1
|
El-Maghrabey M, El Hamd MA, Al-Khateeb LA, Magdy G, Mahdi WA, Alshehri S, Alsehli BR, El-Shaheny R. Design and synthesis of high quantum yield doped carbon nano probe derived from household sources for sensing of the anti-GERD drug pantoprazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125067. [PMID: 39232309 DOI: 10.1016/j.saa.2024.125067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
This contribution aims to design and validate a new green, cheap, and fast approach for determining the anti-GERD drug pantoprazole in different matrices. New S and N-doped carbon nanomaterials (S,N-CNMs) have been prepared via microwave irradiation of a mixture of widely available household sources. Remarkably, the utilization of a blend of carbamide and thiocarbamide with table sugar yields S,N-CNMs exhibiting the utmost quantum yield (54 %), hydrophilicity, as well as stable, homogeneous, and diminutive particle size distribution. Fourier transform infrared spectroscopy, transmission electron microscopy, spectrophotometry, and fluorescence spectroscopy were applied to characterize the S,N-CNMs. The S,N-CNMs have been used as a turn-off fluorescence probe to determine pantoprazole via a synergism of the inner filter effect and static quenching mechanisms. The fluorescence quenching is linearly correlated to pantoprazole concentration over the range of 1.0-25.0 µg/mL with a detection limit of 0.16 µg/mL. The developed probe exhibited good selectivity for pantoprazole in the presence of variability of substances. Therefore, it was applied for quality control of pantoprazole in pharmaceutical tablets and vials with an average recovery % of 100.10 ± 0.77 % and 100.33 ± 0.92 %, respectively. Moreover, it was successfully implemented to examine the content uniformity of pantoprazole in tablets. Furthermore, the prepared S,N-CNMs have been successfully used for the analysis of pantoprazole in human plasma after a simple protein precipitation step with a recovery % of 97.88 ± 5.72 %. The greenness and blueness of the developed method have been positively assessed by recent tools showing the eco-friendliness and applicability of the developed method.
Collapse
Affiliation(s)
- Mahmoud El-Maghrabey
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Mohamed A El Hamd
- Department of Pharmaceutical Chemistry, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt.
| | - Lateefa A Al-Khateeb
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O Box 80200, Jeddah 21589, Saudi Arabia
| | - Galal Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar R Alsehli
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Rania El-Shaheny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
2
|
Fukuda T, Kishikawa N, El-Maghrabey M, Nakamura S, Ohba Y, Kawakami S, Wada M, Kuroda N. 4-Iodobenzonitrile as a fluorogenic derivatization reagent for chromatographic analysis of L-p-boronophenylalanine in whole blood samples using Suzuki coupling reaction. Anal Chim Acta 2024; 1313:342700. [PMID: 38862203 DOI: 10.1016/j.aca.2024.342700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND L-p-Boronophehylalanine (BPA) is used in boron neutron capture therapy (BNCT), which is a novel selective cancer radiotherapy technique. It is important to measure BPA levels in human blood for effective radiotherapy; a prompt gamma-ray spectrometer, ICP-AES, and ICP-MS have been used for this purpose. However, these methods require sophisticated and expensive apparatuses as well as experienced analysts. Herein, we propose an HPLC-FL method for the determination of BPA after precolumn derivatization. A new fluorogenic reagent for aryl boronic acid derivatives, namely, 4-iodobenzonitrile, was employed for the fluorogenic derivatization of BPA based on the Suzuki coupling reaction. RESULTS After the fluorogenic derivatization, a fluorescent cyanobiphenyl derivative is formed with maximum fluorescence at 335 nm after excitation at 290 nm. The developed method showed good linearity (r2=0.997) over the concentration range of 0.5-1000 nmol/L, and the detection limit (S/N = 3) was 0.26 nmol/L. The proposed method is more sensitive than previously reported methods for the determination of BPA, including the ICP-MS. Finally, the proposed method was successively applied to the measurement of BPA in human whole blood samples with a good recovery rate (≥95.7 %) using only 10 μL of blood sample. The proposed method offers a simple and efficient solution for monitoring BPA levels in BNCT-treated patients. SIGNIFICANCE 4-Iodobenzonitrile was investigated as a new fluorogenic reagent for BPA based on Suzuki coupling. A new HPLC-FL method for BPA in whole blood samples with ultrasensitivity was developed. The developed method is superior in sensitivity to all previously reported methods for BPA. The method requires only a very small sample volume, making it suitable for micro-blood analysis of BPA via fingerstick sampling.
