1
|
Shao J, Zhang W, Huang Y, Zheng J, Chi Y. Au Nanoparticles-Trisbipyridine Ruthenium(II) Nanoaggregates as Signal-Amplifying SERS Tags for Immunoassay of cTnI. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61703-61713. [PMID: 39481089 DOI: 10.1021/acsami.4c13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of human mortality worldwide. In the early stages of AMI, the patient's electrocardiogram (ECG) may not change, so the fast, sensitive, and accurate detection of the specific biomarker of cardiac troponin I (cTnI) is of great importance in the early diagnosis of AMI. In this work, for the first time, electrostatic nanoaggregates of negatively charged Au nanoparticles and positively charged trisbipyridine ruthenium(II) ions (i.e., (-)AuNPs|[Ru(bpy)3]2+ ENAs) as novel and signal-amplifying surface-enhanced Raman scattering (SERS) tags were synthesized in an easy and rapid (<3 min) way and applied in the highly sensitive, rapid detection of cTnI in human serum by being combined with an immunochromatographic test strip (ICTS). The synthesized (-)AuNPs|[Ru(bpy)3]2+ ENAs exhibited strong SERS activity due to the multiple Raman-active units (three bpy ligands) carried by each [Ru(bpy)3]2+ complex ion and abundant hotspots in each SERS tag. The developed (-)AuNPs|[Ru(bpy)3]2+ ENAs-based SERS-ICTS has been validated to be applicable in detection of cTnI in human serum with excellent sensing performances, such as fast testing (5 min) and a low detection limit (60 pg/mL). It is envisioned that the developed (-)AuNPs|[Ru(bpy)3]2+ ENAs-based SERS-ICTS sensor may have promising applications in point of care testing of various biomarkers in clinic. Additionally, this work may inspire the finding and the application of new types of Raman reporter molecules based on high valent metal-multi ligand coordination compounds like [Ru(bpy)3]2+.
Collapse
Affiliation(s)
- Jiwei Shao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
2
|
Xue K, Cai B, Yang Y, He A, Chen Z, Zhang C. A dry chemistry-based self-enhanced electrochemiluminescence lateral flow immunoassay sensor for accurate sample-to-answer detection of luteinizing hormone. Anal Chim Acta 2024; 1309:342646. [PMID: 38772670 DOI: 10.1016/j.aca.2024.342646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Colorimetric lateral flow immunoassay (LFIA) is a widely used point-of-care testing (POCT) technology, while it has entered a bottleneck period because of low detection sensitivity, expensive preparation materials, and incapable quantitative detection. Therefore, it is necessary to develop a novel POCT method that is ultrasensitive, simple, portable, and capable of accurately detecting biomarkers in biofluids daily, particularly for pregnancy preparation and early screening of diseases. RESULT In this work, a novel dry chemistry-based self-enhanced electrochemiluminescence (DC-SE-ECL) LFIA sensor is introduced for accurate POCT of luteinizing hormone (LH). The proposed DC-SE-ECL immunosensor significantly improves the detection sensitivity through the Poly-l-Lysine (PLL)-based SE-ECL probe and cathode modification of closed bipolar electrode (C-BPE). Additionally, a new type of C-BPE configuration is designed for easily performing the LFIA. And, two standalone absorbent pads are symmetrically arranged below the reporting channel of the electrode pad to decease useless residues on the detection pad, which further improves the detection performance. Under optimized conditions, the proposed LFIA sensor has a low limit of detection (9.274 μIU mL-1) and a wide linear dynamic range (0.01-100 mIU mL-1), together with good selectivity, repeatability and storage stability. SIGNIFICANCE These results indicate that the proposed DC-SE-ECL method has the potential as a new tool for detecting biomarkers in clinical samples.
Collapse
Affiliation(s)
- Kaifa Xue
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Bolin Cai
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yang Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - An He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Zhenyu Chen
- Guangzhou First People's Hospital Nansha Hospital, Guangzhou, 511457, China
| | - Chunsun Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
3
|
Guo J, Wang H, Li Y, Zhu S, Hu H, Gu Z. Nanotechnology in coronary heart disease. Acta Biomater 2023; 171:37-67. [PMID: 37714246 DOI: 10.1016/j.actbio.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Coronary heart disease (CHD) is one of the major causes of death and disability worldwide, especially in low- and middle-income countries and among older populations. Conventional diagnostic and therapeutic approaches have limitations such as low sensitivity, high cost and side effects. Nanotechnology offers promising alternative strategies for the diagnosis and treatment of CHD by exploiting the unique properties of nanomaterials. In this review, we use bibliometric analysis to identify research hotspots in the application of nanotechnology in CHD and provide a comprehensive overview of the current state of the art. Nanomaterials with enhanced imaging and biosensing capabilities can improve the early detection of CHD through advanced contrast agents and high-resolution imaging techniques. Moreover, nanomaterials can facilitate targeted drug delivery, tissue engineering and modulation of inflammation and oxidative stress, thus addressing multiple aspects of CHD pathophysiology. We discuss the application of nanotechnology in CHD diagnosis (imaging and sensors) and treatment (regulation of macrophages, cardiac repair, anti-oxidative stress), and provide insights into future research directions and clinical translation. This review serves as a valuable resource for researchers and clinicians seeking to harness the potential of nanotechnology in the management of CHD. STATEMENT OF SIGNIFICANCE: Coronary heart disease (CHD) is the one of leading cause of death and disability worldwide. Nanotechnology offers new strategies for diagnosing and treating CHD by exploiting the unique properties of nanomaterials. This review uses bibliometric analysis to uncover research trends in the use of nanotechnology for CHD. We discuss the potential of nanomaterials for early CHD detection through advanced imaging and biosensing, targeted drug delivery, tissue engineering, and modulation of inflammation and oxidative stress. We also offer insights into future research directions and potential clinical applications. This work aims to guide researchers and clinicians in leveraging nanotechnology to improve CHD patient outcomes and quality of life.
