1
|
Boclinville A, Vandevenne M, Ambroggio E, Thelen N, Thiry M, Jacobs N, Brans A, Fillet M, Servais AC. Interaction studies between human papillomavirus virus-like particles and laminin 332 by affinity capillary electrophoresis assisted by bio-layer interferometry. Talanta 2024; 270:125602. [PMID: 38199121 DOI: 10.1016/j.talanta.2023.125602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Human papillomavirus (HPV) interacts, in vitro, with laminin 332 (LN332), a key component of the extracellular matrix. In this study, we performed bio-layer interferometry (BLI) and affinity capillary electrophoresis (ACE) to investigate the binding properties of this interaction. Virus-like particles (VLPs), composed of the HPV16 L1 major capsid protein, were used as HPV model and LN332 as the VLPs binding partner. Using BLI, we quantitatively determined the kinetics of the interaction, via the measurement of VLP binding and release from LN332 immobilized onto the surface of aminopropylsilane biosensors. We found an averaged kon of 1.74 x 104 M-1s-1 and an averaged koff of 1.50 x 10-4 s-1. Furthermore, an ACE method was developed to study the interaction under physiological conditions, where the interactants are moving freely in solution, without any fluorescence labeling. Specifically, a constant amount of HPV16-VLPs was preincubated with increasing LN332 concentrations and then the samples were injected in the capillary electrophoresis instrument. A shift in the migration time of the HPV16-VLP/LN332 complexes, carrying an increasing number of LN332 molecules bound per VLP, was observed. The mobility of the complexes was found to decrease with increasing LN332 concentrations in the sample. It was used to quantify stability constant. From BLI and ACE approaches, we reported an apparent equilibrium dissociation constant in the nanomolar range (8.89 nM and 17.7 nM, respectively) for the complex between HPV16-VLPs and LN332.
Collapse
Affiliation(s)
- Aurore Boclinville
- Laboratory for the Analysis of Medicines (LAM), Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Marylène Vandevenne
- InBioS - Centre for Protein Engineering, Département des Sciences de La Vie, University of Liège, Liège, Belgium
| | - Ernesto Ambroggio
- InBioS - Centre for Protein Engineering, Département des Sciences de La Vie, University of Liège, Liège, Belgium
| | - Nicolas Thelen
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marc Thiry
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Nathalie Jacobs
- Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium
| | - Alain Brans
- InBioS - Centre for Protein Engineering, Département des Sciences de La Vie, University of Liège, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines (LAM), Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Ajayan K, S S, Sadik A, Nair MM, Nair AM, S KK, Vijayakumar A, Nair SS, Nair B, Chandran R P, Nair SV. Bioconjugation of Meldrum's acid activated furan: A detergent compatible assay for protein quantitation. Anal Biochem 2023; 662:114998. [PMID: 36519742 DOI: 10.1016/j.ab.2022.114998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
A simple yet efficient assay for the quantitation of proteins ranging from plasma proteins to purified proteins from whole cell lysate, based on the bioconjugation reaction between protein and Meldrum's acid Activated Furan (MAF) is described. This easy to use, sensitive method is based on the conjugation of amine functionalities present on the protein with MAF to form the corresponding Donor Acceptor Stenhouse Adducts (DASAs) with characteristic absorption in the visible region. The reaction is rapid as well as reproducible and shows a proportionate increase in color change over a broad range of protein concentration. The assay was found to be sensitive up to 0.125 mg/mL concentration of the protein and was compatible with most of the commonly employed detergents and isolation protocols which makes it ideal for the estimation of protein samples containing detergents. Another striking feature of this protocol is its tolerance towards other major interference contributors such as chelating agents, reducing agents, carbohydrates and protease inhibitors.
Collapse
Affiliation(s)
- Kalyani Ajayan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Sainath S
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Ajmal Sadik
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Manu Mohanan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Anju M Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Karthika K S
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Anagha Vijayakumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | | | - Bipin Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Prakash Chandran R
- Department of Chemistry, Mannam Memorial N.S.S. College, Kottiyam, Kerala, 691571, India
| | - Sobha Vijayan Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India.