Collapse
Affiliation(s)
- Takayuki Fukuda
- Department of Analytical Chemistry for Pharmaceuticals, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Naoya Kishikawa
- Department of Analytical Chemistry for Pharmaceuticals, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Mahmoud El-Maghrabey
- Department of Analytical Chemistry for Pharmaceuticals, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
| | - Saori Nakamura
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 HuisTen Bosch Cho, Sasebo, Nagasaki, 859-3298, Japan
| | - Yoshihito Ohba
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 HuisTen Bosch Cho, Sasebo, Nagasaki, 859-3298, Japan
| | - Shigeru Kawakami
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Mitsuhiro Wada
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigakudori, SanyoOnoda, Yamaguchi, 756-0884, Japan
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceuticals, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
3
|
El-Maghrabey M, Kishikawa N, Kuroda N. Unique biomedical application of fluorescence derivatization based on palladium-catalyzed coupling reactions for HPLC analysis of pharmaceuticals and biomolecules. Biomed Chromatogr 2024; 38:e5857. [PMID: 38509750 DOI: 10.1002/bmc.5857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/22/2024]
Abstract
Palladium-catalyzed coupling reactions are versatile and powerful tools for the construction of carbon-carbon bonds in organic synthesis. Although these reactions have favorable features that proceed selectively in mild reaction conditions using aqueous organic solvents, no attention has been given to their application in the field of biomedical analysis. Therefore, we focused on these reactions and evaluated the scope and limitations of their analytical performance. In this review, we describe the pros and cons and future trends of fluorescence derivatization of pharmaceuticals and biomolecules based on palladium-catalyzed coupling reactions such as Suzuki-Miyaura coupling, Mizoroki-Heck coupling, and Sonogashira coupling reactions for HPLC analysis.
Collapse
Affiliation(s)
- Mahmoud El-Maghrabey
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Naoya Kishikawa
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan
| | - Naotaka Kuroda
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Abdel-Hakim A, Belal F, Hammad MA, El-Maghrabey M. Rapid microwave synthesis of N and S dual-doped carbon quantum dots for natamycin determination based on fluorescence switch-off assay. Methods Appl Fluoresc 2023; 11:045007. [PMID: 37586384 DOI: 10.1088/2050-6120/acf119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Green, one-pot, quick, and easily synthesized nitrogen and sulfur co-doped carbon quantum dots (N,S-CDs) were obtained from cheap and readily available chemicals (sucrose, urea, and thiourea) using a microwave-assisted approach in about 4 min and utilized as a turn-off fluorescent sensor for estimation of natamycin (NAT). First, the effect of N and S doping on the microwave-synthesized CDs' quantum yield was carefully studied. CDs derived from sucrose alone failed to produce a high quantum yield; then, to increase the quantum yield, doping with heteroatoms was carried out using either urea or thiourea. A slight increase in quantum yield was observed upon using thiourea with sucrose, while an obvious enhancement of quantum yield was obtained when urea was used instead of thiourea. Surprisingly, using a combination of urea and thiourea together results in N,S-CDs with the highest quantum yield (53.5%), uniform and small particle size distribution, and extended stability. The fluorescent signal of N,S-CDs was quenched upon addition of NAT due to inner filter effect and static quenching in a manner that allowed for quantitative determination of NAT over a range of 0.5-10.0μg ml-1(LOD = 0.10μg ml-1). The N,S-CDs were applicable for determination of NAT in aqueous humor, eye drops, different environmental water samples, and bread with excellent performance. The selectivity study indicated excellent selectivity of the prepared N,S-CDs toward NAT with little interference from possibly interfering substances. In-silico toxicological evaluation of NAT was conducted to estimate its long-term toxicity and drug-drug interactions. Finally, the preparation of N,S-CDs, and analytical procedure compliance with the green chemistry principles were confirmed by two greenness assessment tools.