Collapse
Affiliation(s)
- Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ying Li
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Fu H, Qin Z, Li X, Pan Y, Xu H, Pan P, Song P, Liu X. Paper-Based All-in-One Origami Nanobiosensor for Point-of-Care Detection of Cardiac Protein Markers in Whole Blood. ACS Sens 2023; 8:3574-3584. [PMID: 37705448 DOI: 10.1021/acssensors.3c01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Rapid and accurate diagnosis of cardiovascular diseases (CVDs) at the earliest stage is of paramount importance to improve the treatment outcomes and avoid irreversible damage to a patient's cardiovascular system. Microfluidic paper-based devices (μPADs) represent a promising platform for rapid CVD diagnosis at the point of care (POC). This paper presents an electrochemical μPAD (E-μPAD) with an all-in-one origami design for rapid and POC testing of cardiac protein markers in whole blood. Based on the label-free, electrochemical impedance spectroscopy (EIS) immunoassay, the E-μPAD integrates all essential components on a single chip, including three electrochemical cells, a plasma separation membrane, and a buffer absorption pad, enabling easy and streamlined operations for multiplexed detection of three cardiac protein markers [cardiac troponin I (cTnI), brain natriuretic peptide (BNP)-32, and D-Dimer] on a finger-prick whole blood sample within 46 min. Superior analytical performance is achieved through sensitive EIS measurement on carbon electrodes decorated with semiconductor zinc oxide nanowires (ZnO NWs). Using spiked human plasma samples, ultralow limits of detection (LODs) of E-μPAD are achieved at 4.6 pg/mL (190 fM) for cTnI, 1.2 pg/mL (40 fM) for BNP-32, and 146 pg/mL (730 fM) for D-Dimer. Real human blood samples spiked with purified proteins are also tested, and the device's analytical performance was proven to be comparable to commercial ELISA kits. The all-in-one E-μPAD will allow rapid and sensitive testing of cardiac protein markers through easy operations, which holds great potential for on-site screening of acute CVDs in nonlaboratory settings such as emergency rooms, doctor's offices, or patient homes.
Collapse
Affiliation(s)
- Hao Fu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen, Guangdong 518058, China
| | - Zhen Qin
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Xiao Li
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yueyue Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Haitong Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Peng Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Pengfei Song
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada
- School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
5
|
Wang Y, Li MH, Wen XH, Liu MY, Lu YW, Gu Y, Zeng G, Zhao XF, Liu BH, Ji XM, Lu HL. Study of an Ultrasensitive Label-Free Electrochemiluminescent Immunosensor Fabricated with a Composite Electrode for Detecting the Glutamate Decarboxylase Antibody. ACS Sens 2023. [PMID: 37364058 DOI: 10.1021/acssensors.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Antibody testing for the glutamic acid decarboxylase 65 antibody (GADA) is widely used as a golden standard for autoimmune diabetes diagnosis, while current methods for antibody testing are not sensitive enough for clinical usage. Here, a label-free electrochemiluminescent (ECL) immunosensor for detecting GADA in autoimmune diabetes is fabricated and investigated. In the designed immunosensor, a composite film including the multiwalled carbon nanotubes (MWCNTs), zinc oxide (ZnO), and Au nanoparticles (AuNPs) was prepared through nanofabrication processes to improve the performance of sensor. The MWCNTs, which can provide a larger specific surface area, ZnO as a good photocatalytic material, and AuNPs that can enhance the ECL signal of luminol and immobilize the GAD65 antigen were applied to prefunctionalize indium tin oxide (ITO) glass based on a nanofabrication process. The GADA concentration was detected using the ECL immunosensor after incubating with GAD65 antigen-coated prefunctionalized ITO glass. After a direct immunoreaction, it is found that the degree of decreased ECL intensity has a good linear regression toward the logarithm of the GADA concentration in the range of 0.01 to 50 ng mL-1 with a detection limit down to 10 pg mL-1. Human serum samples positive or negative for GADA all nicely fell in the expected area. The fabricated immunosensor with excellent sensitivity, specificity, and stability has potential capability for clinical usage in GADA detection.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Mei-Hang Li
- Department of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xiao-Hong Wen
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Meng-Yang Liu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Yan-Wei Lu
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yang Gu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Guang Zeng
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xue-Feng Zhao
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Bao-Hong Liu
- Department of Chemistry, State Key Lab of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xin-Ming Ji
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Ahmed SS, Youssef AO, Mohamed EH, Attia MS. A highly selective optical sensor Eu-BINAM for assessment of high sensitivity cardiac troponin tumor marker in serum of cancer patients. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122887. [PMID: 37224630 DOI: 10.1016/j.saa.2023.122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023]
Abstract
A novel, easy, touchy and selective spectrofluorimetric technique has been successfully applied for sensitive determination of High Sensitivity Cardiac Troponin (TNHS I) in the serum samples of patients suffering malignant tumors through the usage of optical sensor Eu3+-BINAM complex. The technique is primarily based on quenching of the Eu3+-BINAM complex's luminescence intensity upon introducing various concentrations of High Sensitivity Cardiac Troponin (TNHS I). The synthesis and characterization of the optical sensor was performed via absorption and emission. The sensor was also adapted to offer excitation at 394 nm in acetonitrile at pH 7.5. Concentration of High Sensitivity Cardiac Troponin (TNHS I) in serum samples was found to be proportional to the luminescence intensity quenching of the Eu3+-BINAM complex, most prominently at λem = 618 nm. The limit of the dynamic range is 4.26 × 10-4 to 2 ng/mL. The limit of detection and quantitation were calculated to be 1.35 and 4.10 ng/mL, respectively. The suggested analytical approach proved its applicability, simplicity and comparatively interference- free. The technique was effectively recruited to quantify High Sensitivity Cardiac Troponin (TNHS I) in human serum samples. The proposed technique could be further extended to evaluate some biomarkers associated with malignancy related diseases in human.