| |
Collapse
|
3
|
Cho EJ, Cha Y, Lee SK, Kim HS, Kim JS, Lee EJ, Lee N, Hong KH, Huh HJ, Cha YJ, Kim HS. Development and Characterization of Synthetic Norovirus RNA for Use in Molecular Detection Methods. Ann Lab Med 2023; 43:38-44. [PMID: 36045055 PMCID: PMC9467847 DOI: 10.3343/alm.2023.43.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/02/2022] [Accepted: 08/08/2022] [Indexed: 12/27/2022] Open
Abstract
Background Reference materials are essential for the quality assurance of molecular detection methods. We developed and characterized synthetic norovirus GI and GII RNA reference materials. Methods Norovirus GI and GII RNA sequences including the ORF1-ORF2 junction region were designed based on 1,495 reported norovirus sequences and synthesized via plasmid preparation and in vitro transcription. The synthetic norovirus GI and GII RNAs were evaluated using six commercial norovirus detection kits used in Korea and subjected to homogeneity and stability analyses. A multicenter study involving five laboratories and using four commercial real-time PCR norovirus detection assays was conducted for synthetic norovirus RNA characterization and uncertainty measurements. Results The synthetic norovirus GI and GII RNAs were positively detected using the six commercial norovirus detection kits and were homogeneous and stable for one year when stored at -20°C or -70°C. All data from the five laboratories were within a range of 1.0 log copies/μL difference for each RNA, and the overall mean concentrations for norovirus GI and GII RNAs were 7.90 log copies/μL and 6.96 log copies/μL, respectively. Conclusions The synthetic norovirus GI and GII RNAs are adequate for quality control based on commercial molecular detection reagents for noroviruses with high sequence variability. The synthetic RNAs can be used as reference materials in norovirus molecular detection methods.
Collapse
Affiliation(s)
- Eun-Jung Cho
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Younggil Cha
- Molecular Diagnostic R&D Center, Bioneer, Daejeon, Korea
| | - Su Kyung Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Han-Sung Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Jae-Seok Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Eun Jin Lee
- Department of Laboratory Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Nuri Lee
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| | - Ki Ho Hong
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Jin Huh
- Department of Laboratory Medicine, Dongguk University Ilsan Hospital, Ilsan, Korea
| | - Young Joo Cha
- Corporate R&D Center for Biological Standards and Control, Resources and Innovation Cooperative, Hanam, Korea
| | - Hyun Soo Kim
- Department of Laboratory Medicine, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
4
|
Stutz H. Advances and applications of electromigration methods in the analysis of therapeutic and diagnostic recombinant proteins – A Review. J Pharm Biomed Anal 2022; 222:115089. [DOI: 10.1016/j.jpba.2022.115089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
|
5
|
Geurink L, van Tricht E, van der Burg D, Scheppink G, Pajic B, Dudink J, Sänger-van de Griend C. Sixteen capillary electrophoresis applications for viral vaccine analysis. Electrophoresis 2021; 43:1068-1090. [PMID: 34739151 DOI: 10.1002/elps.202100269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
A broad range of CE applications from our organization is reviewed to give a flavor of the use of CE within the field of vaccine analyses. Applicability of CE for viral vaccine characterization, and release and stability testing of seasonal influenza virosomal vaccines, universal subunit influenza vaccines, Sabin inactivated polio vaccines (sIPV), and adenovirus vector vaccines were demonstrated. Diverse CZE, CE-SDS, CGE, and cIEF methods were developed, validated, and applied for virus, protein, posttranslational modifications, DNA, and excipient concentration determinations, as well as for the integrity and composition verifications, and identity testing (e.g., CZE for intact virus particles, CE-SDS application for hemagglutinin quantification and influenza strain identification, chloride or bromide determination in process samples). Results were supported by other methods such as RP-HPLC, dynamic light scattering (DLS), and zeta potential measurements. Overall, 16 CE methods are presented that were developed and applied, comprising six adenovirus methods, five viral protein methods, and methods for antibodies determination of glycans, host cell-DNA, excipient chloride, and process impurity bromide. These methods were applied to support in-process control, release, stability, process- and product characterization and development, and critical reagent testing. Thirteen methods were validated. Intact virus particles were analyzed at concentrations as low as 0.8 pmol/L. Overall, CE took viral vaccine testing beyond what was previously possible, improved process and product understanding, and, in total, safety, efficacy, and quality.
