 mg/L and 0.081 mg/L, respectively. The recoveries were from 97.32% to 107.28% at different uNGAL levels, and the within- and between-day CVs for uNGAL quantification were from 0.22% to 7.65% and from 0.66% to 5.97%, respectively. The carryover rates of uNGAL were in the range of 0.70%-0.99%. The area under the ROC curve (AUC) of uNGAL was 0.96 (P<0.01), and the sensitivity and specificity of uNGAL for AKI diagnosis were 90.0% and 92.5%, respectively. In addition, the UHPLC/MS/MS and PETIA methods showed good agreement for uNGAL quantification (y = 0.7112x-0.0139, P = 0.34). CONCLUSIONS The UHPLC/MS/MS method for uNGAL quantification has a wide linear range, high sensitivity, precision, and recovery, and low carryover rates, and uNGAL detected by this method had high sensitivity and specificity for AKI diagnosis.
Collapse
Affiliation(s)
- Huoyan Ji
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Lili Xu
- Department of Laboratory Medicine, Nantong Maternal and Child Health Hospital, Nantong City, Jiangsu Province, China
| | - Jianyou Su
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Lei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Huimin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Jianxin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Feng Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Shaoqin Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, China
| |
Collapse
|
10
|
Chen Q, Jiang Y, Ren Y, Ying M, Lu B. Peptide Selection for Accurate Targeted Protein Quantification via a Dimethylation High-Resolution Mass Spectrum Strategy with a Peptide Release Kinetic Model. ACS OMEGA 2020; 5:3809-3819. [PMID: 32149207 PMCID: PMC7057324 DOI: 10.1021/acsomega.9b02002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
A crucial step in accurate targeted protein quantification using targeted proteomics is to determine optimal proteotypic peptides representing targeted proteins. In this study, a workflow of peptide selection to determine proteotypic peptides using a dimethylation high-resolution mass spectrum strategy with a peptide release kinetic model was investigated and applied in peptide selection of bovine serum albumin. After specificity, digestibility, recovery, and stability evaluation of tryptic peptides in bovine serum albumin, the optimal proteotypic peptide was selected as LVNELTEFAK. The quantification method using LVNELTEFAK gave a linear range of 1-100 ppm with the coefficient greater than 0.9990, and the detection limit of bovine serum albumin in milk was 0.78 mg/kg. Compared with the proteotypic peptides selected by Skyline, the method showed a better performance in method validation. The workflow exhibited high comprehensiveness and efficiency in peptide selection, facilitating accurate targeted protein quantification in the food matrix, which lack protein standards.
Collapse
Affiliation(s)
- Qi Chen
- National
Engineering Laboratory of Intelligent Food Technology and Equipment,
Key Laboratory for Agro-Products Postharvest Handling of Ministry
of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation
of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food
Processing, Fuli Institute of Food Science, College of Biosystems
Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo
Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yirong Jiang
- National
Engineering Laboratory of Intelligent Food Technology and Equipment,
Key Laboratory for Agro-Products Postharvest Handling of Ministry
of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation
of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food
Processing, Fuli Institute of Food Science, College of Biosystems
Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo
Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yiping Ren
- Yangtze
Delta Region Institute of Tsinghua University, Jiaxing 314006, China
| | - Meirong Ying
- Zhejiang
Grain and Oil Product Quality Inspection Center, Hangzhou 310012, China
| | - Baiyi Lu
- National
Engineering Laboratory of Intelligent Food Technology and Equipment,
Key Laboratory for Agro-Products Postharvest Handling of Ministry
of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation
of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food
Processing, Fuli Institute of Food Science, College of Biosystems
Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo
Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
11
|
Abstract
OBJECTIVES To estimate the prevalence, management, and outcomes of pediatric severe sepsis in the main PICUs in Southwest China. DESIGN A prospective, observational, and multicenter study. SETTING Eight PICUs in Southwest China with 19 (13-24) beds and 1,322 (1,066-1,452) annual admissions each. PATIENTS A total of 10,598 patients (29 d to 18 yr old) were consecutively admitted between September 1, 2016, and August 31, 2017. All patients were screened and evaluated for severe sepsis or septic shock. Of them, 10,353 patients were excluded due to incomplete data or not meeting the consensus criteria for severe sepsis or septic shock; 245 patients were included with complete data. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Finally, 245 patients who were diagnosed with severe sepsis or septic shock were included in the study, with an incidence rate of 2.3%. Of them, 64.0% of the enrolled patients were male with 80.8% being less than 5 years old and 60.8% being from rural areas. The respiratory system was the most common organ system in which dysfunction was observed (76.7%) as well as the most frequently infected site (37.6%). The primary therapies were antibiotics (99.0%), immunoglobulin (88.3%), mechanical ventilation (78.4%), vasoactive infusions (59.6%), and corticosteroids (46.1%). Among the 188 patients who had respiratory dysfunction, 173(92%) required mechanical ventilation and 39 (20.7%) met the criteria for pediatric acute respiratory distress syndrome. Seven of the patients with pediatric acute respiratory distress syndrome died (7/39, 17.9%). The median durations for mechanical ventilation and vasoactive medications were 123.5 hours (35.25-226.00 hr) and 2 days (1-5 d), respectively. Eighty-six percent of patients had multiple organ dysfunction syndrome at the point at which severe sepsis was recognized, and 31% had underlying conditions. The hospital mortality rate was 18.8%. CONCLUSIONS This report is the first to present the prevalence, treatment, and outcomes of pediatric severe sepsis in the main PICU centers in Southwest China. The mortality rate remains high; therefore, improved clinical management and implementation of large-scale clinical trials are necessary to improve early diagnoses and treatment.