Collapse
Affiliation(s)
- Shahenda S Ahmed
- Analytical Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ahmed O Youssef
- Analytical Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ekram H Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, British University, Cairo, Egypt
| | - Mohamed S Attia
- Analytical Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Zhan T, Su Y, Lai W, Chen Z, Zhang C. A dry chemistry-based ultrasensitive electrochemiluminescence immunosensor for sample-to-answer detection of Cardiac Troponin I. Biosens Bioelectron 2022; 214:114494. [DOI: 10.1016/j.bios.2022.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022]
|
8
|
Rahmawati I, Einaga Y, Ivandini TA, Fiorani A. Enzymatic biosensors with electrochemiluminescence transduction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yasuaki Einaga
- Keio University - Yagami Campus: Keio Gijuku Daigaku - Yagami Campus Department of chemistry JAPAN
| | | | - Andrea Fiorani
- Keio University - Yagami Campus: Keio Gijuku Daigaku - Yagami Campus Department of Chemistry 3-14-1 Hiyoshi 223-8522 Yokohama JAPAN
| |
Collapse
|
9
|
Huang L, Tian S, Zhao W, Liu K, Ma X, Guo J, Yin M. 5G-Enabled intelligent construction of a chest pain center with up-conversion lateral flow immunoassay. Analyst 2021; 146:7702-7709. [PMID: 34812799 DOI: 10.1039/d1an01592c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acute myocardial infarction (AMI) has become a worldwide health problem because of its rapid onset and high mortality. Cardiac troponin I (cTnI) is the gold standard for diagnosis of AMI, and its rapid and accurate detection is critical for early diagnosis and management of AMI. Using a lateral flow immunoassay with upconverting nanoparticles as fluorescent probes, we developed an up-conversion fluorescence reader capable of rapidly quantifying the cTnI concentration in serum based upon the fluorescence intensity of the test and control lines on the test strip. Reliable detection of cTnI in the range 0.1-50 ng mL-1 could be achieved in 15 min, with a lower detection limit of 0.1 ng mL-1. The reader was also adapted for use on a 5th generation (5G) mobile network enabled intelligent chest pain center. Through Bluetooth wireless communication, the results achieved using the reader on an ambulance heading to a central hospital could be transmitted to a 5G smartphone and uploaded for real-time edge computing and cloud storage. An application in the 5G smartphone allows users to upload their medical information to establish dedicated electronic health records and doctors to monitor patients' health status and provide remote medical services. Combined with mobile internet and big data, the 5G-enabled intelligent chest pain center with up-conversion lateral flow immunoassay may predict the onset of AMI and save valuable time for patients suffering an AMI.
Collapse
Affiliation(s)
- Lei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Shulin Tian
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Ke Liu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Xing Ma
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Ming Yin
- The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
10
|
Du X, Su X, Zhang W, Yi S, Zhang G, Jiang S, Li H, Li S, Xia F. Progress, Opportunities, and Challenges of Troponin Analysis in the Early Diagnosis of Cardiovascular Diseases. Anal Chem 2021; 94:442-463. [PMID: 34843218 DOI: 10.1021/acs.analchem.1c04476] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuewei Du
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xujie Su
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanxue Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Suyan Yi
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Ge Zhang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shan Jiang
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
11
|
Yuan Z, Wang L, Chen J, Su W, Li A, Su G, Liu P, Zhou X. Electrochemical strategies for the detection of cTnI. Analyst 2021; 146:5474-5495. [PMID: 34515706 DOI: 10.1039/d1an00808k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute myocardial infarction (AMI) is the main cause of death from cardiovascular diseases. Thus, early diagnosis of AMI is essential for the treatment of irreversible damage from myocardial infarction. Traditional electrocardiograms (ECG) cannot meet the specific detection of AMI. Cardiac troponin I (cTnI) is the main biomarker for the diagnosis of myocardial infarction, and the detection of cTnI content has become particularly important. In this review, we introduced and compared the advantages and disadvantages of various cTnI detection methods. We focused on the analysis and comparison of the main indicators and limitations of various cTnI biosensors, including the detection range, detection limit, specificity, repeatability, and stability. In particular, we pay more attention to the application and development of electrochemical biosensors in the diagnosis of cardiovascular diseases based on different biological components. The application of electrochemical microfluidic chips for cTnI was also briefly introduced in this review. Finally, this review also briefly discusses the unresolved challenges of electrochemical detection and the expectations for improvement in the detection of cTnI biosensing in the future.
