1
|
Khalikova M, Jireš J, Horáček O, Douša M, Kučera R, Nováková L. What is the role of current mass spectrometry in pharmaceutical analysis? MASS SPECTROMETRY REVIEWS 2024; 43:560-609. [PMID: 37503656 DOI: 10.1002/mas.21858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/02/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Collapse
Affiliation(s)
- Maria Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - Jakub Jireš
- Department of Analytical Chemistry, Faculty of Chemical Engineering, UCT Prague, Prague, Czech Republic
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Ondřej Horáček
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Michal Douša
- Department of Development, Zentiva, k. s., Praha, Praha, Czech Republic
| | - Radim Kučera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Abstract
LC-MS based peptide mapping, i.e., proteolytic digestion followed by LC-MS/MS analysis, is the method of choice for protein primary structural characterization. Manual proteolytic digestion is usually a labor-intensive procedure. In this work, a novel method was developed for fully automated online protein digestion and LC-MS peptide mapping. The method generates LC-MS data from undigested protein samples without user intervention by utilizing the same HPLC system that performs the chromatographic separation with some additional modules. Each sample is rapidly digested immediately prior to its LC-MS analysis, minimizing artifacts that can grow over longer digestion times or digest storage times as in manual or automated offline digestion methods. In this report, we implemented the method on an Agilent 1290 Infinity II LC system equipped with a Multisampler. The system performs a complete digestion workflow including denaturation, disulfide reduction, cysteine alkylation, buffer exchange, and tryptic digestion. We demonstrated that the system is capable of digesting monoclonal antibodies and other proteins with excellent efficiency and is robust and reproducible and produces fewer artifacts than manually prepared digests. In addition, it consumes only a few micrograms of material as most of the digested sample protein is subjected to LC-MS analysis.
Collapse
Affiliation(s)
- Jason Richardson
- Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Zhongqi Zhang
- Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
3
|
Vosáhlová-Kadlecová Z, Gilar M, Molnárová K, Kozlík P, Kalíková K. Mixed-mode column allows simple direct coupling with immobilized enzymatic reactor for on-line protein digestion. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123866. [PMID: 37657402 DOI: 10.1016/j.jchromb.2023.123866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Liquid chromatography coupled with mass spectrometry is widely used in the field of proteomic analysis after off-line protein digestion. On-line digestion with chromatographic column connected in a series with immobilized enzymatic reactor is not often used approach. In this work we investigated the impact of chromatographic conditions on the protein digestion efficiency. The investigation of trypsin reactor activity was performed by on-line digestion of N-α-benzoyl-L-arginine 4-nitroanilide hydrochloride (BAPNA), followed by separation of the digests on the mixed-mode column. Two trypsin column reactors with the different trypsin coverage on the bridged ethylene hybrid particles were evaluated. To ensure optimal trypsin activity, the separation temperature was set at 37.0 °C and the pH of the mobile phase buffer was maintained at 8.5. The on-line digestion itself ongoing during the initial state of gradient was carried out at a low flow rate using a mobile phase that was free of organic modifiers. Proteins such as cytochrome C, enolase, and myoglobin were successfully digested on-line without prior reduction or alkylation, and the resulting peptides were separated using a mixed-mode column. Additionally, proteins that contain multiple cysteines, such as α-lactalbumin, albumin, β-lactoglobulin A, and conalbumin, were also successfully digested on-line (after reduction and alkylation). Moreover, trypsin immobilized enzymatic reactors were utilized for over 300 injections without any noticeable loss of digestion activity.
Collapse
Affiliation(s)
- Zuzana Vosáhlová-Kadlecová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague, Czech Republic
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Katarína Molnárová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 00 Prague, Czech Republic
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Prague, Czech Republic.