Collapse
Affiliation(s)
- Ali Abdel-Hakim
- Analytical Chemistry Department, Faculty of Pharmacy, University of Sadat City, Sadat City, Monufia, 32897, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35526, Egypt
| | - Mohamed A Hammad
- Analytical Chemistry Department, Faculty of Pharmacy, University of Sadat City, Sadat City, Monufia, 32897, Egypt
| | - Mahmoud El-Maghrabey
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35526, Egypt
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| |
Collapse
|
5
|
Tange A, Kishikawa N, Sakamoto Y, El-Maghrabey M, Wada M, Kuroda N. A Turn-On Quinazolinone-Based Fluorescence Probe for Selective Detection of Carbon Monoxide. Molecules 2023; 28:molecules28093654. [PMID: 37175064 PMCID: PMC10180483 DOI: 10.3390/molecules28093654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Carbon monoxide (CO) is a toxic, hazardous gas that has a colorless and odorless nature. On the other hand, CO possesses some physiological roles as a signaling molecule that regulates neurotransmitters in addition to its hazardous effects. Because of the dual nature of CO, there is a need to develop a sensitive, selective, and rapid method for its detection. Herein, we designed and synthesized a turn-on fluorescence probe, 2-(2'-nitrophenyl)-4(3H)-quinazolinone (NPQ), for the detection of CO. NPQ provided a turn-on fluorescence response to CO and the fluorescence intensity at 500 nm was increased with increasing the concentration of CO. This fluorescence enhancement could be attributed to the conversion of the nitro group of NPQ to an amino group by the reducing ability of CO. The fluorescence assay for CO using NPQ as a reagent was confirmed to have a good linear relationship in the range of 1.0 to 50 µM with an excellent correlation coefficient (r) of 0.997 and good sensitivity down to a limit of detection at 0.73 µM (20 ppb) defined as mean blank+3SD. Finally, we successfully applied NPQ to the preparation of a test paper that can detect CO generated from charcoal combustion.
Collapse
Affiliation(s)
- Akari Tange
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naoya Kishikawa
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yusuke Sakamoto
- School of Pharmaceutical Science, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mahmoud El-Maghrabey
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mitsuhiro Wada
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigakudori, Yamaguchi 756-0884, Japan
| | - Naotaka Kuroda
- Graduate School of Biomedical Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
6
|
Determination of Anthraquinone-Tagged Amines Using High-Performance Liquid Chromatography with Online UV Irradiation and Luminol Chemiluminescence Detection. Molecules 2023; 28:molecules28052146. [PMID: 36903390 PMCID: PMC10003872 DOI: 10.3390/molecules28052146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Quinones are frequently used as derivatization reagents in HPLC analysis to improve detection sensitivity. In the present study, a simple, sensitive, and selective chemiluminescence (CL) derivatization strategy for biogenic amines, prior to their HPLC-CL analysis, was developed. The novel CL derivatization strategy was established based on using anthraquinone-2-carbonyl chloride as derivatizing agent for amines and then using the unique property of the quinones' moiety to generate reactive oxygen species (ROS) in response to UV irradiation. Typical amines such as tryptamine and phenethylamine were derivatized with anthraquinone-2-carbonyl chloride and then injected into an HPLC system equipped with an online photoreactor. The anthraquinone-tagged amines are separated and then UV-irradiated when they pass through a photoreactor to generate ROS from the quinone moiety of the derivative. Tryptamine and phenethylamine can be determined by measuring the chemiluminescence intensity produced by the reaction of the generated ROS with luminol. The chemiluminescence disappears when the photoreactor is turned off, suggesting that ROS are no longer generated from the quinone moiety in the absence of UV irradiation. This result indicates that the generation of ROS could be controlled by turning the photoreactor on and off. Under the optimized conditions, the limits of detection for tryptamine and phenethylamine were 124 and 84 nM, respectively. The developed method is successfully applied to determine the concentrations of tryptamine and phenethylamine in wine samples.
