1
|
Wang X, Zhao X, Song X, He J. Diazo-functionalised immunoelectrochemical sensor for the detection of ochratoxin a in foods. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:699-713. [PMID: 38598095 DOI: 10.1080/19440049.2024.2339322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
Ochratoxin A (OTA) is a toxic fungal metabolite that is commonly found in cereals and animal feed. It is economically damaging and potentially hazardous to human health. Herein, we propose an electrochemical immunosensor for the rapid detection of OTA using anti-OTA antibodies and diazonium-functionalized, screen-printed electrodes. We attached 4-aminobenzoic acid to an electrode surface, activated the carboxyl groups on the surface with carbodiimide, and attached an antibody to the diazo layer. Subsequently, we used bovine serum protein as a blocker to prevent non-specific antigens from binding to the antibody. We evaluated the performance of the sensor by cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry. The sensor is highly specific and sensitive, has good linear responses in the range 20-200 ng/mL, a limit of detection of 0.5 ng/mL, and good recoveries of 90.5%-100.9% in spiked samples. It can be stored at 4 °C for approximately 2 weeks, and is highly stable, with a current response variation of no more than 4.6%.
Collapse
Affiliation(s)
- Xin Wang
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Xiaolei Zhao
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Xinyi Song
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Jinxing He
- School of Food Science and Engineering, Qilu University of Technology, Jinan, China
| |
Collapse
|
2
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Meng S, Liu D, Li Y, Dong N, Liu S, Liu C, Li X, You T. Photoelectrochemical and visual dual-mode sensor for efficient detection of Cry1Ab protein based on the proximity hybridization driven specific desorption of multifunctional probe. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129759. [PMID: 36058185 DOI: 10.1016/j.jhazmat.2022.129759] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Currently, the development of sensitive and visual strategy for Cry1Ab detection, particularly using a switchable dual-mode detection system based on a single component, remains a great challenge. Here, a photoelectrochemical (PEC) and visual dual-mode sensor was designed for Cry1Ab detection based on a proximity hybridization driven multifunctional probe. In the presence of Cry1Ab, specific desorption of the antibody-DNA conjugate was achieved via sufficient proximity hybridization, leading to the selective release of the multifunctional signal probe, i.e., antibody-labeled single-stranded DNA-gold nanoparticles (Ab1-S1-AuNPs). The released Ab1-S1-AuNPs reduced the photocurrent signal and produced a colored response, thereby achieving PEC and visual dual-mode detection based on a single component. Owing to the different signal generation mechanisms, two independent signals were obtained simultaneously, which provided self-verification to improve reliability and accuracy. Taking advantage of the PEC sensitive detection and visual prediction, the dual-mode sensor achieved efficient detection of the Cry1Ab protein. The developed sensor was successfully used to determine Cry1Ab in corn, wheat, and soil samples with satisfactory results. This method offers a promising biosensing platform for the on-site detection of Cry1Ab protein.
Collapse
Affiliation(s)
- Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shuda Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chang Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
4
|
Qiu Y, You A, Zhang M, Cui H, Fu X, Wang J, Huang H, Shentu X, Ye Z, Yu X. Phage-displayed nanobody-based fluorescence-linked immunosorbent assay for the detection of Cry3Bb toxin in corn. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Quantum-Dot-Bead-Based Fluorescence-Linked Immunosorbent Assay for Sensitive Detection of Cry2A Toxin in Cereals Using Nanobodies. Foods 2022; 11:foods11182780. [PMID: 36140908 PMCID: PMC9497650 DOI: 10.3390/foods11182780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 12/29/2022] Open
Abstract
In this study, a quantum-dot-bead (QB)-based fluorescence-linked immunosorbent assay (FLISA) using nanobodies was established for sensitive determination of the Cry2A toxin in cereal. QBs were used as the fluorescent probe and conjugated with a Cry2A polyclonal antibody. An anti-Cry2A nanobody P2 was expressed and used as the capture antibody. The results revealed that the low detection limit of the developed QB-FLISA was 0.41 ng/mL, which had a 19-times higher sensitivity than the traditional colorimetric ELISA. The proposed assay exhibited a high specificity for the Cry2A toxin, and it had no evident cross-reactions with other Cry toxins. The recoveries of Cry2A from the spiked cereal sample ranged from 86.6–117.3%, with a coefficient of variation lower than 9%. Moreover, sample analysis results of the QB-FLISA and commercial ELISA kit correlated well with each other. These results indicated that the developed QB-FLISA provides a potential approach for the sensitive determination of the Cry2A toxin in cereals.
