1
|
Wang L, Hu Y, Jiang N, Yetisen AK. Biosensors for psychiatric biomarkers in mental health monitoring. Biosens Bioelectron 2024; 256:116242. [PMID: 38631133 DOI: 10.1016/j.bios.2024.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Psychiatric disorders are associated with serve disturbances in cognition, emotional control, and/or behavior regulation, yet few routine clinical tools are available for the real-time evaluation and early-stage diagnosis of mental health. Abnormal levels of relevant biomarkers may imply biological, neurological, and developmental dysfunctions of psychiatric patients. Exploring biosensors that can provide rapid, in-situ, and real-time monitoring of psychiatric biomarkers is therefore vital for prevention, diagnosis, treatment, and prognosis of mental disorders. Recently, psychiatric biosensors with high sensitivity, selectivity, and reproducibility have been widely developed, which are mainly based on electrochemical and optical sensing technologies. This review presented psychiatric disorders with high morbidity, disability, and mortality, followed by describing pathophysiology in a biomarker-implying manner. The latest biosensors developed for the detection of representative psychiatric biomarkers (e.g., cortisol, dopamine, and serotonin) were comprehensively summarized and compared in their sensitivities, sensing technologies, applicable biological platforms, and integrative readouts. These well-developed biosensors are promising for facilitating the clinical utility and commercialization of point-of-care diagnostics. It is anticipated that mental healthcare could be gradually improved in multiple perspectives, ranging from innovations in psychiatric biosensors in terms of biometric elements, transducing principles, and flexible readouts, to the construction of 'Big-Data' networks utilized for sharing intractable psychiatric indicators and cases.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China; Jinfeng Laboratory, Chongqing, 401329, China.
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
2
|
Haššo M, Kudr J, Zítka J, Šílený J, Švec P, Švorc Ľ, Zítka O. Proving the automatic benchtop electrochemical station for the development of dopamine and paracetamol sensors. Mikrochim Acta 2024; 191:408. [PMID: 38898321 PMCID: PMC11186920 DOI: 10.1007/s00604-024-06454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
The introduced work represents an implementation of the automatic benchtop electrochemical station (BES) as an effective tool for the possibilities of high-throughput preparation of modified sensor/biosensors, speeding up the development of the analytical method, and automation of the analytical procedure for the determination of paracetamol (PAR) and dopamine (DOP) as target analytes. Within the preparation of gold nanoparticles modified screen-printed carbon electrode (AuNPs-SPCE) by electrodeposition, the deposition potential EDEP, the deposition time tDEP, and the concentration of HAuCl4 were optimized and their influence was monitored on 1 mM [Ru(NH3)6]3+/2+ redox probe and 50 μM DOP. The morphology of the AuNPs-SPCE prepared at various modification conditions was observed by SEM. The analytical performance of the AuNPs-SPCE prepared at different modification conditions was evaluated by a construction of the calibration curves of DOP and PAR. SPCE and AuNPs-SPCE at modification condition providing the best sensitivity to PAR and DOP, were successfully used to determine PAR and DOP in tap water by "spike-recovery" approach. The BES yields better reproducibility of the preparation of AuNPs-SPCE (RSD = 3.0%) in comparison with the case when AuNPs-SPCE was prepared manually by highly skilled laboratory operator (RSD = 7.0%).
Collapse
Affiliation(s)
- Marek Haššo
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava, 812 37, Slovakia
| | - Jiří Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, 613 00, Czech Republic
| | - Jan Zítka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, 613 00, Czech Republic
| | - Jan Šílený
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, 613 00, Czech Republic
| | - Pavel Švec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, 613 00, Czech Republic
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava, 812 37, Slovakia
| | - Ondřej Zítka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, 613 00, Czech Republic.
| |
Collapse
|
3
|
Srinivas S, Senthil Kumar A. Surface-Activated Pencil Graphite Electrode for Dopamine Sensor Applications: A Critical Review. BIOSENSORS 2023; 13:353. [PMID: 36979565 PMCID: PMC10046220 DOI: 10.3390/bios13030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Pencil graphite electrode (PGE) is an alternative, commercially available, ready-to-use, screen-printed electrode for a wide range of electroanalytical applications. Due to the complex-matrix composition and unpredictable electro-inactive nature of PGE in its native form, a surface pre-treatment/activation procedure is highly preferred for using it as an electroactive working electrode for electroanalytical applications. In this article, we review various surface pre-treatment and modification procedures adopted in the literature with respect to the sensitive and selective detection of dopamine as a model system. Specific generation of the carbon-oxygen functional group, along with partial surface exfoliation of PGE, has been referred to as a key step for the activation. Based on the Scopus® index, the literature collection was searched with the keywords "pencil and dopamine". The obtained data were segregated into three main headings as: (i) electrochemically pre-treated PGE; (ii) polymer-modified PGEs; and (iii) metal and metal nanocomposite-modified PGE. This critical review covers various surface activation procedures adopted for the activation for PGE suitable for dopamine electroanalytical application.