Collapse
|
12
|
Quantitative mass spectrometry-based proteomics in the era of model-informed drug development: Applications in translational pharmacology and recommendations for best practice. Pharmacol Ther 2019; 203:107397. [DOI: 10.1016/j.pharmthera.2019.107397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
|
13
|
Abstract
Acute kidney injury (AKI) is a severe and frequent condition in hospitalized patients. Currently, no efficient therapy of AKI is available. Therefore, efforts focus on early prevention and potentially early initiation of renal replacement therapy to improve the outcome in AKI. The detection of AKI in hospitalized patients implies the need for early, accurate, robust, and easily accessible biomarkers of AKI evolution and outcome prediction because only a narrow window exists to implement the earlier-described measures. Even more challenging is the multifactorial origin of AKI and the fact that the changes of molecular expression induced by AKI are difficult to distinguish from those of the diseases associated or causing AKI as shock or sepsis. During the past decade, a considerable number of protein biomarkers for AKI have been described and we expect from recent advances in the field of omics technologies that this number will increase further in the future and be extended to other sorts of biomolecules, such as RNAs, lipids, and metabolites. However, most of these biomarkers are poorly defined by their AKI-associated molecular context. In this review, we describe the state-of-the-art tissue and biofluid proteomic and metabolomic technologies and new bioinformatics approaches for proteomic and metabolomic pathway and molecular interaction analysis. In the second part of the review, we focus on AKI-associated proteomic and metabolomic biomarkers and briefly outline their pathophysiological context in AKI.
Collapse
|
14
|
Kraut A, Louwagie M, Bruley C, Masselon C, Couté Y, Brun V, Hesse AM. Protein Biomarker Discovery in Non-depleted Serum by Spectral Library-Based Data-Independent Acquisition Mass Spectrometry. Methods Mol Biol 2019; 1959:129-150. [PMID: 30852820 DOI: 10.1007/978-1-4939-9164-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In discovery proteomics experiments, tandem mass spectrometry and data-dependent acquisition (DDA) are classically used to identify and quantify peptides and proteins through database searching. This strategy suffers from known limitations such as under-sampling and lack of reproducibility of precursor ion selection in complex proteomics samples, leading to somewhat inconsistent analytical results across large datasets. Data-independent acquisition (DIA) based on fragmentation of all the precursors detected in predetermined isolation windows can potentially overcome this limitation. DIA promises reproducible peptide and protein quantification with deeper proteome coverage and fewer missing values than DDA strategies. This approach is particularly attractive in the field of clinical biomarker discovery, where large numbers of samples must be analyzed. Here, we describe a DIA workflow for non-depleted serum analysis including a straightforward approach through which to construct a dedicated spectral library, and indications on how to optimize chromatographic and mass spectrometry analytical methods to produce high-quality DIA data and results.