| |
Collapse
|
4
|
Mayr K, Weindl T, Gärtner A, Camperi J, Maetzke T, Förster M, Nachtigall T, Steiner F, Vogt A, Hosp F, Mølhøj M. Novel Multidimensional Liquid Chromatography Workflow with In-Loop Enzymatic Digests of Multiple Heart-Cuts for Fast and Flexible Characterization of Biotherapeutic Protein Variants. Anal Chem 2023; 95:3629-3637. [PMID: 36745752 DOI: 10.1021/acs.analchem.2c04467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multidimensional liquid chromatography (mD-LC) is becoming a powerful tool for complete characterization of individual peaks and protein variants through separation methods such as nondenaturing ion exchange (IEC) or size-exclusion chromatography coupled to reversed-phase (RP) chromatography. The flexibility of commercially available and customized mD-LC systems is still limited in terms of enzymatic peak processing between chromatographic dimensions. In this regard, only a few column-immobilized proteases are available for detailed peak characterization by mD-LC coupled to mass spectrometry (mD-LC-MS). Here, we present a purpose-built and automated multiple heart-cutting mD-LC design with a novel analytical workflow involving in-loop enzymatic heart-cut digestion between the first-dimensional column and transfer to the second dimension before MS or MS/MS analyses. The setup facilitates the spike-in of any enzyme to multiple heart-cuts for multilevel analysis, for example, for peptide mapping, fragment generation, or deglycosylation, to reduce heterogeneity and provide maximum flexibility in terms of incubation time for optimal peak characterization. We demonstrate the application of IEC coupled to RP-LC-MS and automated in-loop deglycosylation and on-column reduction of an IgG antibody combined with upper hinge region cleavage for Fab generation. We further employ mD-LC-MS and mD-LC-MS/MS to assess post-translational modifications of a bispecific antibody and to support molecule selection by evaluating the best downstream purification strategy. The novel design and automated workflow of the mD-LC system described here offers enhanced flexibility for in-solution processing and real-time monitoring of multiple heart-cuts enabling streamlined characterization of unknown biotherapeutic charge and size variants.
Collapse
Affiliation(s)
- Kilian Mayr
- Large Molecule Research, Roche Innovation Center Munich, Roche Pharma Research and Early Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Thomas Weindl
- Large Molecule Research, Roche Innovation Center Munich, Roche Pharma Research and Early Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Achim Gärtner
- Large Molecule Research, Roche Innovation Center Munich, Roche Pharma Research and Early Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Julien Camperi
- Cell Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California, 94080, United States
| | - Thomas Maetzke
- HPLConsult GmbH, Bergmattenweg 16, CH-4148 Pfeffingen, Switzerland
| | - Markus Förster
- Thermo Fisher Scientific GmbH, Im Steingrund 4-6, 63303 Dreieich, Germany
| | - Thomas Nachtigall
- Thermo Fisher Scientific GmbH, Im Steingrund 4-6, 63303 Dreieich, Germany
| | - Frank Steiner
- Thermo Fisher Scientific GmbH, Im Steingrund 4-6, 63303 Dreieich, Germany
| | - Annette Vogt
- Large Molecule Research, Roche Innovation Center Munich, Roche Pharma Research and Early Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Fabian Hosp
- Large Molecule Research, Roche Innovation Center Munich, Roche Pharma Research and Early Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Michael Mølhøj
- Large Molecule Research, Roche Innovation Center Munich, Roche Pharma Research and Early Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| |
Collapse
|
5
|
Bathke A, Hoelterhoff S, Oezipak S, Grunert I, Heinrich K, Winter M. The Power of Trypsin Immobilized Enzyme Reactors (IMERs) Deployed in Online MDLC–MS Applications. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.hl9986s4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immobilized enzyme reactors (IMERs) are a powerful and essential part of multidimensional liquid chromatography–tandem mass spectrometry (MDLC–MS/MS) approaches that enable online identification, characterization, and quantification of post-translational modifications of therapeutic antibodies. This review gives an overview of commercially available and selected trypsin IMERs in regard to their application in LC-based and automated sample preparation. Additionally, we address the challenges of IMER application in online systems and the advantages of self-made IMERs.