Collapse
Affiliation(s)
- Sakthivel Srinivas
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
| | - Annamalai Senthil Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, India
- Nano and Bioelectrochemistry Research Laboratory, Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology, Vellore 632 014, India
| |
Collapse
|
4
|
Overoxidation of Intrinsically Conducting Polymers. Polymers (Basel) 2022; 14:polym14081584. [PMID: 35458334 PMCID: PMC9027932 DOI: 10.3390/polym14081584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Intrinsically conducting polymers may undergo significant changes of molecular structure and material properties when exposed to highly oxidizing conditions or very positive electrode potentials, commonly called overoxidation. The type and extent of the changes depend on the experimental conditions and chemical environment. They may proceed already at much lower rates at lower electrode potentials because some of the processes associated with overoxidation are closely related to more or less reversible redox processes employed in electrochemical energy conversion and electrochromism. These changes may be welcome for some applications of these polymers in sensors, extraction, and surface functionalization, but in many cases, the change of properties affects the performance of the material negatively, contributing to material and device degradation. This report presents published examples, experimental observations, and their interpretations in terms of both structural and of material property changes. Options to limit and suppress overoxidation are presented, and useful applications are described extensively.
Collapse
|
5
|
Poly(Thionine)-Modified Screen-Printed Electrodes for CA 19-9 Detection and Its Properties in Raman Spectroscopy. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polythionine (PTH) is an electroactive compound known for its excellent electron transfer capacity. It has stable and redox centers in its structure, and it can also be generated by electropolymerization of thionine (TH). Due to its properties, it has been used in a large number of applications, including the construction of electrochemical biosensors. In this work, PTH is explored for its ability to generate electrons, which allows it to act as an electrochemical probe in a biosensor that detects CA 19-9 on two different substrates, carbon and gold, using differential pulse voltammetry (DPV) as a reading technique in phosphate buffer (PhB). The analytical features of the resulting electrodes are given, showing linear ranges from 0.010 to 10 U/mL. The Raman spectra of PTH films on gold (substrates or nanostars) and carbon (substrates) are also presented and discussed as a potential use for SERS readings as complementary information to electrochemical data.
Collapse
|
6
|
Pt Nanoparticles Anchored on NH2-MIL-101 with Efficient Peroxidase-Like Activity for Colorimetric Detection of Dopamine. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dopamine (DA) is an important catecholamine neurotransmitter that plays a highly relevant role in regulating the central nervous system, and abnormal DA content can cause many immune-related diseases. Hence, it is of significance to sensitively and specifically identify DA for clinical medicine. In this work, Pt/NH2-MIL-101 hybrid nanozymes with bimetallic catalytic centers were fabricated by forming coordinate bonds between Pt nanoparticles (Pt NPs) and –NH2 on metal–organic frameworks (MOF). The catalytic activity of Pt/NH2-MIL-101 was increased by 1.5 times via enlarging the exposure of more active sites and improving the activity of the active sites through the strategy of forming bimetallic catalytic centers. In the presence of DA, competing with 3, 3′, 5, 5′-tetramethylbenzidine (TMB) for the generated hydroxyl radicals (•OH), the blue oxidation state TMB (Ox-TMB) is reduced to colorless TMB, showing dramatic color changes. The Pt/NH2-MIL-101-based colorimetric assay enables the sensitive and robust detection of DA molecules with a detection limit of only 0.42 μM and has an observable potential in clinical applications.