Collapse
Affiliation(s)
- Alexandra Kraut
- Université Grenoble Alpes, CEA, Inserm, BGE U1038, Grenoble, France
| | | | | | | | - Yohann Couté
- Université Grenoble Alpes, CEA, Inserm, BGE U1038, Grenoble, France
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm, BGE U1038, Grenoble, France
| | - Anne-Marie Hesse
- Université Grenoble Alpes, CEA, Inserm, BGE U1038, Grenoble, France.
| |
Collapse
|
15
|
Louwagie M, Kieffer-Jaquinod S, Brun V. Ultrasensitive Quantification of Recombinant Proteins Using AAA-MS. Methods Mol Biol 2019; 2030:1-10. [PMID: 31347105 DOI: 10.1007/978-1-4939-9639-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recombinant proteins are essential components of therapeutic, biotechnological, food, and household products. In some cases, recombinant proteins must be purified and their quantity and/or concentration precisely determined. In this chapter, we describe a protocol for the quantification of purified recombinant proteins. The protocol is based on a microwave-assisted acidic hydrolysis of the target protein followed by high-resolution mass spectrometry (HRMS) analysis of the hydrolytic products. Absolute quantification is obtained by adding controlled amounts of labeled amino acids that serve as standards.
Collapse
Affiliation(s)
| | | | - Virginie Brun
- Univ. Grenoble Alpes, CEA, Inserm, U1038 BIG-BGE, Grenoble, France.
| |
Collapse
|
16
|
Rauniyar N, Yu X, Cantley J, Voss EZ, Belcher J, Colangelo CM, Stone KL, Dahl N, Parikh C, Lam TT, Cantley LG. Quantification of Urinary Protein Biomarkers of Autosomal Dominant Polycystic Kidney Disease by Parallel Reaction Monitoring. Proteomics Clin Appl 2018; 12:e1700157. [PMID: 29573172 PMCID: PMC6736530 DOI: 10.1002/prca.201700157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/01/2018] [Indexed: 01/21/2023]
Abstract
PURPOSE Autosomal dominant polycystic kidney disease (ADPKD) is a life-long disease in which the genes responsible are known, but the pathogenesis of cyst formation and cyst growth are not understood. Cyst growth ultimately leads to end-stage renal failure in most patients. Analysis of the urinary proteome offers the potential to identify proteins that indicate the presence of cysts (and thus provides diagnosis) as well as the rates of cyst growth (providing prognostic information). EXPERIMENTAL DESIGN A scheduled parallel reaction monitoring (sPRM) assay is performed on urine samples from 14 patients and 18 normal controls. For relative quantification, stable isotope-labeled synthetic peptides are spiked in the urinary protein digests prior to data collection. The data are subsequently normalized to creatinine and protein concentration in the respective urine samples to control for variations in water intake between individuals. RESULTS Out of the 143 urinary proteins targeted for sPRM assay, 69 proteins are observed to be significantly dysregulated in ADPKD. The dysregulated proteins are used to cluster ADPKD patients into those who are more or less similar to normal controls. CONCLUSIONS AND CLINICAL RELEVANCE This study shows that sPRM is a promising approach to rapidly screen large numbers of proteins in urine in order to provide earlier diagnosis and potentially better understand the pathogenesis of ADPKD development and progression.
Collapse
Affiliation(s)
- Navin Rauniyar
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 06520, New Haven, CT, USA
- MS and Proteomics Resource, W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, 06511, New Haven, CT, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 33612, Tampa, FL, USA
| | - Jennifer Cantley
- Section of Nephrology, Yale University School of Medicine, 06520, New Haven, CT, USA
| | - Edward Z Voss
- MS and Proteomics Resource, W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, 06511, New Haven, CT, USA
| | - Justin Belcher
- Section of Nephrology, Yale University School of Medicine, 06520, New Haven, CT, USA
| | - Christopher M Colangelo
- MS and Proteomics Resource, W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, 06511, New Haven, CT, USA
| | - Kathryn L Stone
- MS and Proteomics Resource, W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, 06511, New Haven, CT, USA
| | - Neera Dahl
- Section of Nephrology, Yale University School of Medicine, 06520, New Haven, CT, USA
| | - Chirag Parikh
- Section of Nephrology, Yale University School of Medicine, 06520, New Haven, CT, USA
- Program of Applied Translational Research, Yale University School of Medicine, 06520, New Haven, CT, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 06520, New Haven, CT, USA
- MS and Proteomics Resource, W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, 06511, New Haven, CT, USA
| | - Lloyd G Cantley
- Section of Nephrology, Yale University School of Medicine, 06520, New Haven, CT, USA
| |
Collapse
|
17
|
Gianazza E, Banfi C. Post-translational quantitation by SRM/MRM: applications in cardiology. Expert Rev Proteomics 2018; 15:477-502. [DOI: 10.1080/14789450.2018.1484283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Erica Gianazza
- Unit of Proteomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Cristina Banfi
- Unit of Proteomics, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
18
|
Wu J, Dong M, Rigatto C, Liu Y, Lin F. Lab-on-chip technology for chronic disease diagnosis. NPJ Digit Med 2018; 1:7. [PMID: 31304292 PMCID: PMC6550168 DOI: 10.1038/s41746-017-0014-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 02/03/2023] Open
Abstract
Various types of chronic diseases (CD) are the leading causes of disability and death worldwide. While those diseases are chronic in nature, accurate and timely clinical decision making is critically required. Current diagnosis procedures are often lengthy and costly, which present a major bottleneck for effective CD healthcare. Rapid, reliable and low-cost diagnostic tools at point-of-care (PoC) are therefore on high demand. Owing to miniaturization, lab-on-chip (LoC) technology has high potential to enable improved biomedical applications in terms of low-cost, high-throughput, ease-of-operation and analysis. In this direction, research toward developing new LoC-based PoC systems for CD diagnosis is fast growing into an emerging area. Some studies in this area began to incorporate digital and mobile technologies. Here we review the recent developments of this area with the focus on chronic respiratory diseases (CRD), diabetes, and chronic kidney diseases (CKD). We conclude by discussing the challenges, opportunities and future perspectives of this field.