Collapse
Affiliation(s)
- Lars Geurink
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands.,Department of Medicinal Chemistry, Faculty of Pharmacy, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Ewoud van Tricht
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands
| | | | - Gerard Scheppink
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands
| | - Bojana Pajic
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands
| | - Justin Dudink
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands
| | - Cari Sänger-van de Griend
- Janssen Vaccines and Prevention B.V., CN Leiden, The Netherlands.,Department of Medicinal Chemistry, Faculty of Pharmacy, Biomedical Centre, Uppsala University, Uppsala, Sweden.,Kantisto B.V., Baarn, The Netherlands
| |
Collapse
|
6
|
On-line separation and quantification of virus antigens of different serotypes in multivalent vaccines by capillary zone electrophoresis: A case study for quality control of foot-and-mouth disease virus vaccines. J Chromatogr A 2020; 1637:461834. [PMID: 33383242 DOI: 10.1016/j.chroma.2020.461834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022]
Abstract
Accurate quantification of effective antigens of different serotypes is crucial for quality control of multivalent vaccines but challenging. A simple and rapid capillary zone electrophoresis (CZE) method was developed for on-line separation and quantification of foot-and-mouth disease virus (FMDV) antigens in monovalent and bivalent FMDV vaccines. The FMDV peak identity in CZE was demonstrated by the study of FMDV dissociation combined with high performance size exclusion chromatography (HPSEC) analysis. After optimizing CZE conditions including UV detecting wavelength, injection volume, and separation voltage, both serotype A and O FMDV showed good reproducibility (RSD <5%) and linear responses (R2=0.999) between the peak area and FMDV content in the concentration range of 15-400 μg/mL. The two serotypes of FMDV with similar size had different migration time in CZE according to their different zeta potential, which allows them to be separated and quantified, with accuracy of <10% relative error. CZE was then successfully applied for antigen quantification of commercial O monovalent and A/O bivalent FMDV vaccines. Compared with HPSEC, CZE was not only able to quantify each serotype of FMDV, but also free from interference of nucleic acids impurities. In summary, the CZE can be a simple, rapid, and reliable tool for quality control of monovalent and bivalent FMDV vaccines. The CZE method can also be further extended to the quality control of other multivalent virus and virus like particle vaccines.
Collapse
|
7
|
Moleirinho MG, Silva RJS, Alves PM, Carrondo MJT, Peixoto C. Current challenges in biotherapeutic particles manufacturing. Expert Opin Biol Ther 2019; 20:451-465. [PMID: 31773998 DOI: 10.1080/14712598.2020.1693541] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The development of novel complex biotherapeutics led to new challenges in biopharmaceutical industry. The potential of these particles has been demonstrated by the approval of several products, in the different fields of gene therapy, oncolytic therapy, and tumor vaccines. However, their manufacturing still presents challenges related to the high dosages and purity required.Areas covered: The main challenges that biopharmaceutical industry faces today and the most recent developments in the manufacturing of different biotherapeutic particles are reported here. Several unit operations and downstream trains to purify virus, virus-like particles and extracellular vesicles are described. Innovations on the different purification steps are also highlighted with an eye on the implementation of continuous and integrated processes.Expert opinion: Manufacturing platforms that consist of a low number of unit operations, with higher-yielding processes and reduced costs will be highly appreciated by the industry. The pipeline of complex therapeutic particles is expanding and there is a clear need for advanced tools and manufacturing capacity. The use of single-use technologies, as well as continuous integrated operations, are gaining ground in the biopharmaceutical industry and should be supported by more accurate and faster analytical methods.
Collapse
Affiliation(s)
- Mafalda G Moleirinho
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Ricardo J S Silva
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Manuel J T Carrondo
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Cristina Peixoto
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| |
Collapse
|
8
|
Yazdani R, Shams-Bakhsh M, Hassani-Mehraban A, Arab SS, Thelen N, Thiry M, Crommen J, Fillet M, Jacobs N, Brans A, Servais AC. Production and characterization of virus-like particles of grapevine fanleaf virus presenting L2 epitope of human papillomavirus minor capsid protein. BMC Biotechnol 2019; 19:81. [PMID: 31752839 PMCID: PMC6868843 DOI: 10.1186/s12896-019-0566-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/09/2019] [Indexed: 11/17/2022] Open
Abstract
Background Virus-like particle (VLP) platform represents a promising approach for the generation of efficient and immunogenic subunit vaccines. Here, the feasibility of using grapevine fanleaf virus (GFLV) VLPs as a new carrier for the presentation of human papillomavirus (HPV) L2 epitope was studied. To achieve this goal, a model of the HPV L2 epitope secondary structure was predicted and its insertion within 5 external loops in the GFLV capsid protein (CP) was evaluated. Results The epitope sequence was genetically inserted in the αB-αB” domain C of the GFLV CP, which was then over-expressed in Pichia pastoris and Escherichia coli. The highest expression yield was obtained in E. coli. Using this system, VLP formation requires a denaturation-refolding step, whereas VLPs with lower production yield were directly formed using P. pastoris, as confirmed by electron microscopy and immunostaining electron microscopy. Since the GFLV L2 VLPs were found to interact with the HPV L2 antibody under native conditions in capillary electrophoresis and in ELISA, it can be assumed that the inserted epitope is located at the VLP surface with its proper ternary structure. Conclusions The results demonstrate that GFLV VLPs constitute a potential scaffold for surface display of the epitope of interest.