Collapse
|
6
|
Potential and Scale-Up of Pore-Through-Flow Membrane Reactors for the Production of Prebiotic Galacto-Oligosaccharides with Immobilized β-Galactosidase. Catalysts 2021. [DOI: 10.3390/catal12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The production of prebiotics like galacto-oligosaccharides (GOS) on industrial scale is becoming more important due to increased demand. GOS are synthesized in batch reactors from bovine lactose using the cost intensive enzyme β-galactosidase (β-gal). Thus, the development of sustainable and more efficient production strategies, like enzyme immobilization in membrane reactors are a promising option. Activated methacrylatic monoliths were characterized as support for covalent immobilized β-gal to produce GOS. The macroporous monoliths act as immobilized pore-through-flow membrane reactors (PTFR) and reduce the influence of mass-transfer limitations by a dominating convective pore flow. Monolithic designs in the form of disks (0.34 mL) and for scale-up cylindric columns (1, 8 and 80 mL) in three different reactor operation configurations (semi-continuous, continuous and continuous with recirculation) were studied experimentally and compared to the free enzyme system. Kinetic data, immobilization efficiency, space-time-yield and long-term stability were determined for the immobilized enzyme. Furthermore, simulation studies were conducted to identify optimal operation conditions for further scale-up. Thus, the GOS yield could be increased by up to 60% in the immobilized PTFRs in semi-continuous operation compared to the free enzyme system. The enzyme activity and long-time stability was studied for more than nine months of intensive use.
Collapse
|
7
|
Wouters B, Currivan S, Abdulhussain N, Hankemeier T, Schoenmakers P. Immobilized-enzyme reactors integrated into analytical platforms: Recent advances and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Pottratz I, Schmidt C, Müller I, Hamel C. Immobilization of
β
‐Galactosidase on Monolithic Discs for the Production of Prebiotics Galacto‐oligosaccharides. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202000231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ines Pottratz
- Anhalt University of Applied Sciences Applied Biosciences and Process Engineering Bernburger Straße 55 06366 Koethen Germany
| | - Christoph Schmidt
- Anhalt University of Applied Sciences Applied Biosciences and Process Engineering Bernburger Straße 55 06366 Koethen Germany
| | - Ines Müller
- Anhalt University of Applied Sciences Applied Biosciences and Process Engineering Bernburger Straße 55 06366 Koethen Germany
| | - Christof Hamel
- Anhalt University of Applied Sciences Applied Biosciences and Process Engineering Bernburger Straße 55 06366 Koethen Germany
- Otto von Guericke University Institute of Process Engineering Universitätsplatz 2 39106 Magdeburg Germany
| |
Collapse
|
9
|
Korzhikova-Vlakh EG, Platonova GA, Tennikova TB. Macroporous Polymer Monoliths for Affinity Chromatography and Solid-Phase Enzyme Processing. Methods Mol Biol 2021; 2178:251-284. [PMID: 33128755 DOI: 10.1007/978-1-0716-0775-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, monolithic stationary phases, because of their special morphology and enormous permeability, are widely used for the development and realization of fast dynamic and static processes based on the mass transition between liquid and solid phases. These are liquid chromatography, solid-phase synthesis, microarrays, flow-through enzyme reactors, etc. High-performance liquid chromatography on monoliths, including the bioaffinity mode, represents unique technique appropriate for fast and efficient separation of biological (macro)molecules of different sizes and shapes (proteins, nucleic acids, peptides), as well as such supramolecular systems as viruses.In the edited chapter, the examples of the application of commercially available macroporous monoliths for modern affinity processing are presented. In particular, the original methods developed for efficient isolation and fractionation of monospecific antibodies from rabbit blood sera, the possibility of simultaneous affinity separation of protein G and serum albumin from human serum, the isolation of recombinant products, such as protein G and tissue plasminogen activator, respectively, are described in detail. The suggested and realized multifunctional fractionation of polyclonal pools of antibodies by the combination of several short monolithic columns (disks) with different affinity functionalities stacked in the same cartridge represents the original and practically valuable method that can be used in biotechnology. In addition, macroporous monoliths were adapted to the immobilization of such different enzymes as polynucleotide phosphorylase, ribonuclease A, α-chymotrypsin, chitinolytic biocatalysts, β-xylosidase, and β-xylanase. The possibility of use of immobilized enzyme reactors based on monoliths for different purposes is demonstrated.