Collapse
Affiliation(s)
- Jiandong Wu
- 1Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB Canada
| | - Meili Dong
- 1Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB Canada.,2Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui China
| | | | - Yong Liu
- 2Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui China
| | - Francis Lin
- 1Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
19
|
Bennett MR, Devarajan P. The future role of proteomics in the understanding of acute kidney injury. Expert Rev Proteomics 2018; 15:191-192. [PMID: 29471684 DOI: 10.1080/14789450.2018.1443007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Michael R Bennett
- a Division of Nephrology and Hypertension , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| | - Prasad Devarajan
- a Division of Nephrology and Hypertension , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
20
|
Olkowicz M, Jablonska P, Rogowski J, Smolenski RT. Simultaneous accurate quantification of HO-1, CD39, and CD73 in human calcified aortic valves using multiple enzyme digestion - filter aided sample pretreatment (MED-FASP) method and targeted proteomics. Talanta 2018; 182:492-499. [PMID: 29501184 DOI: 10.1016/j.talanta.2018.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/05/2023]
Abstract
Several proteins such as membrane-associated ectonucleotidases: ecto-5'-nucleotidase (E5NT/CD73) and ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1/CD39), and intracellular heme oxygenase-1 (HO-1) may contribute to protection from inflammation-related diseases such as calcific aortic valve stenosis (CAS). Accurate quantification of these proteins could contribute to better understanding of the disease mechanisms and identification of biomarkers. This report presents development and validation of quantification method for E5NT/CD73, ENTPD1/CD39 and HO-1. The multiplexed targeted proteomic assay involved antibody-free, multiple-enzyme digestion, filter-assisted sample preparation (MED-FASP) strategy and a nanoflow liquid chromatography/mass spectrometry under multiple reaction monitoring mode (LC-MRM/MS). The method developed presented high sensitivity (LLOQ of 5 pg/mL for each of the analytes) and accuracy that ranged from 92.0% to 107.0%, and was successfully applied for the absolute quantification of HO-1, CD39 and CD73 proteins in homogenates of human calcified and non-calcified valves. The absolute CD39 and CD73 concentrations were lower in calcified aortic valves (as compared to non-stenotic ones) and were found to be: 1.16 ± 0.39 vs. 3.15 ± 0.37 pmol/mg protein and 1.94 ± 0.21 vs. 2.39 ± 0.39 pmol/mg protein, respectively, while the quantity of HO-1 was elevated in calcified valves (10.72 ± 1.18 vs. 4.28 ± 0.42 amol/mg protein). These results were consistent but more reproducible as compared to immunoassays. In conclusion, multiplexed quantification of HO-1, CD39 and CD73 proteins by LC-MRM/MS works well in challenging human tissues such as aortic valves. This analysis confirmed the relevance of these proteins in pathogenesis of CAS and could be extended to other biomedical investigations.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland; Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego St., 60-627 Poznan, Poland.