Collapse
|
7
|
Lakard S, Pavel IA, Lakard B. Electrochemical Biosensing of Dopamine Neurotransmitter: A Review. BIOSENSORS 2021; 11:179. [PMID: 34204902 PMCID: PMC8229248 DOI: 10.3390/bios11060179] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
Neurotransmitters are biochemical molecules that transmit a signal from a neuron across the synapse to a target cell, thus being essential to the function of the central and peripheral nervous system. Dopamine is one of the most important catecholamine neurotransmitters since it is involved in many functions of the human central nervous system, including motor control, reward, or reinforcement. It is of utmost importance to quantify the amount of dopamine since abnormal levels can cause a variety of medical and behavioral problems. For instance, Parkinson's disease is partially caused by the death of dopamine-secreting neurons. To date, various methods have been developed to measure dopamine levels, and electrochemical biosensing seems to be the most viable due to its robustness, selectivity, sensitivity, and the possibility to achieve real-time measurements. Even if the electrochemical detection is not facile due to the presence of electroactive interfering species with similar redox potentials in real biological samples, numerous strategies have been employed to resolve this issue. The objective of this paper is to review the materials (metals and metal oxides, carbon materials, polymers) that are frequently used for the electrochemical biosensing of dopamine and point out their respective advantages and drawbacks. Different types of dopamine biosensors, including (micro)electrodes, biosensing platforms, or field-effect transistors, are also described.
Collapse
Affiliation(s)
| | | | - Boris Lakard
- Institut UTINAM, UMR CNRS 6213, University of Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France; (S.L.); (I.-A.P.)
| |
Collapse
|
8
|
Ratautaite V, Samukaite-Bubniene U, Plausinaitis D, Boguzaite R, Balciunas D, Ramanaviciene A, Neunert G, Ramanavicius A. Molecular Imprinting Technology for Determination of Uric Acid. Int J Mol Sci 2021; 22:5032. [PMID: 34068596 PMCID: PMC8126139 DOI: 10.3390/ijms22095032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/05/2023] Open
Abstract
The review focuses on the overview of electrochemical sensors based on molecularly imprinted polymers (MIPs) for the determination of uric acid. The importance of robust and precise determination of uric acid is highlighted, a short description of the principles of molecular imprinting technology is presented, and advantages over the others affinity-based analytical methods are discussed. The review is mainly concerned with the electro-analytical methods like cyclic voltammetry, electrochemical impedance spectroscopy, amperometry, etc. Moreover, there are some scattered notes to the other electrochemistry-related analytical methods, which are capable of providing additional information and to solve some challenges that are not achievable using standard electrochemical methods. The significance of these overviewed methods is highlighted. The overview of the research that is employing MIPs imprinted with uric acid is mainly targeted to address these topics: (i) type of polymers, which are used to design uric acid imprint structures; (ii) types of working electrodes and/or other parts of signal transducing systems applied for the registration of analytical signal; (iii) the description of the uric acid extraction procedures applied for the design of final MIP-structure; (iv) advantages and disadvantages of electrochemical methods and other signal transducing methods used for the registration of the analytical signal; (vi) overview of types of interfering molecules, which were analyzed to evaluate the selectivity; (vi) comparison of analytical characteristics such as linear range, limits of detection and quantification, reusability, reproducibility, repeatability, and stability. Some insights in future development of uric acid sensors are discussed in this review.
Collapse
Affiliation(s)
- Vilma Ratautaite
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (U.S.-B.); (R.B.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
| | - Urte Samukaite-Bubniene
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (U.S.-B.); (R.B.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
| | - Deivis Plausinaitis
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
| | - Raimonda Boguzaite
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (U.S.-B.); (R.B.)
| | - Domas Balciunas
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
| | - Almira Ramanaviciene
- NanoTechnas—Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| | - Grażyna Neunert
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland
| | - Arunas Ramanavicius
- Department of Functional Materials and Electronics, State Research Institute Centre for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (V.R.); (U.S.-B.); (R.B.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; (D.P.); (D.B.)