Collapse
|
6
|
Yang Q, Wang Y, Liu X, Liu H, Bao H, Wang J, Zeng H. A Label-Free Immunosensor Based on Gold Nanoparticles/Thionine for Sensitive Detection of PAT Protein in Genetically Modified Crops. Front Chem 2021; 9:770584. [PMID: 34950635 PMCID: PMC8688707 DOI: 10.3389/fchem.2021.770584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Genetically modified (GM) crops containing phosphinothricin acetyltransferase (PAT) protein has been widely planted worldwide. The development of a rapid method for detecting PAT protein is of great importance to food supervision. In this study, a simple label-free electrochemical immunosensor for the ultrasensitive detection of PAT protein was constructed using thionine (Thi)/gold nanoparticles (AuNPs) as signal amplification molecules and electrochemically active substances. Under optimum conditions, the limits of detection of the sensor for soybean A2704-12 and maize BT-176 were 0.02% and 0.03%, respectively. The sensor could detect crops containing PAT protein and had no cross-reaction with other proteins. After storage at 4°C for 33 days, the sensor still retained 82.5% of the original signal, with a relative standard deviation (RSD) of 0.92%. The recoveries of the sensor for soybean A2704-12 and maize BT-176 were 85%-108% and 98%-113%, respectively. The developed PAT-target immunosensor with high sensitivity, specificity, and satisfactory reproducibility and accuracy will be a useful tool in the trace screening of GM crops. Moreover, this design concept can be extended to other proteins by simply changing the antibody.
Collapse
Affiliation(s)
- Qianwen Yang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yu Wang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Xiaofeng Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Hua Liu
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Huifang Bao
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumchi, China
| | - Jinbin Wang
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Haijuan Zeng
- Key Laboratory of Agricultural Genetics and Breeding, The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Crops Ecological Environment Security Inspection and Supervision Center (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| |
Collapse
|
7
|
PSA detection electrochemical immunosensor based on MOF-235 nanomaterial adsorption aggregation signal amplification strategy. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Dramatically Enhancing the Sensitivity of Immunoassay for Ochratoxin A Detection by Cascade-Amplifying Enzyme Loading. Toxins (Basel) 2021; 13:toxins13110781. [PMID: 34822566 PMCID: PMC8674760 DOI: 10.3390/toxins13110781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Enzyme-linked immunosorbent assay (ELISA) is widely used in the routine screening of mycotoxin contamination in various agricultural and food products. Herein, a cascade-amplifying system was introduced to dramatically promote the sensitivity of an immunoassay for ochratoxin A (OTA) detection. Specifically, a biotinylated M13 bacteriophage was introduced as a biofunctional competing antigen, in which a seven-peptide OTA mimotope fused on the p3 protein of M13 was used to specifically recognize an anti-OTA monoclonal antibody, and the biotin molecules modified on capsid p8 proteins were used in loading numerous streptavidin-labeled polymeric horseradish peroxidases (HRPs). Owing to the abundance of biotinylated p8 proteins in M13 and the high molar ratio between HRP and streptavidin in streptavidin-polyHRP, the loading amount of HRP enzymes on the M13 bacteriophage were greatly boosted. Hence, the proposed method exhibited high sensitivity, with a limit of detection of 2.0 pg/mL for OTA detection, which was 250-fold lower than that of conventional ELISA. In addition, the proposed method showed a slight cross-reaction of 2.3% to OTB, a negligible cross-reaction for other common mycotoxins, and an acceptable accuracy for OTA quantitative detection in real corn samples. The practicability of the method was further confirmed with a traditional HRP-based ELISA method. In conclusion, the biotinylated bacteriophage and polyHRP structure showed potential as a cascade-amplifying enzyme loading system for ultra-trace OTA detemination, and its application can be extended to the detection of other analytes by altering specific mimic peptide sequences.