| | - Patrycja Jablonska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| | - Jan Rogowski
- Department of Cardiac and Vascular Surgery, Medical University of Gdansk, 7 Debinki St., 80-211 Gdansk, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki St., 80-211 Gdansk, Poland
| |
Collapse
|
21
|
Takemori N, Takemori A, Tanaka Y, Endo Y, Hurst JL, Gómez-Baena G, Harman VM, Beynon RJ. MEERCAT: Multiplexed Efficient Cell Free Expression of Recombinant QconCATs For Large Scale Absolute Proteome Quantification. Mol Cell Proteomics 2017; 16:2169-2183. [PMID: 29055021 PMCID: PMC5724179 DOI: 10.1074/mcp.ra117.000284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/15/2017] [Indexed: 01/25/2023] Open
Abstract
A major challenge in proteomics is the absolute accurate quantification of large numbers of proteins. QconCATs, artificial proteins that are concatenations of multiple standard peptides, are well established as an efficient means to generate standards for proteome quantification. Previously, QconCATs have been expressed in bacteria, but we now describe QconCAT expression in a robust, cell-free system. The new expression approach rescues QconCATs that previously were unable to be expressed in bacteria and can reduce the incidence of proteolytic damage to QconCATs. Moreover, it is possible to cosynthesize QconCATs in a highly-multiplexed translation reaction, coexpressing tens or hundreds of QconCATs simultaneously. By obviating bacterial culture and through the gain of high level multiplexing, it is now possible to generate tens of thousands of standard peptides in a matter of weeks, rendering absolute quantification of a complex proteome highly achievable in a reproducible, broadly deployable system.
Collapse
Affiliation(s)
- Nobuaki Takemori
- From the ‡Proteo-Science Center, Ehime University, Ehime, 791-0295, Japan; .,§Advanced Research Support Center, Ehime University, Ehime, 791-0295, Japan
| | - Ayako Takemori
- From the ‡Proteo-Science Center, Ehime University, Ehime, 791-0295, Japan.,¶The United Graduate School of Agricultural Sciences, Ehime University, Ehime, 790-8566, Japan
| | - Yuki Tanaka
- §Advanced Research Support Center, Ehime University, Ehime, 791-0295, Japan
| | - Yaeta Endo
- From the ‡Proteo-Science Center, Ehime University, Ehime, 791-0295, Japan
| | - Jane L Hurst
- **Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE
| | - Guadalupe Gómez-Baena
- ‖Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Victoria M Harman
- ‖Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Robert J Beynon
- ‖Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK;
| |
Collapse
|
22
|
|
23
|
Bastos P, Trindade F, Ferreira R, Leite-Moreira A, Falcão-Pires I, Manadas B, Daniel-da-Silva AL, Vitorino R. EDTA-functionalized magnetic nanoparticles: A suitable platform for the analysis of low abundance urinary proteins. Talanta 2017; 170:81-88. [PMID: 28501217 DOI: 10.1016/j.talanta.2017.03.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/24/2022]
Abstract
Urine is a highly attractive source of biological information and disease biomarkers, whose proteome characterization is ongoing. To that end, depletion/enrichment strategies for protein analysis can be of great convenience. We have thus developed a method based on the use of EDTA-functionalized magnetic nanoparticles (NPs@EDTA), to fractionate urine samples before liquid chromatography-mass spectrometry analysis and compared the identified proteins with those obtained from ultrafiltrated/unfractionated (UF) urine samples. NPs@EDTA allowed larger urine volumes to be processed, resulting in a greater number of protein identifications (~2-fold) at a lower cost when compared to UF samples. Proteins of greater abundance (such as albumin and uromodulin) were, at least partially, depleted with NPs@EDTA while those of lower abundance were enriched. Bioinformatics analysis showed that approximately 27% of NPs@EDTA-enriched proteins were annotated as displaying enzymatic activity, most of these being hydrolytic enzymes (56%), particularly proteases/peptidases (48%). Also, post-translational modifications were prominently predicted across NPs@EDTA-enriched proteins (90%), particularly glycosylation (52%), phosphorylation (47%) and acetylation (30%). NPs@EDTA allowed the identification of 109 proteins in urine for the first time, showing high potential as a platform for urine's fractionation prior to proteomic analysis.
Collapse
Affiliation(s)
- Paulo Bastos
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Fábio Trindade
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal.
| | - Rita Ferreira
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Portugal
| | - Adelino Leite-Moreira
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Inês Falcão-Pires
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry, CICECO Aveiro Institute of Materials, University of Aveiro, Portugal
| | - Rui Vitorino
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Portugal
| |
Collapse
|
24
|
Vehus T. Performing Quantitative Determination of Low-Abundant Proteins by Targeted Mass Spectrometry Liquid Chromatography. Mass Spectrom (Tokyo) 2017. [DOI: 10.5772/intechopen.68713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|