1
|
Yuan X, Mi X, Liu C, Zhang Z, Wei X, Wang D, Tan X, Xiang R, Xie W, Zhang Y. Ultrasensitive iodide detection in biofluids based on hot electron-induced reduction of p-Nitrothiophenol on Au@Ag core-shell nanoparticles. Biosens Bioelectron 2023; 235:115365. [PMID: 37196434 DOI: 10.1016/j.bios.2023.115365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Surveillance of iodine intake is important because either inadequate or excessive amount of iodine may lead to thyroid malfunctions. Herein, we report a method for fast iodide quantification based on a plasmonic hot electron-driven chemical reaction, which occurs on Au@Ag core-shell nanoparticles (NPs) coated with p-nitrothiophenol (PNTP) molecules. Upon resonant light illumination, hot electron-hole pairs are generated in the NPs. The hot holes capture iodide ions (I-) and form AgI which decomposes under light; while the hot electrons are shifted to the electron orbital (LUMO) of PNTP and trigger its reduction to p-aminothiophenol (PATP). By measuring characteristic surface-enhanced Raman spectroscopic (SERS) peaks of PNTP and PATP, the concentration of I- in water can be quantitatively determined, with a linear response in the 0.5-20 μM range and a detection limit of 0.30 μM. The Au@Ag nanosensor was then applied for I- detection in various biofluids including urine, serum and saliva, exhibiting superior detection sensitivity and high selectivity. This sensing assay requires a small sample volume of ∼10 μL and completes the entire detection process in ∼2 min, and therefore holds significant potential for application in point-of-care settings.
Collapse
Affiliation(s)
- Xinxin Yuan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xue Mi
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zedong Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xianfeng Wei
- Department of Otolaryngology Head and Neck, Tianjin First Central Hospital, Tianjin Institute of Otolaryngology, Tianjin, 300071, China
| | - Dekun Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaoyue Tan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuying Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Liu B, Yu Y, Hu Z, Li M, Ma L, Sun H, Jia J, Jiang C, Zhong Y, Chen Y, Duan Z. Ag metal interconnect wires formed by pseudoplastic nanoparticles fluid imprinting lithography with microwave assistant sintering. NANOTECHNOLOGY 2022; 33:275301. [PMID: 35299165 DOI: 10.1088/1361-6528/ac5eeb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Nanoimprint technology has the advantages of low cost, high precision, high fidelity and high yield. The metal nanoparticle fluid is non-Newtonian fluid, which is used as the imprint transfer medium to realize high fidelity of pattern because of its shear thinning effect. In order to functionalize the metal nanoparticles microstructure, the subsequent sintering step is required to form a metal interconnect wire. Metal interconnect wire with fewer grain boundaries and fewer holes have excellent mechanical and electronic properties. In this paper, the pseudoplastic metal nanoparticle fluid was formed by Ag nanoparticle and precursor solution, and then the thermal diffusion process was completed by microwave sintering after interconnects were embossed. The influence of microwave and thermal atmosphere on the microstructure and performance of Ag Interconnect wires was analyzed and discussed, and the Ag Interconnect wires performance was determined under the influence of time and temperature parameters. In our experiments, the interconnects after microwave sintering can achieve 39% of the conductivity of bulk silver. The microwave sintering module might be integrated as the heat treatment module of the metal micro/nano pattern directly imprint lithography.
Collapse
Affiliation(s)
- Boyu Liu
- School of Physical and Microelectronics, Zhengzhou 450001, People's Republic of China
- Institute of Intelligent Sensing, Zhengzhou 450001, People's Republic of China
| | - Yongli Yu
- School of Physical and Microelectronics, Zhengzhou 450001, People's Republic of China
- Institute of Intelligent Sensing, Zhengzhou 450001, People's Republic of China
| | - Zhennan Hu
- School of Physical and Microelectronics, Zhengzhou 450001, People's Republic of China
- Institute of Intelligent Sensing, Zhengzhou 450001, People's Republic of China
| | - Mengke Li
- School of Physical and Microelectronics, Zhengzhou 450001, People's Republic of China
- Institute of Intelligent Sensing, Zhengzhou 450001, People's Republic of China
| | - Liuhong Ma
- School of Physical and Microelectronics, Zhengzhou 450001, People's Republic of China
- Institute of Intelligent Sensing, Zhengzhou 450001, People's Republic of China
| | - Haibin Sun
- Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, Helsinki FL-02430, Finland
| | - Jianxin Jia
- Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, Helsinki FL-02430, Finland
| | - Changhui Jiang
- Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, Helsinki FL-02430, Finland
| | - Yinghui Zhong
- School of Physical and Microelectronics, Zhengzhou 450001, People's Republic of China
- Institute of Intelligent Sensing, Zhengzhou 450001, People's Republic of China
| | - Yuwei Chen
- Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, Helsinki FL-02430, Finland
| | - Zhiyong Duan
- School of Physical and Microelectronics, Zhengzhou 450001, People's Republic of China
- Institute of Intelligent Sensing, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
3
|
Ali M, Maurya RR, Singh J, Negi PS, Rajor HK, Bahadur I. Schiff base complexes of Cu(II) and Ni(II) derived from N,N'-bis(salicylidene)-o-phenylenediamine as potential ionophores in the construction of PVC membrane iodide sensors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Wang K, Geng C, Wang F, Zhao Y, Ru Z. Urea-doped carbon dots as fluorescent switches for the selective detection of iodide ions and their mechanistic study. RSC Adv 2021; 11:27645-27652. [PMID: 35480658 PMCID: PMC9037827 DOI: 10.1039/d1ra04558j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
A facile and green strategy for the fabrication of fluorescent urea-doped carbon dots (N-CDs) has been explored. Significantly, the fluorescent N-CDs could recognize iodide ions (I-) with high selectivity, and their photoluminescence could be efficiently quenched by the addition of I-. The sensitivity analysis for I- indicated a linear relationship in the range from 12.5 to 587 μM with the detection limit as low as 0.47 μM. Furthermore, the I- induced fluorescence (FL) quenching mechanism was investigated employing a combination of techniques, including UV-vis/fluorescence spectroscopy, Density Functional Theory (DFT) calculation, TEM and time-resolved fluorescence decay measurements. The DFT calculation results demonstrated that the amino- and amide groups of N-CDs play a significant role in iodide recognition through the formation of multiple N-H⋯I-, C-H⋯I- and C([double bond, length as m-dash]O)N-H⋯I- interactions with I-. The TEM experiment confirmed the aggregation process when I- was added to the N-CDs solution. Moreover, the radiative decay rate of N-CDs, which was first measured and reported the kinetic behaviors of the FL-quenching process, decreased from 3.30 × 107 s-1 to 1.95 × 107 s-1 after the coordination with I- ions. The reduced lifetime demonstrated that the excited energy dissipation led to a dynamic quenching process. Therefore, such carbon materials can function as effective fluorescent switches for the selective detection of I- ions.
Collapse
Affiliation(s)
- Kai Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology Anyang 455000 China
| | - Cuihuan Geng
- School of Chemical and Environmental Engineering, Anyang Institute of Technology Anyang 455000 China
| | - Fang Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology Anyang 455000 China
| | - Yajun Zhao
- Teaching and Research Office of Neihuang Country Anyang 456300 China
| | - Zongling Ru
- School of Materials Science and Engineering, Anyang Institute of Technology Anyang 455000 China
| |
Collapse
|
5
|
Electrochemical sensor for the quantification of iodide in urine of pregnant women. Mikrochim Acta 2020; 187:591. [PMID: 33025245 DOI: 10.1007/s00604-020-04488-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/16/2020] [Indexed: 01/09/2023]
Abstract
An electrochemical method has been developed to determine iodide in urine using an electrode modified with silver oxide microparticles-poly acrylic acid/poly vinyl alcohol (Ag2OMPs-PAA/PVA). Silver oxide particles were formed by electrochemical oxidation via cyclic voltammetry. The modified electrode exhibited an excellent response to iodide detection by cathodic stripping voltammetry. The fabrication and operation conditions were optimized in terms of PVA concentration, K2HPO4 concentration, amount of AgMPs-PAA/PVA, number of cycles for oxide formation, electrolyte, applied potential (vs. Ag/AgCl), and time. Under the optimum conditions, iodide determination produced a linear range from 1 to 40 μM. The limit of detection was 0.3 μM. Precision was found to be within 7.4% RSD. The developed method was applied to the determination of iodide in urine samples of pregnant women with satisfying recoveries (86 ± 1 to 108 ± 1%). Graphical abstract.
Collapse
|
6
|
Chen J, Liu X, Hou X, Chen Y, Xing F, Feng L. Label-free iodide detection using functionalized carbon nanodots as fluorescent probes. Anal Bioanal Chem 2020; 412:2893-2901. [PMID: 32125466 DOI: 10.1007/s00216-020-02530-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
A label-free fluorescent nanoprobe for iodide ion (I-) detection was developed based on the direct fluorescence quenching of spermine-functionalized carbon dots (SC-dots), whether in complex biological fluids or living cells. The positively charged SC-dots were fabricated via one-step microwave synthesis and exhibited excellent optical properties. Due to the strong quenching ability of I-, SC-dots were utilized for I- detection with high sensitivity and excellent selectivity, which offered a relatively low detection limit of 0.18 μM. This strategy was also successfully applied for I- detections in human serum and HeLa cells. The detection process is facile, highly sensitive and selective, providing a new insight into the potential applications of SC-dots for anion nanoprobe designs in clinical diagnosis and other biologically related areas. Graphical abstract.