Collapse
Affiliation(s)
- Zhipeng Yuan
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Jun Chen
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weiguang Su
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Anqing Li
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Guosheng Su
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Pengbo Liu
- Advanced Micro and Nano-instruments Center, School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. .,Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | | |
Collapse
|
12
|
Radha R, Shahzadi SK, Al-Sayah MH. Fluorescent Immunoassays for Detection and Quantification of Cardiac Troponin I: A Short Review. Molecules 2021; 26:molecules26164812. [PMID: 34443402 PMCID: PMC8399166 DOI: 10.3390/molecules26164812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Cardiovascular diseases are considered one of the major causes of human death globally. Myocardial infarction (MI), characterized by a diminished flow of blood to the heart, presents the highest rate of morbidity and mortality among all other cardiovascular diseases. These fatal effects have triggered the need for early diagnosis of appropriate biomarkers so that countermeasures can be taken. Cardiac troponin, the central key element of muscle regulation and contraction, is the most specific biomarker for cardiac injury and is considered the “gold standard”. Due to its high specificity, the measurement of cardiac troponin levels has become the predominant indicator of MI. Various forms of diagnostic methods have been developed so far, including chemiluminescence, fluorescence immunoassay, enzyme-linked immunosorbent assay, surface plasmon resonance, electrical detection, and colorimetric protein assays. However, fluorescence-based immunoassays are considered fast, accurate and most sensitive of all in the determination of cardiac troponins post-MI. This review represents the strategies, methods and levels of detection involved in the reported fluorescence-based immunoassays for the detection of cardiac troponin I.
Collapse
|
13
|
Manganese Metal–Organic Framework: Chemical Stability, Photoluminescence Studies, and Biosensing Application. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01888-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Hou F, Fu XL, Hu XB, Cao JT, Ma SH, Liu YM. Label-Free Electrochemiluminescence Immunosensor for the Determination of Cardiac Troponin I Using a Cadmium Sulfide–Molybdenum (IV) Sulfide Nanocomposite Modified Glassy Carbon Electrode. ANAL LETT 2020. [DOI: 10.1080/00032719.2019.1709074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fang Hou
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Xiao-Long Fu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Xue-Bo Hu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Shu-Hui Ma
- Xinyang Central Hospital, Xinyang, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
15
|
Cao JT, Fu XL, Liu FR, Ren SW, Liu YM. Reduced graphene oxide-gold nanoparticles-catalase-based dual signal amplification strategy in a spatial-resolved ratiometric electrochemiluminescence immunoassay. Analyst 2020; 145:91-96. [DOI: 10.1039/c9an02056j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel spatial-resolved electrochemiluminescent (ECL) ratiometry for cardiac troponin I (cTnI) analysis was developed using resonance energy transfer (RET) and a coreactant consumption strategy for signal amplification.
Collapse
Affiliation(s)
- Jun-Tao Cao
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - Xiao-Long Fu
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | - Fu-Rao Liu
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| | | | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|
16
|
Shen G, Shen Y. Label-Free Electrochemical Immunosensor Based on β-Cyclodextrin-Functionalized Helical Carbon Nanotube and Ionic Liquid Containing Ferrocene and Aldehyde Groups. ACS OMEGA 2019; 4:20252-20256. [PMID: 31815227 PMCID: PMC6893954 DOI: 10.1021/acsomega.9b02559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
We fabricated an electrochemical immunosensor for the detection of cardiac troponin I using β-cyclodextrin-functionalized helical carbon nanotube and ionic liquid functionalized with ferrocene and aldehyde groups. β-Cyclodextrin-functionalized helical carbon nanotube was first modified on the electrode surface. Then, ferrocene- and aldehyde-functionalized ionic liquid was modified on the surface of the electrode through host-guest interaction, resulting in an interface with aldehyde groups. The aldehyde groups attached to the ionic liquid capture antibody directly, which simplifies the fabrication of immunosensor. Because of the use of ionic liquid and helical carbon nanotube, the conductivity of the sensing interface was improved. Thus, the sensitivity of the fabricated immunosensor was increased. The immunosensor for cardiac troponin I shows a linear range from 0.05 to 20 ng mL-1 with a detection limit of 0.04 ng mL-1 (S/N = 3).