- NanoTechnas—Nanotechnology and Materials Science Center, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, LT-03225 Vilnius, Lithuania;
| |
Collapse
|
9
|
Panapimonlawat T, Phanichphant S, Sriwichai S. Electrochemical Dopamine Biosensor Based on Poly(3-aminobenzylamine) Layer-by-Layer Self-Assembled Multilayer Thin Film. Polymers (Basel) 2021; 13:1488. [PMID: 34066377 PMCID: PMC8125673 DOI: 10.3390/polym13091488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022] Open
Abstract
Dopamine (DA) is an important neurotransmitter which indicates the risk of several neurological diseases. The selective determination with low detection limit is necessary for early diagnosis and prevention of neurological diseases associated with abnormal concentration of DA. The purpose of this study is to fabricate a poly(3-aminobenzylamine)/poly(sodium 4-styrenesulfonate) (PABA/PSS) multilayer thin film for use as an electrochemical DA biosensor. The PABA was firstly synthesized using a chemical oxidation method of 3-aminobenzylamine (ABA) monomer with ammonium persulfate (APS) as an oxidant. For electrochemical biosensor, the PABA/PSS thin film was fabricated on fluorine doped tin oxide (FTO)-coated glass substrate using the layer-by-layer (LBL) self-assembly method. The optimized number of bilayers was achieved using SEM and cyclic voltammetry (CV) results. The electroactivity of the optimized LBL thin film toward detection of DA in neutral solution was studied by CV and amperometry. The PABA/PSS thin film showed good sensitivity for DA sensing with sensitivity of 6.922 nA·cm-2·µM-1 and linear range of 0.1-1.0 µM (R2 = 0.9934), with low detection limit of 0.0628 µM, long-term stability and good reproducibility. In addition, the selectivity of the PABA/PSS thin film for detection of DA under the common interferences (i.e., ascorbic acid, uric acid and glucose) was also presented. The prepared PABA/PSS thin film showed the powerful efficiency for future use as DA biosensor in real sample analysis.
Collapse
Affiliation(s)
- Tayanee Panapimonlawat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sukon Phanichphant
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Saengrawee Sriwichai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
10
|
Direct electrochemical enhanced detection of dopamine based on peroxidase-like activity of Fe3O4@Au composite nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Khamcharoen W, Siangproh W. A multilayer microfluidic paper coupled with an electrochemical platform developed for sample separation and detection of dopamine. NEW J CHEM 2021. [DOI: 10.1039/d1nj02271g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A new construction of a multilayer electrochemical microfluidic paper-based analytical device using a single drop of the sample solution was performed for highly selective detection of dopamine in the presence of ascorbic acid interference.
Collapse
Affiliation(s)
- Wisarut Khamcharoen
- Department of Chemistry
- Faculty of Science
- Srinakharinwirot University
- Bangkok 10110
- Thailand
| | - Weena Siangproh
- Department of Chemistry
- Faculty of Science
- Srinakharinwirot University
- Bangkok 10110
- Thailand
| |
Collapse
|
12
|
Alves GF, Lisboa TP, Faria LV, Farias DM, Matos MAC, Matos RC. Disposable Pencil Graphite Electrode for Ciprofloxacin Determination in Pharmaceutical Formulations by Square Wave Voltammetry. ELECTROANAL 2020. [DOI: 10.1002/elan.202060432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Guilherme Figueira Alves
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas) Departamento de Química Instituto de Ciências Exatas Universidade Federal de Juiz de Fora 36036-900 Juiz de Fora, MG Brasil
| | - Thalles Pedrosa Lisboa
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas) Departamento de Química Instituto de Ciências Exatas Universidade Federal de Juiz de Fora 36036-900 Juiz de Fora, MG Brasil
| | - Lucas Vinícius Faria
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas) Departamento de Química Instituto de Ciências Exatas Universidade Federal de Juiz de Fora 36036-900 Juiz de Fora, MG Brasil
| | - Davi Marques Farias
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas) Departamento de Química Instituto de Ciências Exatas Universidade Federal de Juiz de Fora 36036-900 Juiz de Fora, MG Brasil
| | - Maria Auxiliadora Costa Matos
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas) Departamento de Química Instituto de Ciências Exatas Universidade Federal de Juiz de Fora 36036-900 Juiz de Fora, MG Brasil
| | - Renato Camargo Matos
- NUPIS (Núcleo de Pesquisa em Instrumentação e Separações Analíticas) Departamento de Química Instituto de Ciências Exatas Universidade Federal de Juiz de Fora 36036-900 Juiz de Fora, MG Brasil
| |
Collapse
|
13
|
Torrinha Á, Jiyane N, Sabela M, Bisetty K, Montenegro MCBSM, Araújo AN. Nanostructured pencil graphite electrodes for application as high power biocathodes in miniaturized biofuel cells and bio-batteries. Sci Rep 2020; 10:16535. [PMID: 33024205 PMCID: PMC7539011 DOI: 10.1038/s41598-020-73635-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/18/2020] [Indexed: 11/08/2022] Open
Abstract
This work describes a simple method for the fabrication of an enzymatic electrode with high sensitivity to oxygen and good performance when applied as biocathode. Pencil graphite electrodes (PGE) were chosen as disposable transducers given their availability and good electrochemical response. After electrochemical characterization regarding hardness and surface pre-treatment suited modification with carbon-based nanostructures, namely with reduced graphene, MWCNT and carbon black for optimal performance was proceeded. The bioelectrode was finally assembled through immobilization of bilirubin oxidase (BOx) lashed on the modified surface of MWCNT via π-π stacking and amide bond functionalization. The high sensitivity towards dissolved oxygen of 648 ± 51 µA mM-1 cm-2, and a LOD of 1.7 µM, was achieved for the PGE with surface previously modified with reduced graphene (rGO), almost the double registered for direct anchorage on the bare PGE surface. Polarization curves resulted in an open circuit potential (OCP) of 1.68 V (vs Zn electrode) and generated a maximum current density of about 650 μA cm-2 in O2 saturated solution.
