1
|
Barros Azeredo NF, Ferreira Santos MS, Sempionatto JR, Wang J, Angnes L. Screen-Printed Technologies Combined with Flow Analysis Techniques: Moving from Benchtop to Everywhere. Anal Chem 2021; 94:250-268. [PMID: 34851628 DOI: 10.1021/acs.analchem.1c02637] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Screen-printed electrodes (SPEs) coupled with flow systems have been reported in recent decades for an ever-growing number of applications in modern electroanalysis, aiming for portable methodologies. The information acquired through this combination can be attractive for future users with basic knowledge, especially due to the increased measurement throughput, reduction in reagent consumption and minimal waste generation. The trends and possibilities of this set rely on the synergistic behavior that maximizes both SPE and flow analyses characteristics, allowing mass production and automation. This overview addresses an in-depth update about the scope of samples, target analytes, and analytical throughput (injections per hour, limits of detection, linear range, etc.) obtained by coupling injection techniques (FIA, SIA, and BIA) with SPE-based electrochemical detection.
Collapse
Affiliation(s)
- Nathália Florência Barros Azeredo
- Institute of Chemistry, University of São Paulo, São Paulo 05508-070, Brazil.,Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Juliane R Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lúcio Angnes
- Institute of Chemistry, University of São Paulo, São Paulo 05508-070, Brazil
| |
Collapse
|
2
|
Ataide VN, Rocha DP, de Siervo A, Paixão TRLC, Muñoz RAA, Angnes L. Additively manufactured carbon/black-integrated polylactic acid 3Dprintedsensor for simultaneous quantification of uric acid and zinc in sweat. Mikrochim Acta 2021; 188:388. [PMID: 34668076 DOI: 10.1007/s00604-021-05007-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
For the first time the development of an electrochemical method for simultaneous quantification of Zn2+ and uric acid (UA) in sweat is described using an electrochemically treated 3D-printed working electrode. Sweat analysis can provide important information about metabolites that are valuable indicators of biological processes. Improved performance of the 3D-printed electrode was achieved after electrochemical treatment of its surface in an alkaline medium. This treatment promotes the PLA removal (insulating layer) and exposes carbon black (CB) conductive sites. The pH and the square-wave anodic stripping voltammetry technique were carefully adjusted to optimize the method. The peaks for Zn2+ and UA were well-defined at around - 1.1 V and + 0.45 V (vs. CB/PLA pseudo-reference), respectively, using the treated surface under optimized conditions. The calibration curve showed a linear range of 1 to 70 µg L-1 and 1 to 70 µmol L-1 for Zn2+ and UA, respectively. Relative standard deviation values were estimated as 4.8% (n = 10, 30 µg L-1) and 6.1% (n = 10, 30 µmol L-1) for Zn2+ and UA, respectively. The detection limits for Zn2+ and UA were 0.10 µg L-1 and 0.28 µmol L-1, respectively. Both species were determined simultaneously in real sweat samples, and the achieved recovery percentages were between 95 and 106% for Zn2+ and 82 and 108% for UA.
Collapse
Affiliation(s)
- Vanessa N Ataide
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Diego P Rocha
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - Abner de Siervo
- Institute of Physics "Gleb Wataghin", Applied Physics Department, State University of Campinas, Campinas, SP, 13083-859, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Rodrigo A A Muñoz
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Lucio Angnes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
3
|
Camargo JR, Orzari LO, Araújo DAG, de Oliveira PR, Kalinke C, Rocha DP, Luiz dos Santos A, Takeuchi RM, Munoz RAA, Bonacin JA, Janegitz BC. Development of conductive inks for electrochemical sensors and biosensors. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105998] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Seidi F, Crespy D. Fighting corrosion with stimuli-responsive polymer conjugates. Chem Commun (Camb) 2020; 56:11931-11940. [PMID: 32955055 DOI: 10.1039/d0cc03061a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Corrosion is a financial and enviromental plague which leads to the deterioration of our infrastructures. Using corrosion inhibitors at low concentrations in coatings is one effective method for preventing corrosion. Inspired by the development of polymer-drug conjugates, corrosion inhibitors are incorporated in various polymer structures to create novel materials for hindering corrosion. We discuss the strategies to covalently integrate corrosion inhibitors in polymer structures to form polymer-inhibitor conjugates. Inhibitors are conjugated to polymers via non-labile or stimuli-labile linkages to allow the release of the inhibitors upon onset of corrosion. The application and anticorrosion performance of representative polymers are also discussed.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | | |
Collapse
|
5
|
Squissato AL, Munoz RAA, Banks CE, Richter EM. An Overview of Recent Electroanalytical Applications Utilizing Screen‐Printed Electrodes Within Flow Systems. ChemElectroChem 2020. [DOI: 10.1002/celc.202000175] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- André L. Squissato
- Institute of Chemistry Federal University of Uberlandia Av. João Naves de Ávila 2121 – Uberlandia, Minas Gerais Brazil
| | - Rodrigo A. A. Munoz
- Institute of Chemistry Federal University of Uberlandia Av. João Naves de Ávila 2121 – Uberlandia, Minas Gerais Brazil
| | - Craig E. Banks
- Faculty of Science and Engineering Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Eduardo M. Richter
- Institute of Chemistry Federal University of Uberlandia Av. João Naves de Ávila 2121 – Uberlandia, Minas Gerais Brazil
- Faculty of Science and Engineering Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| |
Collapse
|
6
|
Esmaiel MH, Basuony HA, Al-Nawasany MK, Shulkamy MM, Shaaban IA, Abuelela AM, Zoghaib WM, Mohamed TA. Thiadiazole-2-Thiol-5-Thione and 2,5-Dimercapto-1,3,4-Thiadiazol Tautomerism, Conformational Stability, Vibrational Assignments, Inhibitor Efficiency and Quantum Chemical Calculations. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Raman (3700–100 cm−1) and infrared (4000–400 cm−1) spectra of 2,5-Dimercapto-1,3,4-thiadiazol (DMTD) were recorded in the solid phase. Six structures (1–6) were initially proposed for DMTD as a result of thiol-thione tautomerism and internal rotation(s) of thiol group(s) around the C–S bond. Quantum chemical calculations were carried out for an isolated molecule (1–6) using density functional theory (B3LYP) and ab initio MP2(full) methods utilizing 6-31G(d) and 6-311++G(d,p) basis sets which favor thiol-thione tautomerism (structure 4). Relaxed potential energy surface scans of structure 4 revealed an additional conformer (the thiol group is out-of-plane, structure 7) using the aforementioned methods at 6-311++G(d,p) basis set. For additional verification, plane-wave solid state calculations were carried out at PW91 and PBEsol came out in favor of conformer 7. This is in agreement with the computed/observed SH in-plane bending of S-7 (959/941 cm−1) rather than the one estimated at (880 cm−1) for S-4. Moreover, the observed split IR/Raman bands were found consistent with solid state calculated frequencies of S-7 assuming two molecules per unit cell bonded via H-bonding intermolecular interactions. Aided by vibrational frequency calculations, normal coordinate analysis, force constants and potential energy distributions (PEDs), a complete vibrational assignment for the observed IR and Raman bands is proposed herein. Furthermore, we have estimated the frontier molecular orbitals and atomic charges to account for the corrosion inhibition efficiency of DMTD along with its binding sites to the metal surface. Our results are discussed herein and compared to similar molecules whenever appropriate.
Collapse
Affiliation(s)
- Muhammad H. Esmaiel
- Department of Chemistry , Faculty of Science (Men’s Campus), Al-Azhar University , Nasr City 11884, Cairo , Egypt
| | - Hany A. Basuony
- Department of Chemistry , Faculty of Science (Men’s Campus), Al-Azhar University , Nasr City 11884, Cairo , Egypt
| | - Mohamed K. Al-Nawasany
- Department of Chemistry , Faculty of Science (Men’s Campus), Al-Azhar University , Nasr City 11884, Cairo , Egypt
| | - Musab M. Shulkamy
- Department of Chemistry , Faculty of Science (Men’s Campus), Al-Azhar University , Nasr City 11884, Cairo , Egypt
| | - Ibrahim A. Shaaban
- Department of Chemistry , Faculty of Science (Men’s Campus), Al-Azhar University , Nasr City 11884, Cairo , Egypt
| | - Ahmed M. Abuelela
- Department of Chemistry , Faculty of Science (Men’s Campus), Al-Azhar University , Nasr City 11884, Cairo , Egypt
| | - Wajdi M. Zoghaib
- Department of Chemistry , Sultan Qaboos University , P.O. Box 36 , Al Khod, Muscat , Oman
| | - Tarek A. Mohamed
- Department of Chemistry , Faculty of Science (Men’s Campus), Al-Azhar University , Nasr City 11884, Cairo , Egypt , e-mail:
| |
Collapse
|
7