Collapse
Affiliation(s)
- Guangyu Shen
- Hunan
Province Cooperative Innovation Center for The Construction
& Development of Dongting Lake Ecological Economic Zone and College of Chemistry
and Material Engineering, Hunan University
of Arts and Science, Changde 415000, China
| | - Youming Shen
- Hunan
Province Cooperative Innovation Center for The Construction
& Development of Dongting Lake Ecological Economic Zone and College of Chemistry
and Material Engineering, Hunan University
of Arts and Science, Changde 415000, China
| |
Collapse
|
17
|
Electrochemiluminescent immunoassay for the lung cancer biomarker CYFRA21-1 using MoOx quantum dots. Mikrochim Acta 2019; 186:855. [DOI: 10.1007/s00604-019-3917-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023]
|
18
|
Negahdary M, Heli H. An electrochemical troponin I peptisensor using a triangular icicle-like gold nanostructure. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107326] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Zhu L, Ye J, Yan M, Zhu Q, Wang S, Huang J, Yang X. Electrochemiluminescence Immunosensor Based on Au Nanocluster and Hybridization Chain Reaction Signal Amplification for Ultrasensitive Detection of Cardiac Troponin I. ACS Sens 2019; 4:2778-2785. [PMID: 31571481 DOI: 10.1021/acssensors.9b01369] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Measurement of cardiac troponin I in the blood is crucial for the early diagnosis of acute myocardial infarction. Herein, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor has been developed for determination of cardiac troponin I (cTnI) by using Au nanoclusters and hybridization chain reaction (HCR) signal amplification. In this ECL immunosensor, Au nanoclusters were dual-labeled at each end of hairpin DNA (H1 and H2) and acted as the luminophore. DNA initiator strands (T1) and secondary antibody (Ab2) were conjugated on Au nanoparticles (AuNPs) to obtain a smart probe (Ab2-AuNP-T1). In the presence of target cTnI, the sandwiched immunocomplex composed of cTnI, Ab1, and Ab2-AuNP-T1 was formed. Then the initiator strands T1 of Ab2-AuNP-T1 opened the hairpin DNA structures and triggered a cascade of hybridization events. Consequently, a large number of Au NCs were indirectly modified on the surface of the electrode, which could react with the coreactant (K2S2O8) and emit a strong ECL signal. Under the optimal conditions, the immunosensor exhibited a wide detection range for cTnI from 5 fg/mL to 50 ng/mL and a low detection limit of 1.01 fg/mL (S/N = 3). Because of the excellent specificity, stability, and reproducibility of the proposed ECL-HCR sensor, it has a great application prospect for cTnI detection in clinical diagnosis.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Ye
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mengxia Yan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiuju Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuang Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiurong Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
20
|
Yang H, Bever CS, Zhang H, Mari GM, Li H, Zhang X, Guo L, Wang Z, Luo P, Wang Z. Comparison of soybean peroxidase with horseradish peroxidase and alkaline phosphatase used in immunoassays. Anal Biochem 2019; 581:113336. [PMID: 31201790 DOI: 10.1016/j.ab.2019.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023]
Abstract
Enzyme labeling of an antigen or an antibody helps to visualize and amplify the signal and is an important reagent used in immunoassays for the detection of a target of interest. In this research, soybean peroxidase (SBP), a less commonly used enzyme reporter, was compared in immunoassays with the two most commonly used reagents, horseradish peroxidase (HRP) and alkaline phosphatase (ALP). The enzyme-antibody conjugates were evaluated by their performance in an indirect competitive enzyme-linked immunosorbent assay (icELISA) and in an indirect competitive chemiluminescent enzyme immunoassay (icCLEIA) for ractopamine (RAC). The results revealed that the more affordable SBP offers a long-lasting chemiluminescent signal, which outperformed ALP and HRP. SBP-antibody conjugate (SBP-Ab) based immunoassays produced lower limits of detection (LODs) and better accuracy in the detection of RAC in animal urine samples. Additionally, SBP-Ab has advantages in being more resistant to heat, acid and organic solvents. These results suggest that SBP could be a potentially excellent alternative to HRP and ALP for the development of immunoassay in food safety field.
Collapse
Affiliation(s)
- Huijuan Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China
| | - Candace S Bever
- Agricultural Research Service, United States Department of Agriculture, Albany, 94710, CA, USA
| | - Huiyan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China
| | - Ghulam Mujtaba Mari
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China
| | - Hongfang Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China
| | - Xiya Zhang
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Road, Zhengzhou, Henan, 450002, People's Republic of China
| | - Liuchuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China
| | - Ziwen Wang
- China National Center for Food Safety Risk Assessment, NHC Key Laboratory of Food Safety Risk Assessment, Beijing, 100021, People's Republic of China
| | - Pengjie Luo
- China National Center for Food Safety Risk Assessment, NHC Key Laboratory of Food Safety Risk Assessment, Beijing, 100021, People's Republic of China.
| | - Zhanhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, Beijing, 100193, People's Republic of China.
| |
Collapse
|
21
|
Shen Q, Liu M, Lü Y, Zhang D, Cheng Z, Liu Y, Gao H, Jin Z. Label-Free Electrochemical Immunosensor Based on a Functionalized Ionic Liquid and Helical Carbon Nanotubes for the Determination of Cardiac Troponin I. ACS OMEGA 2019; 4:11888-11892. [PMID: 31460299 PMCID: PMC6682139 DOI: 10.1021/acsomega.9b01152] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/25/2019] [Indexed: 05/04/2023]
Abstract
A label-free electrochemical immunosensor for cardiac troponin I was prepared by using a helical carbon nanotube-supported aldehyde-functionalized ionic liquid. Because of the good conductivity of ionic liquid and helical carbon nanotubes, high sensitivity of the immunosensor was obtained. Functionalized ionic liquid provided binding sites for antibody, which simplified the process of sensor construction. Cardiac troponin I was detected by this immunosensor with a linear range of 0.05-30 ng/mL and a detection limit of 0.03 ng/mL. The electrochemical immunosensor had satisfactory reproducibility, high sensitivity, and acceptable specificity.