Collapse
|
7
|
A Comparative Study on the Reduction Modes for Quinone to Determine Ubiquinone by HPLC with Luminol Chemiluminescence Detection Based on the Redox Reaction. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010096. [PMID: 36615292 PMCID: PMC9822024 DOI: 10.3390/molecules28010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Ubiquinone (UQ) is considered one of the important biologically active molecules in the human body. Ubiquinone determination in human plasma is important for the investigation of its bioavailability, and also its plasma level is considered an indicator of many illnesses. We have previously developed sensitive and selective chemiluminescence (CL) method for the determination of UQ in human plasma based on its redox cycle with dithiothreitol (DTT) and luminol. However, this method requires an additional pump to deliver DTT as a post-column reagent and has the problems of high DTT consumption and broadening of the UQ peak due to online mixing with DTT. Herein, an HPLC (high-performance liquid chromatography) system equipped with two types of online reduction systems (electrolytic flow cell or platinum catalyst-packed reduction column) that play the role of DTT was constructed to reduce reagent consumption and simplify the system. The newly proposed two methods were carefully optimized and validated, and the analytical performance for UQ determination was compared with that of the conventional DTT method. Among the tested systems, the electrolytic reduction system showed ten times higher sensitivity than the DTT method, with a limit of detection of 3.1 nM. In addition, it showed a better chromatographic performance and the best peak shape with a number of theoretical plates exceeding 6500. Consequently, it was applied to the determination of UQ in healthy human plasma, and it showed good recovery (≥97.9%) and reliable precision (≤6.8%) without any interference from plasma components.
Collapse
|
8
|
Kishikawa N, El-Maghrabey M, Tsubokami A, Hori H, Kuroda N. Development of a Selective Assay of Tyrosine and Its Producing and Metabolizing Enzymes Utilizing Pulse-UV Irradiation-Induced Chemiluminescence. Anal Chem 2022; 94:11529-11537. [PMID: 35938883 DOI: 10.1021/acs.analchem.2c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new pulse UV irradiation-induced chemiluminescence (CL) determination method was developed for l-tyrosine using the luminol derivative L-012. The proposed method depends on the formation of reactive oxygen species (ROS) upon pulse UV irradiation of l-tyrosine; then, these ROS react with L-012 producing strong CL. The proposed method showed excellent sensitivity and ultraselectivity toward l-tyrosine. The mechanism of the developed CL method was studied using ROS scavengers, HPLC, and mass spectrometry. The method was linear for l-tyrosine in the range of 0.03-50 μM. Minor changes in the l-tyrosine structure, including hydroxylation, dehydroxylation, phosphorylation, or decarboxylation, were found to lead to a strong decrease in CL. Using the excellent selectivity of the proposed method for l-tyrosine, we have developed a CL assay for measuring alkaline phosphatase activity in the range of 0.02-15 U/L with the limit of detection (LOD) of 4 mU/L using the nonchemiluminescent O-phospho-l-tyrosine as a substrate. Furthermore, the CL reaction was applied for tyrosinase activity assay as this enzyme can convert l-tyrosine to the nonchemiluminescent l-dopa. The decrease in CL is correlated with the tyrosinase activity in the range of 0.025-0.75 U/mL with an LOD of 1.5 mU/mL. Moreover, the tyrosinase activity assay was successfully applied for the determination of IC50 of the tyrosinase inhibitors kojic acid and benzoic acid. Therefore, our novel pulse UV irradiation CL method for the determination of l-tyrosine was not only suitable for the determination of this vital amino acid but also extended to the successful determination of its producing and metabolizing enzymes and their inhibitors.