Collapse
Affiliation(s)
- Jingqi Chen
- Materials Genome Institute, and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Xiaowei Liu
- Materials Genome Institute, and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Xialing Hou
- Materials Genome Institute, and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Yingying Chen
- Materials Genome Institute, and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Feifei Xing
- Materials Genome Institute, and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Lingyan Feng
- Materials Genome Institute, and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
7
|
Cunha-Silva H, Arcos-Martinez MJ. Cathodic stripping voltammetric determination of iodide using disposable sensors. Talanta 2019; 199:262-269. [DOI: 10.1016/j.talanta.2019.02.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 02/07/2023]
|
8
|
Determination of iodide based on dynamic gas extraction and colorimetric detection by paper modified with silver triangular nanoplates. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Song J, Zhao L, Wang Y, Xue Y, Deng Y, Zhao X, Li Q. Carbon Quantum Dots Prepared with Chitosan for Synthesis of CQDs/AuNPs for Iodine Ions Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1043. [PMID: 30551611 PMCID: PMC6315431 DOI: 10.3390/nano8121043] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 01/09/2023]
Abstract
Water-soluble and reductive carbon quantum dots (CQDs) were fabricated by the hydrothermal carbonization of chitosan. Acting as a reducing agent and stabilizer, the as-prepared CQDs were further used to synthesize gold nanoparticles (AuNPs). This synthetic process was carried out in aqueous solution, which was absolutely "green". Furthermore, the CQDs/AuNPs composite was used to detect iodine ions by the colorimetric method. A color change from pink to colorless was observed with the constant addition of I- ions, accompanied by a decrease in the absorbance of the CQDs/AuNPs composite. According to the absorbance change, a favorable linear relationship was obtained between ΔA and I- concentration in the range of 20⁻140 μM and 140⁻400 μM. The detection limit of iodide ions, depending on the 3δ/slope, was estimated to be 2.3 μM, indicating high sensitivity to the determination of iodide. More importantly, it also showed good selectivity toward I- over other anion ions, and was used for the analysis of salt samples. Moreover, TEM results indicated that I- ions induced the aggregation of CQDs/AuNPs, resulting in changes in color and absorbance.
Collapse
Affiliation(s)
- Juanjuan Song
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Li Zhao
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Yesheng Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Yun Xue
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Yujia Deng
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Xihui Zhao
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China.
| | - Qun Li
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
10
|
Inpota P, Strzelak K, Koncki R, Sripumkhai W, Jeamsaksiri W, Ratanawimarnwong N, Wilairat P, Choengchan N, Chantiwas R, Nacapricha D. Microfluidic Analysis with Front-Face Fluorometric Detection for the Determination of Total Inorganic Iodine in Drinking Water. ANAL SCI 2018; 34:161-167. [PMID: 29434101 DOI: 10.2116/analsci.34.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A microfluidic method with front-face fluorometric detection was developed for the determination of total inorganic iodine in drinking water. A polydimethylsiloxane (PDMS) microfluidic device was employed in conjunction with the Sandell-Kolthoff reaction, in which iodide catalyzed the redox reaction between Ce(IV) and As(III). Direct alignment of an optical fiber attached to a spectrofluorometer was used as a convenient detector for remote front-face fluorometric detection. Trace inorganic iodine (IO3- and I-) present naturally in drinking water was measured by on-line conversion of iodate to iodide for determination of total inorganic iodine. On-line conversion efficiency of iodate to iodide using the microfluidic device was investigated. Excellent conversion efficiency of 93 - 103% (%RSD = 1.6 - 11%) was obtained. Inorganic iodine concentrations in drinking water samples were measured, and the results obtained were in good agreement with those obtained by an ICP-MS method. Spiked sample recoveries were in the range of 86%(±5) - 128%(±8) (n = 12). Interference of various anions and cations were investigated with tolerance limit concentrations ranging from 10-6 to 2.5 M depending on the type of ions. The developed method is simple and convenient, and it is a green method for iodine analysis, as it greatly reduces the amount of toxic reagent consumed with reagent volumes in the microfluidic scale.
Collapse
Affiliation(s)
- Prawpan Inpota
- Center of Excellence for Innovation in Chemistry and Department of Chemistry, Faculty of Science, Mahidol University.,Flow Innovation Research for Science and Technology Laboratories (FIRST Labs.)
| | | | | | | | | | - Nuanlaor Ratanawimarnwong
- Flow Innovation Research for Science and Technology Laboratories (FIRST Labs.).,Department of Chemistry, Faculty of Science, Srinakharinwirot University
| | - Prapin Wilairat
- Flow Innovation Research for Science and Technology Laboratories (FIRST Labs.).,National Doping Control Centre, Mahidol University
| | - Nathawut Choengchan
- Flow Innovation Research for Science and Technology Laboratories (FIRST Labs.).,Department of Chemistry and the Applied Analytical Chemistry Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang
| | - Rattikan Chantiwas
- Center of Excellence for Innovation in Chemistry and Department of Chemistry, Faculty of Science, Mahidol University.,Flow Innovation Research for Science and Technology Laboratories (FIRST Labs.)
| | - Duangjai Nacapricha
- Center of Excellence for Innovation in Chemistry and Department of Chemistry, Faculty of Science, Mahidol University.,Flow Innovation Research for Science and Technology Laboratories (FIRST Labs.)
| |
Collapse
|