Collapse
Affiliation(s)
- Álvaro Torrinha
- LAQV-REQUIMTE, Laboratório Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Nomnotho Jiyane
- LAQV-REQUIMTE, Laboratório Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Myalowenkosi Sabela
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, P.O Box 1334, Durban, 4000, South Africa
| | - Maria C B S M Montenegro
- LAQV-REQUIMTE, Laboratório Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Alberto N Araújo
- LAQV-REQUIMTE, Laboratório Química Aplicada, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
14
|
Wang J, Tian GG, Li X, Sun Y, Cheng L, Li Y, Shen Y, Chen X, Tang W, Tao S, Wu J. Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammalian Oogenesis and Preimplantation Embryo Development. Front Cell Dev Biol 2020; 8:555. [PMID: 32754589 PMCID: PMC7365846 DOI: 10.3389/fcell.2020.00555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is one of the most fundamental post-translational modifications. However, the glycosylation patterns of glycoproteins have not been analyzed in mammalian preimplantation embryos, because of technical difficulties and scarcity of the required materials. Using high-throughput lectin microarrays of low-input cells and electrochemical techniques, an integration analysis of the DNA methylation and glycosylation landscapes of mammal oogenesis and preimplantation embryo development was performed. Highly noticeable changes occurred in the level of protein glycosylation during these events. Further analysis identified several stage-specific lectins including LEL, MNA-M, and MAL I. It was later confirmed that LEL was involved in mammalian oogenesis and preimplantation embryogenesis, and might be a marker of FGSC differentiation. Modified nanocomposite polyaniline/AuNPs were characterized by electron microscopy and modification on bare gold electrodes using layer-by-layer assembly technology. These nanoparticles were further subjected to accuracy measurements by analyzing the protein level of ten-eleven translocation protein (TET), which is an important enzyme in DNA demethylation that is regulated by O-glycosylation. Subsequent results showed that the variations in the glycosylation patterns of glycoproteins were opposite to those of the TET levels. Moreover, analysis of correlation between the changes in glyco-gene expression and female germline stem cell glycosylation profiles indicated that glycosylation was related to DNA methylation. Subsequent integration analysis showed that the trend in the variations of glycosylation patterns of glycoproteins was similar to that of DNA methylation and opposite to that of the TET protein levels during female germ cell and preimplantation embryo development. Our findings provide insight into the complex molecular mechanisms that regulate human embryo development, and a foundation for further elucidation of early embryonic development and informed reproductive medicine.
Collapse
Affiliation(s)
- Jian Wang
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Geng G. Tian
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyong Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Sun
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Li Cheng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yanfei Li
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xuejin Chen
- Department of Laboratory Animal Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenwei Tang
- School of Chemistry Science and Technology, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, China
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Ji Wu
- Renji Hospital, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
15
|
Kuralay F, Çağlayan T, İlhan H, Dumangöz M, Sönmez Çelebi M. Fabrication of self‐functionalized polymeric surfaces and their application in electrochemical acetaminophen detection. J Appl Polym Sci 2020. [DOI: 10.1002/app.49572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Filiz Kuralay
- Department of Chemistry, Faculty of Science Hacettepe University Ankara Turkey
| | - Tahsin Çağlayan
- Composite and Polymeric Materials Division The Scientific and Technological Research Council of Turkey Ankara Turkey
| | - Hasan İlhan
- Department of Chemistry, Faculty of Arts and Sciences Ordu University Ordu Turkey
| | - Mehmet Dumangöz
- Department of Chemistry, Faculty of Arts and Sciences Ordu University Ordu Turkey
| | - Mutlu Sönmez Çelebi
- Department of Chemistry, Faculty of Arts and Sciences Ordu University Ordu Turkey