Collapse
|
9
|
Faheem A, Qin Y, Nan W, Hu Y. Advances in the Immunoassays for Detection of Bacillus thuringiensis Crystalline Toxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10407-10418. [PMID: 34319733 DOI: 10.1021/acs.jafc.1c02195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect-resistant genetically modified organisms have been globally commercialized for the last 2 decades. Among them, transgenic crops based on Bacillus thuringiensis crystalline (Cry) toxins are extensively used for commercial agricultural applications. However, less emphasis is laid on quantifying Cry toxins because there might be unforeseen health and environmental concerns. Immunoassays, being the preferred method for detection of Cry toxins, are reviewed in this study. Owing to limitations of traditional colorimetric enzyme-linked immunosorbent assay, the trend of detection strategies shifts to modified immunoassays based on nanomaterials, which provide ultrasensitive detection capacity. This review assessed and compared the properties of the recent advances in immunoassays, including colorimetric, fluorescence, chemiluminescence, surface-enhanced Raman scattering, surface plasmon resonance, and electrochemical approaches. Thus, the ultimate aim of this study is to identify research gaps and infer future prospects of current approaches for the development of novel immunosensors to monitor Cry toxins in food and the environment.
Collapse
Affiliation(s)
- Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqing Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Wenrui Nan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yonggang Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
10
|
Zhang M, Mei L, Zhang L, Wang X, Liao X, Qiao X, Hong C. Ti 3C 2 MXene anchors CuAu-LDH multifunctional two-dimensional nanomaterials for dual-mode detection of CEA in electrochemical immunosensors. Bioelectrochemistry 2021; 142:107943. [PMID: 34508921 DOI: 10.1016/j.bioelechem.2021.107943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/05/2023]
Abstract
Electrochemical immunoassays are commonly used to detect biomarkers and Ti3C2 MXene anchored CuAu-LDH two-dimensional hydroxide heterojunctions for dual-mode electrochemical immunosensors were fabricated in this work. Layered double hydroxides have a large surface area, high chemical stability, tunable metal composition and interchangeable anions, however, the insulating nature of LDH further limits its catalytic performance. For this reason, Ti3C2 Mxenes were introduced to improve this problem. 2D layers of Ti3C2 Mxenes with large specific surface area and excellent conductivity have been well proven and widely used. And the surface of Ti3C2 Mxenes (due to the presence of abundant surface functional groups), will facilitate the anchoring of metal ions and the nucleation of LDH. In addition, its excellent electrical conductivity will facilitate the electron transfer between Cu2+ and Cu+. The immunosensor not only showed a heavy square wave voltammetry (SWV) signal. It also exhibited high electrocatalytic activity for H2O2 redox reactions and improves the sensitivity of the Ampere Current (i-t) detection. The CEA immunosensor developed in this study showed a wide linear response (0.0001-80 ng/mL) and the lowest detection limits (SWV: 33.6 fg/mL and i-t: 45.4 fg/mL S/N = 3). The results confirmed the excellent analytical capability of the immunosensor.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Lisha Mei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Li Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xiao Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xiaochen Liao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xiuwen Qiao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Production and Construction Corps, Shihezi University, Shihezi 832003, PR China; Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, PR China; School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China.