Collapse
Affiliation(s)
- Razieh Yazdani
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Pajouhesh Blvd., Tehran to Karaj highway, Tehran, Iran.,Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium
| | - Masoud Shams-Bakhsh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Pajouhesh Blvd., Tehran to Karaj highway, Tehran, Iran.
| | | | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nicolas Thelen
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marc Thiry
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium
| | - Nathalie Jacobs
- Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium
| | - Alain Brans
- Center for Protein Engineering, University of Liège, Chemistry Institute B6, 4000, Liège (Sart Tilman), Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium.
| |
Collapse
|
9
|
Qin J, Zhang Y, Shen X, Gong L, Xue C, Cao Y. Biological characteristics and immunological properties in Muscovy ducks of H5N6 virus-like particles composed of HA-TM/HA-TM H3 and M1. Avian Pathol 2018; 48:35-44. [PMID: 30404538 DOI: 10.1080/03079457.2018.1546375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Highly pathogenic avian influenza viruses (HPAIVs), including H5N6 strains, pose threats to the health of humans and poultry. Waterfowl play a crucial role as a reservoir of HPAIVs. Since current influenza vaccines induce poor antibody titres in waterfowl, there is an urgent need to develop an efficient vaccine against H5N6 infection. In this study, we constructed two H5N6 virus-like particles (VLPs) composed of matrix-1 (M1) and haemagglutinin of wildtype (HA-TM) or haemagglutinin with transmembrane domain replacement (HA-TMH3) (designated as H5N6 VLPs-TM and H5N6 VLPs-TMH3). Biological characteristics of the composed H5N6 VLPs were compared including localization, expression, contents of HA trimers, thermal stability, morphology and immunogenicity in Muscovy ducks. Our results indicate that the H5N6 VLPs-TMH3 contained more HA trimers and presented better thermal stability. Moreover, Muscovy ducks immunized with H5N6 VLPs-TMH3 produced higher titres of HI antibody and IFN-γ compared with those immunized with the same dose of H5N6 VLP-TM, thus providing a promising approach for the development of influenza virus vaccines for waterfowl. RESEARCH HIGHLIGHTS H5N6 VLPs-TMH3 had more HA trimers and resisted higher temperature than H5N6 VLPs-TM H5N6 VLPs-TMH3 induced higher titre of HI than H5N6 VLPs-TM in Muscovy ducks.
Collapse
Affiliation(s)
- Jianru Qin
- a State Key Laboratory of Biocontrol , Life Sciences School, Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Yun Zhang
- a State Key Laboratory of Biocontrol , Life Sciences School, Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Xiaoting Shen
- a State Key Laboratory of Biocontrol , Life Sciences School, Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Lang Gong
- a State Key Laboratory of Biocontrol , Life Sciences School, Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Chunyi Xue
- a State Key Laboratory of Biocontrol , Life Sciences School, Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Yongchang Cao
- a State Key Laboratory of Biocontrol , Life Sciences School, Sun Yat-sen University , Guangzhou , People's Republic of China
| |
Collapse
|
10
|
H7 virus-like particles assembled by hemagglutinin containing H3N2 transmembrane domain and M1 induce broad homologous and heterologous protection in mice. Vaccine 2018; 36:5030-5036. [PMID: 30037418 PMCID: PMC7115656 DOI: 10.1016/j.vaccine.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
H7 VLPs-WT and H7 VLPs-TM have similar morphological and cleavage characteristics. H7 VLPs-TM has more HA trimers and better resists thermal changes than H7 VLPs-WT. H7 VLPs-TM induces stronger Th1 immune response than H7 VLPs-WT. H7 VLPs-TM induces broad homologous and heterologous protection in mice.
Influenza A H7N9 virus has caused five outbreak waves of human infections in China since 2013 and posed a dual challenge to public health and poultry industry. There is an urgent need to develop an effective vaccine to reduce its pandemic potential. In the present study, we evaluated the biochemical characteristics and immunogenicity of two H7 virus-like particles (VLPs) composed of the matrix 1 (M1) and hemagglutinin of wild-type (HA-WT) or hemagglutinin of whose transmembrane domain replaced by that from H3N2 subtype (HA-TM). H7 VLPs-WT and H7 VLPs-TM could assemble and release into the supernatant of Sf9 cells and they had similar morphological characteristics. However, compared to H7 VLPs-WT, H7 VLPs-TM had more trimeric HA proteins and could better resist thermal changes. In mice H7 VLPs-TM induced higher titers of HI, IgG, IgG2a and IFN-γ, and provided better protection against homologous and heterologous H7N9 viruses (no matter belonging to Yangtze River Delta or Pearl River Delta) challenge with less weight loss and higher survival rate. In summary, H7 VLPs-TM represents a potential strategy for the development of H7N9 vaccines.
Collapse
|