Collapse
Affiliation(s)
- E G Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - G A Platonova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | - T B Tennikova
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
10
|
Mao Y, Fan R, Li R, Ye X, Kulozik U. Flow-through enzymatic reactors using polymer monoliths: From motivation to application. Electrophoresis 2020; 42:2599-2614. [PMID: 33314167 DOI: 10.1002/elps.202000266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/01/2020] [Accepted: 12/04/2020] [Indexed: 11/06/2022]
Abstract
The application of monolithic materials as carriers for enzymes has rapidly expanded to the realization of flow-through analysis and bioconversion processes. This expansion is partly attributed to the absence from diffusion limitation in many monoliths-based enzyme reactors. Particularly, the relatively ease of introducing functional groups renders polymer monoliths attractive as enzyme carriers. After summarizing the motivation to develop enzymatic reactors using polymer monoliths, this review reports the most recent applications of such reactors. Besides, the present review focuses on the crucial characteristics of polymer monoliths affecting the immobilization of enzymes and the processing parameters dictating the performance of the resulting enzymatic reactors. This review is intended to provide a guideline for designing and applying flow-through enzymatic reactors using polymer monoliths.
Collapse
Affiliation(s)
- Yuhong Mao
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Rong Fan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Renkuan Li
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, P. R. China
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering, Technical University of Munich, Freising-Weihenstephan, Germany
| |
Collapse
|
11
|
Wang Y, Zhang W, Ouyang Z. Fast protein analysis enabled by high-temperature hydrolysis. Chem Sci 2020; 11:10506-10516. [PMID: 34094309 PMCID: PMC8162451 DOI: 10.1039/d0sc03237a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
While the bottom-up protein analysis serves as a mainstream method for biological studies, its efficiency is limited by the time-consuming process for enzymatic digestion or hydrolysis as well as the post-digestion treatment prior to mass spectrometry analysis. In this work, we developed an enzyme-free microreaction system for fast and selective hydrolysis of proteins, and a direct analysis of the protein digests was achieved by nanoESI (electrospray ionization) mass spectrometry. Using the microreactor, proteins in aqueous solution could be selectively hydrolyzed at the aspartyl sites within 2 min at high temperatures (∼150 °C). Being free of salts, the protein digest solution could be directly analyzed using a mass spectrometer with nanoESI without further purification or post-digestion treatment. This method has been validated for the analysis of a variety of proteins with molecular weights ranging from 8.5 to 67 kDa. With introduction of a reducing agent into the protein solutions, fast cleavage of disulfide bonds was also achieved along with high-temperature hydrolysis, allowing for fast analysis of large proteins such as bovine serum albumin. The high-temperature microreaction system was also used with a miniature mass spectrometer for the determination of highly specific peptides from Mycobacterium tuberculosis antigens, showing its potential for point-of-care analysis of protein biomarkers.
Collapse
Affiliation(s)
- Yuchen Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 P. R. China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 P. R. China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
12
|
do Nascimento FH, Moraes AH, Trazzi CR, Velasques CM, Masini JC. Fast construction of polymer monolithic columns inside fluorinated ethylene propylene (FEP) tubes for separation of proteins by reversed-phase liquid chromatography. Talanta 2020; 217:121063. [DOI: 10.1016/j.talanta.2020.121063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
|
13
|
Klatt JN, Depke M, Goswami N, Paust N, Zengerle R, Schmidt F, Hutzenlaub T. Tryptic digestion of human serum for proteomic mass spectrometry automated by centrifugal microfluidics. LAB ON A CHIP 2020; 20:2937-2946. [PMID: 32780041 DOI: 10.1039/d0lc00530d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mass spectrometry has become an important analytical tool for protein research studies to identify, characterise and quantify proteins with unmatched sensitivity in a highly parallel manner. When transferred into clinical routine, the cumbersome and error-prone sample preparation workflows present a major bottleneck. In this work, we demonstrate tryptic digestion of human serum that is fully automated by centrifugal microfluidics. The automated workflow comprises denaturation, digestion and acidification. The input sample volume is 1.3 μl only. A triplicate of human serum was digested with the developed microfluidic chip as well as with a manual reference workflow on three consecutive days to assess the performance of our system. After desalting and liquid chromatography tandem mass spectrometry, a total of 604 proteins were identified in the samples digested with the microfluidic chip and 602 proteins with the reference workflow. Protein quantitation was performed using the Hi3 method, yielding a 7.6% lower median intensity CV for automatically digested samples compared to samples digested with the reference workflow. Additionally, 17% more proteins were quantitated with less than 30% CV in the samples from the microfluidic chip, compared to the manual control samples. This improvement can be attributed to the accurate liquid metering with all volume CVs below 1.5% on the microfluidic chip. The presented automation solution is attractive for laboratories in need of robust automation of sample preparation from small volumes as well as for labs with a low or medium throughput that does not allow for large investments in robotic systems.