| |
Collapse
|
11
|
Gu J, Ye R, Xu Y, Yin Y, Li S, Chen H. A historical overview of analysis systems for Bacillus thuringiensis (Bt) Cry proteins. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Xu P, Ghosh S, Gul AR, Bhamore JR, Park JP, Park TJ. Screening of specific binding peptides using phage-display techniques and their biosensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Xu C, Han Q, Dong S, Liu X, Liu X. Establishment of an ultrasensitive indirect competitive time-resolved fluoroimmunoassay for vancomycin determination. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1639629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Chongxin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Qi Han
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Sa Dong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiaoqin Liu
- Department of animal science and technology, Huaihua Vocational and Technical College, Huaihua, People’s Republic of China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| |
Collapse
|
14
|
Wang Y, Zhang X, Xie Y, Wu A, Zai X, Liu X. High-affinity phage-displayed peptide as a recognition probe for the detection of Cry2Ad2-3. Int J Biol Macromol 2019; 137:562-567. [PMID: 31238073 DOI: 10.1016/j.ijbiomac.2019.06.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 11/25/2022]
Abstract
Cry2A is widely used in transgenic crops in combination with Cry1A toxins. The sensitive and robust detection of Cry2A toxin in food and the environment is necessary to monitor the safety of biopesticides. Here, we describe an approach that involves the use of phage-displayed peptide for the detection of Cry2Ad2-3-the main area of Cry2Ad2 insecticidal activity. After four rounds of panning, six positive monoclonal phage particles were obtained. Pep5 with a sequence of ACSYNHNSKCGGG displayed low cross-reactivity with other Cry toxins. The working range of detection for Cry2Ad2-3 toxin standards in the brush border membrane vesicle (BBMV)-peptide sandwich ELISA was 10-50.625 ng mL-1 and the detection limit (LOD) was 8 ng mL-1. Molecular insight into the interaction of pep5 with Cry2Ad2-3 was gleaned using homology modeling and docking. Molecular docking results showed that high-affinity peptide tended to dock in the groove between the two domains of Cry2Ad2-3. The interactions within the toxin-pep5 complex were due to hydrogen bond and hydrophobic interaction. Pep5 also lead us to trap the binding region. Therefore, peptides may be a cost-efficient alternative for detecting Cry toxins and studying their mechanisms.
Collapse
Affiliation(s)
- Yun Wang
- College of Horticulture, Jinling Institute of Technology, 210038 Nanjing, PR China
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Yajing Xie
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Aihua Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Xueming Zai
- College of Horticulture, Jinling Institute of Technology, 210038 Nanjing, PR China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China.
| |
Collapse
|
15
|
Abstract
Immunosensors are compact tools on which antibody and antigen interactions are formed. The specific interaction between antibody and antigen is detected by using a transducer and an electrical signal is measured. This specific interaction between these molecules makes immunosensor very attractive for several applications in different fields. Electrochemical immunosensors are successful devices in selective and sensitive detection of several analytes. Electrochemical transducing methods such as voltammetric, potentiometric, conductometric or impedimetric have been utilized in different applications due to their excellent properties such as being low-cost, sensitivity and simplicity. In this chapter, the fundamentals of electrochemical immunosensors are summarized and different applications in food, environmental and clinical analyses are investigated and discussed.
Collapse
Affiliation(s)
- Elif Burcu Aydin
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Muhammet Aydin
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
16
|
Wu M, Tu Z, Huang F, He Q, Fu J, Li Y. Panning anti-LPS nanobody as a capture target to enrich Vibrio fluvialis. Biochem Biophys Res Commun 2019; 512:531-536. [PMID: 30905409 DOI: 10.1016/j.bbrc.2019.03.104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 03/17/2019] [Indexed: 11/18/2022]
Abstract
Vibrio fluvialis is considered as a human pathogen in developing countries. This bacterium is widely distributed in seawater and harbors that contains traces of salt. V. fluvialis can cause human enteritis and diarrhea, which has broken out at a global scale. Lipopolysaccharide (LPS) is a key bacterial antigen used to classify V. fluvialis serogroups. In this research, phage display technology was adopted to isolate nanobodies from a naïve phage library by using LPS as the target antigen. The isolated nanobody was tested in LPS ELISA and bacterial enzyme-linked immunosorbent assay Nanobody V23 had a high affinity toward the pathogen and was utilized to synthesize immunomagnetic beads for the enrichment of V. fluvialis. The capture efficiency of the immunomagnetic beads against V. fluvialis was 90.7 ± 3.2% (N = 3) through the plate-counting method. We generated a high-affinity nanobody against LPS from V. fluvialis and developed a rapid method of enriching V. fluvialis by using immunomagnetic beads.