| |
Collapse
|
16
|
High-Performance Conducting Polymer Nanotube-based Liquid-Ion Gated Field-Effect Transistor Aptasensor for Dopamine Exocytosis. Sci Rep 2020; 10:3772. [PMID: 32111933 PMCID: PMC7048782 DOI: 10.1038/s41598-020-60715-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/14/2020] [Indexed: 01/22/2023] Open
Abstract
In this study, ultrasensitive and precise detection of a representative brain hormone, dopamine (DA), was demonstrated using functional conducting polymer nanotubes modified with aptamers. A high-performance aptasensor was composed of interdigitated microelectrodes (IMEs), carboxylated polypyrrole nanotubes (CPNTs) and DA-specific aptamers. The biosensors were constructed by sequential conjugation of CPNTs and aptamer molecules on the IMEs, and the substrate was integrated into a liquid-ion gating system surrounded by pH 7.4 buffer as an electrolyte. To confirm DA exocytosis based on aptasensors, DA sensitivity and selectivity were monitored using liquid-ion gated field-effect transistors (FETs). The minimum detection level (MDL; 100 pM) of the aptasensors was determined, and their MDL was optimized by controlling the diameter of the CPNTs owing to their different capacities for aptamer introduction. The MDL of CPNT aptasensors is sufficient for discriminating between healthy and unhealthy individuals because the total DA concentration in the blood of normal person is generally determined to be ca. 0.5 to 6.2 ng/mL (3.9 to 40.5 nM) by high-performance liquid chromatography (HPLC) (this information was obtained from a guidebook “Evidence-Based Medicine 2018 SCL “ which was published by Seoul Clinical Laboratory). The CPNTs with the smaller diameters (CPNT2: ca. 120 nm) showed 100 times higher sensitivity and selectivity than the wider CPNTs (CPNT1: ca. 200 nm). Moreover, the aptasensors based on CPNTs had excellent DA discrimination in the presence of various neurotransmitters. Based on the excellent sensing properties of these aptasensors, the DA levels of exogeneous DA samples that were prepared from PC12 cells by a DA release assay were successfully measured by DA kits, and the aptasensor sensing properties were compared to those of standard DA reagents. Finally, the real-time response values to the various exogeneous DA release levels were similar to those of a standard DA aptasensor. Therefore, CPNT-based aptasensors provide efficient and rapid DA screening for neuron-mediated genetic diseases such as Parkinson’s disease.
Collapse
|
17
|
Yang S, Zhao J, Tricard S, Yu L, Fang J. A sensitive and selective electrochemical sensor based on N, P-Doped molybdenum Carbide@Carbon/Prussian blue/graphite felt composite electrode for the detection of dopamine. Anal Chim Acta 2020; 1094:80-89. [DOI: 10.1016/j.aca.2019.09.077] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/21/2019] [Accepted: 09/27/2019] [Indexed: 01/08/2023]
|
18
|
A promising enzyme anchoring probe for selective ethanol sensing in beverages. Int J Biol Macromol 2019; 133:1228-1235. [PMID: 31055115 DOI: 10.1016/j.ijbiomac.2019.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Accepted: 05/01/2019] [Indexed: 11/21/2022]
Abstract
A newly designed amperometric biosensor for the determination of ethanol through one-step electrochemical coating of (4,7-di(thiophen-2-yl)benzo[c][1,2,5]selenadiazole-co-1H-pyrrole-3-carboxylic acid) (TBeSe-co-P3CA) on a graphite electrode is presented. It was aimed to propose a newly synthesized copolymer with enhanced biosensing properties as a novel sensor for the quantification of ethanol. The conjugated copolymer (TBeSe-co-P3CA) was prepared through electrochemical polymerization by potential cycling. After polymer modification, alcohol oxidase (AOx) was immobilized on a modified electrode surface for ethanol sensing. In the analytical investigation, the calibration plot is linear above large concentration range (0.085 to 1.7 mM), where sensitivity is around 16.44 μA/mMcm2 with a very low detection limit (LOD) of 0.052 mM based on the signal-to-noise ratio in short response time. Moreover, interfering effect of some possible compounds were examined and the capability of the biosensor in estimating ethanol content in commercial alcoholic beverages was also demonstrated. The results showed satisfactory accuracy of the developed sensor and confirm the proposed sensor has a potential for ethanol quantification compared to the currently used techniques.