Collapse
Affiliation(s)
- J-N Klatt
- Laboratory for MEMS Applications, IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|
15
|
Inter-laboratory study of an optimised peptide mapping workflow using automated trypsin digestion for monitoring monoclonal antibody product quality attributes. Anal Bioanal Chem 2020; 412:6833-6848. [PMID: 32710279 PMCID: PMC7496030 DOI: 10.1007/s00216-020-02809-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 07/07/2020] [Indexed: 11/27/2022]
Abstract
Peptide mapping analysis is a regulatory expectation to verify the primary structure of a recombinant product sequence and to monitor post-translational modifications (PTMs). Although proteolytic digestion has been used for decades, it remains a labour-intensive procedure that can be challenging to accurately reproduce. Here, we describe a fast and reproducible protocol for protease digestion that is automated using immobilised trypsin on magnetic beads, which has been incorporated into an optimised peptide mapping workflow to show method transferability across laboratories. The complete workflow has the potential for use within a multi-attribute method (MAM) approach in drug development, production and QC laboratories. The sample preparation workflow is simple, ideally suited to inexperienced operators and has been extensively studied to show global applicability and robustness for mAbs by performing sample digestion and LC-MS analysis at four independent sites in Europe. LC-MS/MS along with database searching was used to characterise the protein and determine relevant product quality attributes (PQAs) for further testing. A list of relevant critical quality attributes (CQAs) was then established by creating a peptide workbook containing the specific mass-to-charge (m/z) ratios of the modified and unmodified peptides of the selected CQAs, to be monitored in a subsequent test using LC-MS analysis. Data is provided that shows robust digestion efficiency and low levels of protocol induced PTMs. Graphical abstract ![]()
Collapse
|
16
|
Hakala T, Bialas F, Toprakcioglu Z, Bräuer B, Baumann KN, Levin A, Bernardes GJL, Becker CFW, Knowles TPJ. Continuous Flow Reactors from Microfluidic Compartmentalization of Enzymes within Inorganic Microparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32951-32960. [PMID: 32589387 PMCID: PMC7383928 DOI: 10.1021/acsami.0c09226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Compartmentalization and selective transport of molecular species are key aspects of chemical transformations inside the cell. In an artificial setting, the immobilization of a wide range of enzymes onto surfaces is commonly used for controlling their functionality but such approaches can restrict their efficacy and expose them to degrading environmental conditions, thus reducing their activity. Here, we employ an approach based on droplet microfluidics to generate enzyme-containing microparticles that feature an inorganic silica shell that forms a semipermeable barrier. We show that this porous shell permits selective diffusion of the substrate and product while protecting the enzymes from degradation by proteinases and maintaining their functionality over multiple reaction cycles. We illustrate the power of this approach by synthesizing microparticles that can be employed to detect glucose levels through simultaneous encapsulation of two distinct enzymes that form a controlled reaction cascade. These results demonstrate a robust, accessible, and modular approach for the formation of microparticles containing active but protected enzymes for molecular sensing applications and potential novel diagnostic platforms.
Collapse
Affiliation(s)
- Tuuli
A. Hakala
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Friedrich Bialas
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Zenon Toprakcioglu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Birgit Bräuer
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Kevin N. Baumann
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Aviad Levin
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Gonçalo J. L. Bernardes
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Instituto
de Medicina Molecular, Faculdade de Medicina
de Universidad de Lisboa, 1649-028 Lisboa, Portugal
| | - Christian F. W. Becker
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
17
|
Integrated microfluidic chip for on-line proteome analysis with combination of denaturing and rapid digestion of protein. Anal Chim Acta 2020; 1102:1-10. [DOI: 10.1016/j.aca.2020.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/21/2023]
|
18
|
Doucette AA, Nickerson JL. Developing front-end devices for improved sample preparation in MS-based proteome analysis. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4494. [PMID: 31957906 DOI: 10.1002/jms.4494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Chemical analysis has long relied on instrumentation, from the simplest (eg, burets) to the more sophisticated (eg, mass spectrometers) to facilitate precision measurements. Regardless of their complexity, the development of a new instrumental device can be a valued approach to address problems in science. In this perspective, we outline the process of novel device design, from early phase conception to the manufacturing and testing of the tool or gadget. Focus is placed on the development of improved front-end devices to facilitate protein sample manipulations ahead of mass spectrometry, which therefore augment the proteomics workflow. Highlighted are some of the many training secrets, choices, and challenges that are inherent to the often iterative process of device design. In hopes of inspiring others to pursue instrument design to address relevant research questions, we present a summary list of points to consider prior to innovating their own devices.