Collapse
Affiliation(s)
- Naoya Kishikawa
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mahmoud El-Maghrabey
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35116, Egypt
| | - Ayaka Tsubokami
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hiroki Hori
- School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naotaka Kuroda
- Department of Analytical Chemistry for Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
9
|
A sensitive chemiluminescence detection approach for determination of 2,4-dinitrophenylhydrazine derivatized aldehydes using online UV irradiation - luminol CL reaction. Application to the HPLC analysis of aldehydes in oil samples. Talanta 2021; 233:122522. [PMID: 34215137 DOI: 10.1016/j.talanta.2021.122522] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Aldehydes are toxic carbonyl compounds that are identified in various matrices surrounding us. For instance, aldehydes could be formed during the cooking and frying of foods which affects the food quality and safety. Derivatization is a must for the determination of aldehydes as they lack intrinsic chromophoric groups. 2,4-Dinitrophenyl hydrazine (DNPH) is the most used derivatizing reagent for aldehydes and the formed hydrazones could be determined by either HPLC-UV or LC-MS. However, UV detection is non-sensitive, and the MS equipment is expensive and not widely available. Thus, herein we report a smart chemiluminescence (CL) detection method for the DNPH aldehydes derivatives. These derivatives are supposed to possess photosensitization ability due to the presence of strong chromophoric structures; nitrobenzene and phenyl hydrazone. Upon their UV irradiation, singlet oxygen is found to be produced which then converts the DNPH-aldehyde derivative into hydroperoxide. Next, the hydroperoxide reacts with luminol in an alkaline medium producing a strong CL. An HPLC system with online UV irradiation and online reaction with luminol followed by CL detection was constructed and used for the determination of aldehydes after their derivatization with DNPH. The developed method showed excellent sensitivity with detection limits down to 1.5-18.5 nM. The achieved sensitivity is superior to that obtained by HPLC-UV and LC-MS detection methods for DNPH-aldehydes derivatives. Additionally, our approach is an chemiluminogenic where the DNPH reagent itself does not produce CL which is an excellent advantage. The method was applied successfully for the determination of aldehydes in canola oil samples using simple liquid-liquid extraction showing good recovery (87.0-106.0%), accuracy (87.2-106.6), and precision (RSD≤10.2%). After analysis of fresh and heated oil samples, it was demonstrated that heating of oil, even for short time, strongly elevated the level of their aldehydes' content. At last, it was found that the results of the analysis of aldehydes in oil samples using the proposed method perfectly matched those obtained by a reference LC-MS method.
Collapse
|
10
|
High-temperature liquid chromatography for evaluation of the efficiency of multiwalled carbon nanotubes as nano extraction beds for removal of acidic drugs from wastewater. Greenness profiling and comprehensive kinetics and thermodynamics studies. J Chromatogr A 2021; 1639:461891. [PMID: 33513471 DOI: 10.1016/j.chroma.2021.461891] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The retention behavior of a series of acidic drugs, namely ketoprofen (KET), naproxen (NAP), diclofenac (DIC), and ibuprofen (IBU), on the heat-resisting ZORBAX 300SB-C18 column, was studied thermodynamically using high-temperature liquid chromatography (HTLC). A perfect correlation of the compounds' lipophilicity and the calculated thermodynamic indicators evidenced its contribution to the retention behavior. Besides, the steric fitting has a subsidiary effect on IBU retention. Isocratic HTLC separation of the four compounds was achieved using an aqueous mobile phase containing 30% acetonitrile-0.2% acetic acid-0.2% triethylamine at 60 °C. This method has been utilized to monitor the adsorption efficiency of multiwalled carbon nanotubes (MWCNTs) for the removal of the four NSAIDs from water. Different variables affecting the remediation process have been optimized such as the time of contact, pH, ionic strength, temperature, and the mass of MWCNTs. The kinetics and thermodynamics of the adsorption were investigated. The adsorption was evidenced to take place via pseudo-second-order kinetics and the intraparticle diffusion is the rate-controlling step. The thermodynamic investigation showed that the adsorption process is exothermic and enthalpy-driven, and the adsorption is more extensive at a lower temperature. The MWCNTs showed excellent adsorption efficiency of about 76.4 to 97.6% at the optimum conditions. The obtained results are promising and encouraging for the full-scale application of MWCNTs for remediation of NSAIDs-related water pollution. The green analytical chemistry metric "AGREE" and the analytical eco-scale score tool confirmed that the developed protocol is greener and more favorable to the environment and user than most of the reported literature.