Collapse
Affiliation(s)
- Mengjuan Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang, 330029, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330029, China; School of Food Science and Technology, Nanchang University, No.999Xuefu Avenue, Nanchang, 330031, China
| | - Zhui Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang, 330029, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330029, China; School of Food Science and Technology, Nanchang University, No.999Xuefu Avenue, Nanchang, 330031, China
| | - Fengchun Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang, 330029, China
| | - Qinghua He
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang, 330029, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330029, China; School of Food Science and Technology, Nanchang University, No.999Xuefu Avenue, Nanchang, 330031, China
| | - Jinheng Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang, 330029, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330029, China; School of Food Science and Technology, Nanchang University, No.999Xuefu Avenue, Nanchang, 330031, China
| | - Yanping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No.235 Nanjing East Road, Nanchang, 330029, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330029, China; School of Food Science and Technology, Nanchang University, No.999Xuefu Avenue, Nanchang, 330031, China.
| |
Collapse
|
17
|
Hou SL, Ma ZE, Meng H, Xu Y, He QH. Ultrasensitive and green electrochemical immunosensor for mycotoxin ochratoxin A based on phage displayed mimotope peptide. Talanta 2018; 194:919-924. [PMID: 30609625 DOI: 10.1016/j.talanta.2018.10.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 01/16/2023]
Abstract
Here, we demonstrated a new approach for development of an ultrasensitive and green electrochemical immunosensor for Ochratoxin A (OTA). Phage displayed mimotope peptide of OTA was used as mimics of conventional competing antigen, which is chemical synthesized with toxic mycotoxins OTA as raw material, in a competitive sensing platform. The working electrode was modified by polyethylene glycol (PEG) for the purpose of immobilizing antibody effectively. Under the optimized test condition, the limit of detection (LOD) of the established immunosensor was 2.04 fg/mL, and the linear range was 7.17-548.76 fg/mL. Specific measurement of this established method was conducted by testing cross-reactivity of other common mycotoxins, the result showed that mimotope peptide-based immunosensor has negligible cross-reactivity with other mycotoxins. Furthermore, the novel concept of phage displayed mimotope peptide-based immunosensor may provide a potential application in general method for the ultrasensitive detection of various toxic small molecules in food.
Collapse
Affiliation(s)
- Si-Lu Hou
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhen-E Ma
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hui Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Qing-Hua He
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
18
|
Pelin JNBD, Gatto E, Venanzi M, Cavalieri F, Oliveira CLP, Martinho H, Silva ER, Aguilar AM, Souza JS, Alves WA. Hybrid Conjugates Formed between Gold Nanoparticles and an Amyloidogenic Diphenylalanine-Cysteine Peptide. ChemistrySelect 2018. [DOI: 10.1002/slct.201801345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Juliane N. B. D. Pelin
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; 09210-580 Santo André Brazil
| | - Emanuela Gatto
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Italy
| | - Mariano Venanzi
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Italy
| | - Francesca Cavalieri
- Department of Chemical and Biomolecular Engineering; The University of Melbourne; Australia
- Department of Chemical Science and Technologies; University of Rome Tor Vergata; Italy
| | | | - Herculano Martinho
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; 09210-580 Santo André Brazil
| | - Emerson R. Silva
- Departamento de Biofísica; Universidade Federal de São Paulo; 04023-062 São Paulo Brazil
| | - Andrea M. Aguilar
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas; Universidade Federal de São Paulo; Diadema 09972-270 Brazil
| | - Juliana S. Souza
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; 09210-580 Santo André Brazil
| | - Wendel A. Alves
- Centro de Ciências Naturais e Humanas; Universidade Federal do ABC; 09210-580 Santo André Brazil
| |
Collapse
|