Collapse
Affiliation(s)
- Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
19
|
Development of Immobilized Enzyme Reactors for the characterization of the glycosylation heterogeneity of a protein. Talanta 2020; 206:120171. [DOI: 10.1016/j.talanta.2019.120171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022]
|
20
|
Qiao J, Zhao L, Liu L, Qi L. An l-glutaminase enzyme reactor based on porous bamboo sticks and its application in enzyme inhibitors screening. Talanta 2019; 205:120126. [PMID: 31450397 DOI: 10.1016/j.talanta.2019.120126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 11/25/2022]
Abstract
Inspired by the porous and fibrous structure of commercially available bamboo, herein we created an l-glutaminase enzyme reactor based on bamboo sticks. The enzyme was immobilized onto the bamboo sticks through a glutaraldehyde modification to achieve covalent bonding. The enzymatic hydrolysis efficiency of the prepared l-glutaminase@bamboo sticks based porous enzyme reactor was evaluated by chiral ligand exchange capillary electrochromatography using l-glutamine as the substrate. l-glutaminase@bamboo exhibited improved enzymatic hydrolysis performances, including high hydrolysis efficiency (maximum rate Vmax: two fold higher than the free enzyme), prolonged stability (14 days) and good reusability. l-Glutaminase@bamboo sticks also expanded application capability in pharmaceutical industry in enzyme inhibitor screening. These excellent properties could be attributed to the micropores of bamboo sticks, which led to the fast enzymatic kinetics. The results suggest that the pores of bamboo sticks played an important role in the proposed enzyme reactor during the hydrolysis of l-glutamine and l-glutaminase inhibitor screening.
Collapse
Affiliation(s)
- Juan Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Liping Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, PR China
| | - Lili Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China; College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, PR China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
21
|
Mao Y, Krischke M, Kulozik U. β-Lactoglobulin hydrolysis by a flow-through monolithic immobilized trypsin reactor in ethanol/aqueous solvents. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
|
23
|
Label-free protein quantification after ultrafast digestion of complex proteomes using ultrasonic energy and immobilized-trypsin magnetic nanoparticles. Talanta 2019; 196:262-270. [DOI: 10.1016/j.talanta.2018.12.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/27/2022]
|
24
|
Murphy S, Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Proteomic profiling of giant skeletal muscle proteins. Expert Rev Proteomics 2019; 16:241-256. [DOI: 10.1080/14789450.2019.1575205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
25
|
Currivan SA, Chen WQ, Wilson R, Sanz Rodriguez E, Upadhyay N, Connolly D, Nesterenko PN, Paull B. Multi-lumen capillary based trypsin micro-reactor for the rapid digestion of proteins. Analyst 2018; 143:4944-4953. [PMID: 30221288 DOI: 10.1039/c8an01330f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this work we evaluated a novel microreactor prepared using a surface modified, high surface-to-volume ratio multi-lumen fused silica capillary (MLC). The MLC investigated contained 126 parallel channels, each of 4 μm internal diameter. The MLC, along with conventional fused silica capillaries of 25 μm and 50 μm internal diameter, were treated by (3-aminopropyl)triethoxysilane (APTES) and then modified with gold nanoparticles, of ∼20 nm in diameter, to ultimately provide immobilisation sites for the proteolytic enzyme, trypsin. The modified capillaries and MLCs were characterised and profiled using non-invasive scanning capacitively coupled contactless conductivity detection (sC4D). The sC4D profiles confirmed a significantly higher amount of enzyme was immobilised to the MLC when compared to the fused silica capillaries, attributable to the increased surface to volume ratio. The MLC was used for dynamic protein digestion, where peptide fragments were collected and subjected to off-line chromatographic evaluation. The digestion was achieved with the MLC reactor, using a residence time of just 1.26 min, following which the HPLC peak associated with the intact protein decreased by >70%. The MLC reactors behaved similarly to the classical in vitro or in-solution approach, but provided a reduction in digestion time, and fewer peaks associated with trypsin auto-digestion, which is common using in-solution digestion. The digestion of cytochrome C using both the MLC-IMER and the in-solution approach, resulted in a sequence coverage of ∼80%. The preparation of the MLC microreactor was reproducible with <2.5% RSD between reactors (n = 3) as determined by sC4D.