Collapse
|
19
|
da Cunha CEP, Rodrigues ESB, Fernandes Alecrim M, Thomaz DV, Macêdo IYL, Garcia LF, de Oliveira Neto JR, Moreno EKG, Ballaminut N, de Souza Gil E. Voltammetric Evaluation of Diclofenac Tablets Samples through Carbon Black-Based Electrodes. Pharmaceuticals (Basel) 2019; 12:E83. [PMID: 31167398 PMCID: PMC6630689 DOI: 10.3390/ph12020083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022] Open
Abstract
Diclofenac (DIC) is a non-steroidal anti-inflammatory drug of wide use around the world. Electroanalytical methods display a high analytical potential for application in pharmaceutical samples but the drawbacks concerning electrode fouling and reproducibility are of major concern. Henceforth, the aim of this work was to propose the use of alternative low-cost carbon black (CB) and ionic liquid (IL) matrix to modify the surface of pencil graphite electrodes (PGE) in order to quantify DIC in raw materials, intermediates, and final products, as well as in stability assays of tablets. The proposed method using CB+IL/PGE displayed good recovery (99.4%) as well as limits of detection (LOD) of 0.08 µmol L-1 and limits of quantification (LOQ) of 0.28 µmol L-1. CB+IL/PGE response was five times greater than the unmodified PGE. CB+IL-PGE stands as an interesting alternative for DIC assessment in different pharmaceutical samples.
Collapse
Affiliation(s)
| | | | | | - Douglas Vieira Thomaz
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74690-970, Brazil.
| | | | - Luane Ferreira Garcia
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74690-970, Brazil.
| | | | | | - Nara Ballaminut
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74690-970, Brazil.
| | - Eric de Souza Gil
- Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74690-970, Brazil.
| |
Collapse
|
20
|
Fabrication of poly (sudan III) modified carbon paste electrode sensor for dopamine: A voltammetric study. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.054] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Sookhakian M, Basirun WJ, Goh BT, Woi PM, Alias Y. Molybdenum disulfide nanosheet decorated with silver nanoparticles for selective detection of dopamine. Colloids Surf B Biointerfaces 2018; 176:80-86. [PMID: 30594706 DOI: 10.1016/j.colsurfb.2018.12.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/05/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022]
Abstract
A metal-inorganic composite, comprises of silver-molybdenum disulfide nanosheets (Ag@MoS2) was synthesized at low temperature. The Ag@MoS2 composite was drop-casted onto a glassy carbon electrode (GCE) for a highly selective dopamine (DA) detection in the presence of interfering compounds such as uric acid (UA) and ascorbic acid (AA). The physicochemical analysis of the nanosheets was carried out with X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The as-prepared Ag@MoS2-modified GCE displayed excellent electrocatalytic activity toward DA oxidation, with a 0.2 μM detection limit at a signal-to-noise ratio of 3 and an extensive linear detection range from 1 μM to 500 μM (R2 = 0.9983). The fabricated non-enzymatic electrochemical sensor demonstrated superior selectivity and stability for the detection of DA with the removal of AA and UA interfering compounds.
Collapse
Affiliation(s)
- M Sookhakian
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - W J Basirun
- University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; Institute of Nanotechnology and Catalysis Research (NanoCat), University Malaya, Kuala Lumpur 50603, Malaysia
| | - Boon Tong Goh
- Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pei Meng Woi
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Y Alias
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; University Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
22
|
Biosensing based on pencil graphite electrodes. Talanta 2018; 190:235-247. [DOI: 10.1016/j.talanta.2018.07.086] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
|
23
|
Preparation of a disposable and low-cost electrochemical sensor for propham detection based on over-oxidized poly(thiophene) modified pencil graphite electrode. Talanta 2018; 187:125-132. [DOI: 10.1016/j.talanta.2018.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 01/03/2023]
|
24
|
Kong D, Zhuang Q, Han Y, Xu L, Wang Z, Jiang L, Su J, Lu CH, Chi Y. Simultaneous voltammetry detection of dopamine and uric acid in human serum and urine with a poly(procaterol hydrochloride) modified glassy carbon electrode. Talanta 2018; 185:203-212. [DOI: 10.1016/j.talanta.2018.03.078] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/16/2018] [Accepted: 03/24/2018] [Indexed: 01/03/2023]
|
25
|
Chi F, Zhang S, Wen J, Xiong J, Hu S. Highly Efficient Recovery of Uranium from Seawater Using an Electrochemical Approach. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01063] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fangting Chi
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shuo Zhang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Wen
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Jie Xiong
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| | - Sheng Hu
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
| |