Collapse
|
11
|
Al Shehri ZS, Derayea SM, El-Maghrabey MH, El Hamd MA. A Flavin Derivative-Based Fluorometric Analysis for the Diabetes Mellitus Inducer, Alloxan, for Its Follow-up in Flour and Flour-Derived Food. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01890-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Development of HPLC method for estimation of glyoxylic acid after pre-column fluorescence derivatization approach based on thiazine derivative formation: A new application in healthy and cardiovascular patients’ sera. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1143:122054. [DOI: 10.1016/j.jchromb.2020.122054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/22/2022]
|
13
|
Wu P, Givskov M, Nielsen TE. Reactivity and Synthetic Applications of Multicomponent Petasis Reactions. Chem Rev 2019; 119:11245-11290. [PMID: 31454230 PMCID: PMC6813545 DOI: 10.1021/acs.chemrev.9b00214] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The Petasis boron-Mannich reaction, simply referred to as the Petasis reaction, is a powerful multicomponent coupling reaction of a boronic acid, an amine, and a carbonyl derivative. Highly functionalized amines with multiple stereogenic centers can be efficiently accessed via the Petasis reaction with high levels of both diastereoselectivity and enantioselectivity. By drawing attention to examples reported in the past 8 years, this Review demonstrates the breadth of the reactivity and synthetic applications of Petasis reactions in several frontiers: the expansion of the substrate scope in the classic three-component process; nonclassic Petasis reactions with additional components; Petasis-type reactions with noncanonical substrates, mechanism, and products; new asymmetric versions assisted by chiral catalysts; combinations with a secondary or tertiary transformation in a cascade- or sequence-specific manner to access structurally complex, natural-product-like heterocycles; and the synthesis of polyhydroxy alkaloids and biologically interesting molecules.
Collapse
Affiliation(s)
- Peng Wu
- Chemical
Genomics Center of the Max Planck Society, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Medicine and Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Copenhagen DK-2100, Denmark
| | - Michael Givskov
- Costerton
Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen DK-2200, Denmark
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Thomas E. Nielsen
- Costerton
Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen DK-2200, Denmark
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
14
|
Kishikawa N, El-Maghrabey MH, Kuroda N. Chromatographic methods and sample pretreatment techniques for aldehydes determination in biological, food, and environmental samples. J Pharm Biomed Anal 2019; 175:112782. [DOI: 10.1016/j.jpba.2019.112782] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/26/2022]
|
15
|
Wang M, Cai X, Yang J, Wang C, Tong L, Xiao J, Li L. A Targeted and pH-Responsive Bortezomib Nanomedicine in the Treatment of Metastatic Bone Tumors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41003-41011. [PMID: 30403331 DOI: 10.1021/acsami.8b07527] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bortezomib is a boronate proteasome inhibitor widely used as an efficient anticancer drug; however, the clinical use of bortezomib is hampered by its adverse effects such as hematotoxicity and peripheral neuropathy, and low efficacy on solid tumors due to unfavorable pharmacokinetics and poor penetration in the solid tumors. In this study, we developed a tripeptide Arg-Gly-Asp (RGD)-targeted dendrimer conjugated with catechol and poly(ethylene glycol) groups for the targeted delivery of bortezomib to metastatic bone tumors. Bortezomib was loaded on the dendrimer via a boronate-catechol linkage with pH-responsive property, which plays an essential role in the control of bortezomib loading and release. The nontargeted bortezomib nanomedicine showed minimal cytotoxicity at pH 7.4, but significantly increased anticancer activity when cyclic RGD (cRGD) moieties were anchored on the dendrimer surface. The ligand cRGD enabled efficient internalization of the bortezomib complex by breast cancer cells such as MDA-MB-231 cells. The targeted nanomedicine efficiently depressed the progression of metastatic bone tumors and significantly inhibited the tumor-associated osteolysis in a model of bone tumors. This study provided an insight into the development of nanomedicine for metastatic bone tumors.