Collapse
Affiliation(s)
- S A Currivan
- Australian Centre for Research on Separation Science, School of Natural Sciences, University of Tasmania, Tasmania, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mao Y, Kulozik U. Selective hydrolysis of whey proteins using a flow-through monolithic reactor with large pore size and immobilised trypsin. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
27
|
Naldi M, Tramarin A, Bartolini M. Immobilized enzyme-based analytical tools in the -omics era: Recent advances. J Pharm Biomed Anal 2018; 160:222-237. [DOI: 10.1016/j.jpba.2018.07.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 02/01/2023]
|
28
|
Lynch KB, Ren J, Beckner MA, He C, Liu S. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Anal Chim Acta 2018; 1046:48-68. [PMID: 30482303 DOI: 10.1016/j.aca.2018.09.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
In this article we survey 256 references (with an emphasis on the papers published in the past decade) on monolithic columns for intact protein separation. Protein enrichment and purification are included in the broadly defined separation. After a brief introduction, we describe the types of monolithic columns and modes of chromatographic separations employed for protein separations. While the majority of the work is still in the research and development phase, papers have been published toward utilizing monolithic columns for practical applications. We survey these papers as well in this review. Characteristics of selected methods along with their pros and cons will also be discussed.
Collapse
Affiliation(s)
- Kyle B Lynch
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Jiangtao Ren
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Matthew A Beckner
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Textile Road, Wuhan, 430073, PR China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States.
| |
Collapse
|
29
|
Mao Y, Krischke M, Hengst C, Kulozik U. Comparison of the influence of pH on the selectivity of free and immobilized trypsin for β-lactoglobulin hydrolysis. Food Chem 2018; 253:194-202. [DOI: 10.1016/j.foodchem.2018.01.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 01/23/2018] [Indexed: 01/03/2023]
|
30
|
Martinović T, Šrajer Gajdošik M, Josić D. Sample preparation in foodomic analyses. Electrophoresis 2018; 39:1527-1542. [DOI: 10.1002/elps.201800029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Djuro Josić
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Department of Medicine; Brown Medical School; Brown University; Providence RI USA
| |
Collapse
|
31
|
Gstöttner C, Klemm D, Haberger M, Bathke A, Wegele H, Bell C, Kopf R. Fast and Automated Characterization of Antibody Variants with 4D HPLC/MS. Anal Chem 2018; 90:2119-2125. [DOI: 10.1021/acs.analchem.7b04372] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Denis Klemm
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus Haberger
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Anja Bathke
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Harald Wegele
- Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Christian Bell
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Robert Kopf
- F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
32
|
Bataille J, Viodé A, Pereiro I, Lafleur JP, Varenne F, Descroix S, Becher F, Kutter JP, Roesch C, Poüs C, Taverna M, Pallandre A, Smadja C, Le Potier I. On-a-chip tryptic digestion of transthyretin: a step toward an integrated microfluidic system for the follow-up of familial transthyretin amyloidosis. Analyst 2018; 143:1077-1086. [DOI: 10.1039/c7an01737e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TTR digestion on TE-chip: production of a fragment of interest allowing the therapeutic follow-up of the familial transthyretin amyloidosis.