Collapse
|
26
|
Mei X, Wei Q, Long H, Yu Z, Deng Z, Meng L, Wang J, Luo J, Lin CT, Ma L, Zheng K, Hu N. Long-term stability of Au nanoparticle-anchored porous boron-doped diamond hybrid electrode for enhanced dopamine detection. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.133] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Kokulnathan T, Joseph Anthuvan A, Chen SM, Chinnuswamy V, Kadirvelu K. Trace level electrochemical determination of the neurotransmitter dopamine in biological samples based on iron oxide nanoparticle decorated graphene sheets. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00716g] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trace level electrochemical determination of dopamine in biological samples based on an iron oxide nanoparticle-capped graphene sheet modified electrode.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Allen Joseph Anthuvan
- Department of Nanoscience and Technology
- Bharathiar University
- Coimbatore-641 046
- India
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | | | - Krishna Kadirvelu
- DRDO-Bharathiar University Campus-Centre for Life Sciences
- Coimbatore
- India
| |
Collapse
|
28
|
Ayaz S, Dilgin Y. Flow injection amperometric determination of hydrazine based on its electrocatalytic oxidation at pyrocatechol violet modified pencil graphite electrode. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.162] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Beitollahi H, Yoonesfar R. Sensitive detection of sulfasalazine at a carbon paste electrode modified with NiO/CNT nanocomposite and ionic liquid in pharmaceutical and biological samples. INORG NANO-MET CHEM 2017. [DOI: 10.1080/24701556.2017.1357577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Roghayeh Yoonesfar
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
30
|
Wang HH, Chen XJ, Li WT, Zhou WH, Guo XC, Kang WY, Kou DX, Zhou ZJ, Meng YN, Tian QW, Wu SX. ZnO nanotubes supported molecularly imprinted polymers arrays as sensing materials for electrochemical detection of dopamine. Talanta 2017; 176:573-581. [PMID: 28917792 DOI: 10.1016/j.talanta.2017.08.083] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/25/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022]
Abstract
In this study, ZnO nanotubes (ZNTs) were prepared onto fluorine-doped tin oxide (FTO) glass and used as supports for MIPs arrays fabrication. Due to the imprinted cavities are always located at both inner and outer surface of ZNTs, these ZNTs supported MIPs arrays have good accessibility towards template and can be used as sensing materials for chemical sensors with high sensitivity, excellent selectivity and fast response. Using K3[Fe(CN)6] as electron probe, the fabricated electrochemical sensor shows two linear dynamic ranges (0.02-5μM and 10-800μM) towards dopamine. This proposed electrochemical sensor has been applied for dopamine determination with satisfied recoveries and precision. More complex human urine samples also confirmed that the proposed method has good accuracy for dopamine determination in real biological samples. These results suggest potential applicability of the proposed method and sensor in important molecule analysis.
Collapse
Affiliation(s)
- Hai-Hui Wang
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Xuan-Jie Chen
- Institute of Chinese Materia Medica, Henan University, Kaifeng 475004, China
| | - Wei-Tian Li
- Institute of Chinese Materia Medica, Henan University, Kaifeng 475004, China
| | - Wen-Hui Zhou
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China.
| | - Xiu-Chun Guo
- Institute of Chinese Materia Medica, Henan University, Kaifeng 475004, China.
| | - Wen-Yi Kang
- Institute of Chinese Materia Medica, Henan University, Kaifeng 475004, China
| | - Dong-Xing Kou
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Zheng-Ji Zhou
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Yue-Na Meng
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Qing-Wen Tian
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China
| | - Si-Xin Wu
- The Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng 475004, China; Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| |
Collapse
|
31
|
In situ
doping of PANI nanocomposites by gold nanoparticles for high-performance electrochemical energy storage. J Appl Polym Sci 2017. [DOI: 10.1002/app.45309] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Fu Y, Sheng Q, Zheng J. The novel sulfonated polyaniline-decorated carbon nanosphere nanocomposites for electrochemical sensing of dopamine. NEW J CHEM 2017. [DOI: 10.1039/c7nj03086j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel dopamine (DA) electrochemical sensor was developed by combining carbon nanospheres (CNSs) and sulfonated polyaniline (SPANI) with their own excellent characteristics.
Collapse
Affiliation(s)
- Yanyi Fu
- Institute of Analytical Science
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi’an
- China
| | - Qinglin Sheng
- Institute of Analytical Science
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi’an
- China
| | - Jianbin Zheng
- Institute of Analytical Science
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry
- Northwest University
- Xi’an
- China
| |
Collapse
|