|
Stefano JS, Dias AC, Arantes IVS, Costa BMC, Silva LAJ, Richter EM, Banks CE, Munoz RAA. Batch‐Injection Amperometric Analysis on Screen‐Printed Electrodes: Analytical System for High‐Throughput Determination of Pharmaceutical Molecules. ELECTROANAL 2018. [DOI: 10.1002/elan.201800725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jéssica S. Stefano
- Instituto de QuímicaUniversidade Federal de Uberlândia Av. João Naves de Ávila, 2121 38408100 Uberlândia, MG Brazil
| | - Aline C. Dias
- Instituto de QuímicaUniversidade Federal de Uberlândia Av. João Naves de Ávila, 2121 38408100 Uberlândia, MG Brazil
| | - Iana V. S. Arantes
- Instituto de QuímicaUniversidade Federal de Uberlândia Av. João Naves de Ávila, 2121 38408100 Uberlândia, MG Brazil
| | - Brenda M. C. Costa
- Instituto de QuímicaUniversidade Federal de Uberlândia Av. João Naves de Ávila, 2121 38408100 Uberlândia, MG Brazil
| | - Luiz A. J. Silva
- Instituto de QuímicaUniversidade Federal de Uberlândia Av. João Naves de Ávila, 2121 38408100 Uberlândia, MG Brazil
| | - Eduardo M. Richter
- Instituto de QuímicaUniversidade Federal de Uberlândia Av. João Naves de Ávila, 2121 38408100 Uberlândia, MG Brazil
| | - Craig E. Banks
- Faculty of Science and EngineeringManchester Metropolitan University ce Manchester M1 5GD UK
| | - Rodrigo A. A. Munoz
- Instituto de QuímicaUniversidade Federal de Uberlândia Av. João Naves de Ávila, 2121 38408100 Uberlândia, MG Brazil
| |
Collapse
|
8
|
Squissato AL, Almeida ES, Silva SG, Richter EM, Batista AD, Munoz RA. Screen-printed electrodes for quality control of liquid (Bio)fuels. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Carbone M, Micheli L, Limosani F, Possanza F, Abdallah Y, Tagliatesta P. Ruthenium and manganese metalloporphyrins modified screen-printed electrodes for bio-relevant electroactive targets. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ruthenium(II) 5-(4[Formula: see text]-sulfanylmethylphenyl)-10,15,20-triphenylporphyrin (Ru-TPP-SH) and manganese(III) 5-(4[Formula: see text]-sulfanylmethylphenyl)-10,15,20-triphenylporphyrin (Mn-TPP-SH) were synthesized, spectroscopically characterized and drop casted to modify screen-printed electrodes (SPEs). The modified SPEs were then tested against the redox target [Fe(CN)6][Formula: see text] in comparison with the bare SPE and SPE modified with the free porphyrin. The best performing one, [Formula: see text]. Mn-TPP-SH was used for the electrochemical detection of 1,4–benzoquinone, serotonin, caffeic and ascorbic acids, the latter also in association with uric acid, showing good electrocatalytic properties. The tunability of the metal-TPP-SH through the choice of the coordinating metal, the drop casting conditions and possible further functionalization make this type of porphyrin a good candidate for further developments of porphyrin-modified SPEs.
Collapse
Affiliation(s)
- Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Laura Micheli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Francesca Limosani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabio Possanza
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Yassmine Abdallah
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
- Department of Materials Sciences and Energy, Université Saclay, 15 rue Georges Clemenceau, 91405 Orsay Cedex, France
| | - Pietro Tagliatesta
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Arantes IVS, Stefano JS, Sousa RMF, Richter EM, Foster CW, Banks CE, Muñoz RAA. Fast Determination of Antioxidant Capacity of Food Samples Using Continuous Amperometric Detection on Polyester Screen-printed Graphitic Electrodes. ELECTROANAL 2018. [DOI: 10.1002/elan.201800122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Iana V. S. Arantes
- Universidade Federal de Uberlândia; Av. João Naves de Ávila, 2121 Uberlândia, MG 38408100 Brazil
| | - Jéssica S. Stefano
- Universidade Federal de Uberlândia; Av. João Naves de Ávila, 2121 Uberlândia, MG 38408100 Brazil
| | - Raquel M. F. Sousa
- Universidade Federal de Uberlândia; Av. João Naves de Ávila, 2121 Uberlândia, MG 38408100 Brazil
| | - Eduardo M. Richter
- Universidade Federal de Uberlândia; Av. João Naves de Ávila, 2121 Uberlândia, MG 38408100 Brazil
| | - Christopher W. Foster
- Faculty of Science and Engineering; Manchester Metropolitan University, ce; Manchester, M1 5GD UK
| | - Craig E. Banks
- Faculty of Science and Engineering; Manchester Metropolitan University, ce; Manchester, M1 5GD UK
| | - Rodrigo A. A. Muñoz
- Universidade Federal de Uberlândia; Av. João Naves de Ávila, 2121 Uberlândia, MG 38408100 Brazil
| |
Collapse
|