Collapse
|
33
|
Volokitina MV, Nikitina AV, Tennikova TB, Korzhikova-Vlakh EG. Immobilized enzyme reactors based on monoliths: Effect of pore size and enzyme loading on biocatalytic process. Electrophoresis 2017; 38:2931-2939. [DOI: 10.1002/elps.201700210] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Mariia V. Volokitina
- Russian Academy of Sciences; Institute of Macromolecular Compounds; St. Petersburg Russia
- Institute of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Anna V. Nikitina
- Institute of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Tatiana B. Tennikova
- Institute of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| | - Evgenia G. Korzhikova-Vlakh
- Russian Academy of Sciences; Institute of Macromolecular Compounds; St. Petersburg Russia
- Institute of Chemistry; Saint-Petersburg State University; St. Petersburg Russia
| |
Collapse
|
34
|
Martinović T, Andjelković U, Klobučar M, Černigoj U, Vidič J, Lučić M, Pavelić K, Josić D. Affinity chromatography on monolithic supports for simultaneous and high-throughput isolation of immunoglobulins from human serum. Electrophoresis 2017; 38:2909-2913. [DOI: 10.1002/elps.201700216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Tamara Martinović
- Centre for High-throughput Technologies; Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Division of Medicinal Chemistry, Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Uroš Andjelković
- Division of Medicinal Chemistry, Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Marko Klobučar
- Centre for High-throughput Technologies; Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | | | - Jana Vidič
- BIA Separations d.o.o.; Ajdovščina Slovenia
| | - Marina Lučić
- Division of Medicinal Chemistry, Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Krešimir Pavelić
- Centre for High-throughput Technologies; Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Djuro Josić
- Centre for High-throughput Technologies; Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Division of Medicinal Chemistry, Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Department of Medicine; Warren Alpert Medical School; Brown University; Providence RI USA
| |
Collapse
|
35
|
Brandtzaeg OK, Røen BT, Enger S, Lundanes E, Wilson SR. Multichannel Open Tubular Enzyme Reactor Online Coupled with Mass Spectrometry for Detecting Ricin. Anal Chem 2017; 89:8667-8673. [PMID: 28783436 DOI: 10.1021/acs.analchem.7b02590] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For counterterrorism purposes, a selective nano liquid chromatography-mass spectrometry (nanoLC-MS) platform was developed for detecting the highly lethal protein ricin from castor bean extract. Manual sample preparation steps were omitted by implementing a trypsin/Lys-C enzyme-immobilized multichannel reactor (MCR) consisting of 126 channels (8 μm inner diameter in all channels) that performed online digestion of proteins (5 min reaction time, instead of 4-16 h in previous in-solution methods). Reduction and alkylation steps were not required. The MCR allowed identification of ricin by signature peptides in all targeted mode injections performed, with a complete absence of carry-over in blank injections. The MCRs (interior volume ≈ 1 μL) have very low backpressure, allowing for trivial online coupling with commercial nanoLC-MS systems. The open tubular nature of the MCRs allowed for repeatable within/between-reactor preparation and performance.
Collapse
Affiliation(s)
| | - Bent-Tore Røen
- Norwegian Defence Research Establishment (FFI) , P.O. Box 25, N-2027 Kjeller, Norway
| | - Siri Enger
- Norwegian Defence Research Establishment (FFI) , P.O. Box 25, N-2027 Kjeller, Norway
| | - Elsa Lundanes
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Steven Ray Wilson
- Department of Chemistry, University of Oslo , P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
36
|
Mao Y, Černigoj U, Zalokar V, Štrancar A, Kulozik U. Production of β-Lactoglobulin hydrolysates by monolith based immobilized trypsin reactors. Electrophoresis 2017; 38:2947-2956. [DOI: 10.1002/elps.201700188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/25/2017] [Accepted: 07/03/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Yuhong Mao
- Technical University of Munich; Chair for Food and Bioprocess Engineering; Freising-Weihenstephan Germany
| | | | | | | | - Ulrich Kulozik
- Technical University of Munich; Chair for Food and Bioprocess Engineering; Freising-Weihenstephan Germany
- Institute for Food and Health (ZIEL) - Technology Unit; Freising-Weihenstephan Germany
| |
Collapse
|
37
|
Chen WQ, Obermayr P, Černigoj U, Vidič J, Panić-Janković T, Mitulović G. Immobilized monolithic enzymatic reactor and its application for analysis of in-vitro fertilization media samples. Electrophoresis 2017; 38:2957-2964. [DOI: 10.1002/elps.201700197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Wei-Qiang Chen
- Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
| | | | | | - Jana Vidič
- BIA Separations d.o.o; Ajdovščina Slovenia
| | - Tanta Panić-Janković
- Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
| | - Goran Mitulović
- Clinical Institute of Laboratory Medicine; Medical University of Vienna; Vienna Austria
- Proteomics Core Facility; Medical University of Vienna; Vienna Austria
| |
Collapse
|