Collapse
Affiliation(s)
- Qihui Shen
- Department
of Chemistry and Pharmaceutical Engineering and Department of Petrochemical
Technology, Jilin Institute of Chemical
Technology, Jilin 132022, P. R. China
| | - Man Liu
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yang Lü
- Department
of Chemistry and Pharmaceutical Engineering and Department of Petrochemical
Technology, Jilin Institute of Chemical
Technology, Jilin 132022, P. R. China
| | - Dawei Zhang
- Department
of Chemistry and Pharmaceutical Engineering and Department of Petrochemical
Technology, Jilin Institute of Chemical
Technology, Jilin 132022, P. R. China
| | - Zhenyu Cheng
- Department
of Chemistry and Pharmaceutical Engineering and Department of Petrochemical
Technology, Jilin Institute of Chemical
Technology, Jilin 132022, P. R. China
| | - Yan Liu
- Department
of Chemistry and Pharmaceutical Engineering and Department of Petrochemical
Technology, Jilin Institute of Chemical
Technology, Jilin 132022, P. R. China
- E-mail: . Phone: +86 432 62185237. Fax: +86 432 62185233
| | - Huajing Gao
- Department
of Chemistry and Pharmaceutical Engineering and Department of Petrochemical
Technology, Jilin Institute of Chemical
Technology, Jilin 132022, P. R. China
| | - Zhaohui Jin
- Department
of Chemistry and Pharmaceutical Engineering and Department of Petrochemical
Technology, Jilin Institute of Chemical
Technology, Jilin 132022, P. R. China
- E-mail: . Phone/Fax: +86 432 63083551
| |
Collapse
|
22
|
Facile and clean synthesis of dihydroxylatopillar[5]arene-stabilized gold nanoparticles integrated Pd/MnO2 nanocomposites for robust and ultrasensitive detection of cardiac troponin I. Biosens Bioelectron 2019; 130:214-224. [DOI: 10.1016/j.bios.2019.01.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 12/22/2022]
|
23
|
Wang C, Jiang T, Zhao K, Deng A, Li J. A novel electrochemiluminescent immunoassay for diclofenac using conductive polymer functionalized graphene oxide as labels and gold nanorods as signal enhancers. Talanta 2019; 193:184-191. [DOI: 10.1016/j.talanta.2018.09.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/07/2018] [Accepted: 09/29/2018] [Indexed: 12/14/2022]
|
24
|
Gao Y, Wu Y, Zhao K, Wang H, Liu S. In-Situ imaging detection of cell membrane and intracellular cholesterol via cascade reactions. Biosens Bioelectron 2019; 126:249-254. [PMID: 30445299 DOI: 10.1016/j.bios.2018.10.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Herein, an effective membrane-to-intracellular cholesterol detection strategy was designed based on cascade reactions. A biochip array was firstly fabricated by consecutively immobilizing luminol modified gold nanoparticles (Au@luminol), soybean peroxidase (SBP) and cholesterol oxidase (ChoX) on the cellulose acetate (CA) membrane functionalized home-made micropore array. When cholesterol existed, it was oxidized by ChoX generating H2O2, which further triggered the CL reaction under the SBP catalysis, the CL signals were collected by a charge-coupled device (CCD). The proposed strategy exhibited a wide linear range from 0.12 μM to 1000 μM and relatively low detection limit (LOD) of 0.08 μM. Furthermore,it could be used to in-situ detect membrane cholesterol and intracelluar esterified cholesterol in HepG2 cells. After activated HepG2 cells were added to the modified biochip, membrane cholesterol was detected directly. Intracelluar esterified cholesterol was detected through the introduction of triton X-100 and cholesteryl esterase (ChoE). Additionally, the cholesterol content in cells was changed after stimulated by drugs, such as apolipoprotein A-I (ApoA-I), pitavastatin or probucol. The correlation of the CL signal with the amount of cholesterol confirmed that our strategy was feasible to simultaneously detect membrane and intracellular cholesterol at different cellular states. The proposed strategy exhibited excellent sensitivity, selectivity, stability, and reproducibility in a simple, cheap way, which opened a new door for studying clinic treatment of the cholesterol-related diseases.