Collapse
Affiliation(s)
- Mingming Wang
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai 200241 , P. R. China
| | - Xiaopan Cai
- Department of Orthopedic Oncology , Changzheng Hospital , Shanghai 200003 , P. R. China
| | - Jian Yang
- Department of Orthopedic Oncology , Changzheng Hospital , Shanghai 200003 , P. R. China
| | - Changping Wang
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai 200241 , P. R. China
| | - Lu Tong
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai 200241 , P. R. China
| | - Jianru Xiao
- Department of Orthopedic Oncology , Changzheng Hospital , Shanghai 200003 , P. R. China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology , East China Normal University , Shanghai 200241 , P. R. China
| |
Collapse
|
16
|
El-Maghrabey M, Kishikawa N, Kuroda N. Novel Isotope-Coded Derivatization Method for Aldehydes Using 14N/15N-Ammonium Acetate and 9,10-Phenanthrenequinone. Anal Chem 2018; 90:13867-13875. [DOI: 10.1021/acs.analchem.8b02458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahmoud El-Maghrabey
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Naoya Kishikawa
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naotaka Kuroda
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
17
|
Affiliation(s)
- Naoya KISHIKAWA
- Course of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
18
|
Yang R, Cheng W, Chen X, Qian Q, Zhang Q, Pan Y, Duan P, Miao P. Color Space Transformation-Based Smartphone Algorithm for Colorimetric Urinalysis. ACS OMEGA 2018; 3:12141-12146. [PMID: 30320290 PMCID: PMC6175489 DOI: 10.1021/acsomega.8b01270] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/13/2018] [Indexed: 05/21/2023]
Abstract
Urine strips are widely applied for rapid analysis of various indexes of urine for clinical examinations. The tests mainly rely on the application of a urine analyzer, which suffers several drawbacks and cannot meet the requirements of point-of-care testing (POCT). The integration of a smartphone with a biosensor has recently attracted great attention. We herein propose a human vision-based smartphone algorithm for colorimetric analysis of various urine indexes. A CIEDE2000 formula in CIELab color space is applied for the evaluation of color difference, which may greatly improve the analytical performances of urine strips. The proposed algorithm also possesses merits such as good accuracy, quantitative analysis, and limited calculation task, which is suitable for the application with smartphone platform. Experimental results demonstrate that the proposed method shows excellent reliability compared with the urine analyzer and some other algorithms. In addition, human real samples are successfully analyzed with excellent accuracy. Therefore, this work provides a convenient colorimetric tool for POCT urine analysis.
Collapse
Affiliation(s)
- Renbing Yang
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P. R. China
| | - Wenbo Cheng
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P. R. China
- State
Key Lab of Optical Technologies on Nano-Fabrication and Micro-Engineering,
Institute of Optics and Electronics, Chinese
Academy of Sciences, Chengdu 610209, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- E-mail: (W.C.)
| | - Xifeng Chen
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P. R. China
- Tianjin
Guoke Jiaye Medical Technology Development Co., LTD, Tianjin 300399, P. R. China
| | - Qin Qian
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P. R. China
| | - Qiang Zhang
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P. R. China
| | - Yujun Pan
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P. R. China
| | - Peng Duan
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P. R. China
| | - Peng Miao
- CAS
Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, P. R. China
- E-mail: . Phone: +86-512-69588279 (P.M.)
| |
Collapse
|