Collapse
Affiliation(s)
- Yaqiong Gao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Kaige Zhao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Huaisheng Wang
- Department of Chemistry, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
25
|
Sheta SM, El-Sheikh SM, Abd-Elzaher MM, Ghanem ML, Salem SR. A novel, fast, high sensitivity biosensor for supporting therapeutic decisions and onset actions for chest pain cases. RSC Adv 2019; 9:20463-20471. [PMID: 35514688 PMCID: PMC9065451 DOI: 10.1039/c9ra03030a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
In this work, a novel and promising organic nano linker (NL) was prepared via refluxing 5-aminoisophthalic acid and 1,2-phenylenediamine at 80 °C for 48 h. After that, this linker was reacted with manganese chloride to afford a novel manganese metal–organic framework (Mn–MOF). The produced materials were characterized using 1H-NMR, 13C-NMR, mass spectrometry, elemental analysis, UV, IR, FE-SEM, EDX, TEM, and thermal study. In addition to X-ray diffraction, XPS, magnetic properties and photoluminescence investigation for Mn–MOF. The study was extended to apply Mn–MOF as electroactive material for the preparation of a novel cardiac troponin I (cTn) potentiometric membrane biosensor. The biosensor, based on Mn–MOF with an optimized membrane composition, exhibits a fast, stable and linear-Nernstian response to cTn in the concentration range between 0.01 and 30.0 ng mL−1 with a pH range between 5.6 and 10.1 and a fast response time of 20 ± 5 s. The detection and quantification limits are 0.055 and, 0.168 ng mL−1, respectively. The lifetime of the electrode is between 3–12 week without a significant change in the membrane compositions and the performance characteristics based on the storage conditions. The electrode shows high selectivity towards cTn with respect to common interfering analytes. This approach of Mn–MOF-electrode could be addressed, facilitated and helped an emergency departments (EDs) decision-making in patients with chest pain and early myocardial infarction diagnosis. The future vision is converting the present approach to a small device with satisfactory results which will be used in term of point-of-care testing (POCT) for measuring the most important cardiac blood biomarkers. A novel organic nano linker (NL) and manganese metal–organic framework (Mn–MOF) were synthesized and fully characterized. A promising cardiac troponin-I potentiometric biosensor based on Mn–MOF could be used for early myocardial infarction diagnosis.![]()
Collapse
Affiliation(s)
- Sheta M. Sheta
- Inorganic Chemistry Department
- National Research Centre
- Giza
- Egypt
| | - Said M. El-Sheikh
- Nanomaterials and Nanotechnology Department
- Central Metallurgical R & D Institute
- Cairo
- Egypt
| | | | | | - Salem R. Salem
- Biochemistry Department
- Egypt Center for Research and Regenerative Medicine
- Cairo
- Egypt
| |
Collapse
|
26
|
Simultaneous detection of three biomarkers related to acute myocardial infarction based on immunosensing biochip. Biosens Bioelectron 2018; 126:767-772. [PMID: 30554098 DOI: 10.1016/j.bios.2018.11.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/03/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
An immunosensing biochip for simultaneous detection of three biomarkers related to acute myocardial infarction (AMI) was developed based on anionic soybean peroxidase (SBP) functionalized nanoprobe and chemiluminescent imaging. The nanoprobes (Ab2-SiO2-SBP) were fabricated by co-immobilization of SBP and one of the detection polyclonal antibodies, anti-cardiac troponin I antigen (anti-cTnI), anti-creatine kinase-MB (anti-CK-MB) and anti-myoglobin (anti-Myo), on the silica nanoparticle surface. The detection sensitivity was enhanced since the large surface area of silica carriers increased the loading of SBP for per sandwiched immunoreaction. The immunosensing biochip designed as 3 × 8 wells array was constructed by simultaneously immobilizing three capture monoclonal antibodies on the same one microtiter well with 2 × 3 active spots. In the presence of target protein, the nanoprobes will be attached onto the spots with high specificity through the sandwiched immunoreactions, which triggered the chemiluminescence (CL) signals on each sensing site of the microtiter plates and allowed to CL imaging of three biomarkers in one well at the same time. Therefore, the proposed biochip was a promising convenient strategy for simultaneous detection of cTnI, CK-MB and Myo, which showed potential application for multianalyte determination in clinical diagnostics.
Collapse
|
27
|
Nsabimana A, Ma X, Yuan F, Du F, Abdussalam A, Lou B, Xu G. Nanomaterials-based Electrochemical Sensing of Cardiac Biomarkers for Acute Myocardial Infarction: Recent Progress. ELECTROANAL 2018. [DOI: 10.1002/elan.201800641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anaclet Nsabimana
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Chinese Academy of Sciences; Chinese Academy of Sciences No. 19A Yuquanlu; Beijing 100049 People's Republic of China
| | - Xiangui Ma
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Fan Yuan
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Fangxin Du
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Abubakar Abdussalam
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Baohua Lou
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun, Jilin 130022 People's Republic of China
- University of Chinese Academy of Sciences; Chinese Academy of Sciences No. 19A Yuquanlu; Beijing 100049 People's Republic of China
- University of Science and Technology of China Anhui; 230026 People's Republic of China
| |
Collapse
|
28
|
Regan B, O'Kennedy R, Collins D. Point-of-Care Compatibility of Ultra-Sensitive Detection Techniques for the Cardiac Biomarker Troponin I-Challenges and Potential Value. BIOSENSORS 2018; 8:E114. [PMID: 30469415 PMCID: PMC6316850 DOI: 10.3390/bios8040114] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/05/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022]
Abstract
Cardiac biomarkers are frequently measured to provide guidance on the well-being of a patient in relation to cardiac health with many assays having been developed and widely utilised in clinical assessment. Effectively treating and managing cardiovascular disease (CVD) relies on swiftly responding to signs of cardiac symptoms, thus providing a basis for enhanced patient management and an overall better health outcome. Ultra-sensitive cardiac biomarker detection techniques play a pivotal role in improving the diagnostic capacity of an assay and thus enabling a better-informed decision. However, currently, the typical approach taken within healthcare depends on centralised laboratories performing analysis of cardiac biomarkers, thus restricting the roll-out of rapid diagnostics. Point-of-care testing (POCT) involves conducting the diagnostic test in the presence of the patient, with a short turnaround time, requiring small sample volumes without compromising the sensitivity of the assay. This technology is ideal for combatting CVD, thus the formulation of ultra-sensitive assays and the design of biosensors will be critically evaluated, focusing on the feasibility of these techniques for point-of-care (POC) integration. Moreover, there are several key factors, which in combination, contribute to the development of ultra-sensitive techniques, namely the incorporation of nanomaterials for sensitivity enhancement and manipulation of labelling methods. This review will explore the latest developments in cardiac biomarker detection, primarily focusing on the detection of cardiac troponin I (cTnI). Highly sensitive detection of cTnI is of paramount importance regarding the rapid rule-in/rule-out of acute myocardial infarction (AMI). Thus the challenges encountered during cTnI measurements are outlined in detail to assist in demonstrating the drawbacks of current commercial assays and the obstructions to standardisation. Furthermore, the added benefits of introducing multi-biomarker panels are reviewed, several key biomarkers are evaluated and the analytical benefits provided by multimarkers-based methods are highlighted.
Collapse
Affiliation(s)
- Brian Regan
- School of Biotechnology, Dublin City University, 9 Dublin, Ireland.
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, 9 Dublin, Ireland.
- Research Complex, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110 Doha, Qatar.
| | - David Collins
- School of Biotechnology, Dublin City University, 9 Dublin, Ireland.
| |
Collapse
|
29
|
Lopa NS, Rahman MM, Ahmed F, Ryu T, Sutradhar SC, Lei J, Kim J, Kim DH, Lee YH, Kim W. Simple, low-cost, sensitive and label-free aptasensor for the detection of cardiac troponin I based on a gold nanoparticles modified titanium foil. Biosens Bioelectron 2018; 126:381-388. [PMID: 30469076 DOI: 10.1016/j.bios.2018.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/26/2018] [Accepted: 11/10/2018] [Indexed: 01/17/2023]
Abstract
This research demonstrated the electrochemical modification of low-cost titanium (Ti) metal substrate with gold nanoparticles (AuNPs) for the aptamer-based detection of cardiac troponin I (cTnI). AuNPs were deposited onto Ti sheets by the potential-step deposition method with high density and homogeneity as well as good crystallinity. It was then applied as a transducer to immobilize a thiol-functionalized DNA aptamer via the self-assembled monolayer mechanism for the specific binding of cTnI. This was verified through electrochemical and morphological analyses. The aptasensor could detect cTnI in a linear range of 1-1100 pM with a detection limit of ca. 0.18 pM. The aptasensor showed high sensitivity and specificity to cTnI over other interfering compounds with good recoveries in the diluted human serum samples.
Collapse
Affiliation(s)
- Nasrin Siraj Lopa
- Department of Energy and Materials, Konkuk University, Chungju 27478, Republic of Korea
| | - Md Mahbubur Rahman
- Department of Energy and Materials, Konkuk University, Chungju 27478, Republic of Korea.
| | - Faiz Ahmed
- Department of Energy and Materials, Konkuk University, Chungju 27478, Republic of Korea
| | - Taewook Ryu
- Department of Energy and Materials, Konkuk University, Chungju 27478, Republic of Korea
| | | | - Jin Lei
- Department of Energy and Materials, Konkuk University, Chungju 27478, Republic of Korea
| | - Jaewoong Kim
- Department of Energy and Materials, Konkuk University, Chungju 27478, Republic of Korea
| | - Dae Ho Kim
- Department of Energy and Materials, Konkuk University, Chungju 27478, Republic of Korea
| | - Yong Hoon Lee
- Department of Energy and Materials, Konkuk University, Chungju 27478, Republic of Korea
| | - Whangi Kim
- Department of Energy and Materials, Konkuk University, Chungju 27478, Republic of Korea.
| |
Collapse
|
30
|
Bejarano J, Navarro-Marquez M, Morales-Zavala F, Morales JO, Garcia-Carvajal I, Araya-Fuentes E, Flores Y, Verdejo HE, Castro PF, Lavandero S, Kogan MJ. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics 2018; 8:4710-4732. [PMID: 30279733 PMCID: PMC6160774 DOI: 10.7150/thno.26284] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide. Despite preventive efforts, early detection of atherosclerosis, the common pathophysiological mechanism underlying cardiovascular diseases remains elusive, and overt coronary artery disease or myocardial infarction is often the first clinical manifestation. Nanoparticles represent a novel strategy for prevention, diagnosis, and treatment of atherosclerosis, and new multifunctional nanoparticles with combined diagnostic and therapeutic capacities hold the promise for theranostic approaches to this disease. This review focuses on the development of nanosystems for therapy and diagnosis of subclinical atherosclerosis, coronary artery disease, and myocardial infarction and the evolution of nanosystems as theranostic tools. We also discuss the use of nanoparticles in noninvasive imaging, targeted drug delivery, photothermal therapies together with the challenges faced by nanosystems during clinical translation.
Collapse
Affiliation(s)
- Julian Bejarano
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Mario Navarro-Marquez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Francisco Morales-Zavala
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Javier O. Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
- Pharmaceutical Biomaterial Research Group, Department of Health Sciences, Luleå University of Technology, Luleå 97187, Sweden
| | - Ivonne Garcia-Carvajal
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Eyleen Araya-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Republica 275, 8370146, Santiago, Chile
| | - Yvo Flores
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
| | - Hugo E. Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F. Castro
- Advanced Center for Chronic Diseases (ACCDiS), División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
- Advanced Center for Chronic Diseases (ACCDiS), & Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomedicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marcelo J. Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmaceuticas, Universidad de Chile, Santiago 8380492, Chile
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
| |
Collapse
|