1
|
Ji Y, Wang R, Zhao H. Toward Sensitive and Reliable Immunoassays of Marine Biotoxins: From Rational Design to Food Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16076-16094. [PMID: 39010820 DOI: 10.1021/acs.jafc.4c01865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Marine biotoxins are metabolites produced by algae that can accumulate in shellfish or fish and enter organisms through the food chain, posing a serious threat to biological health. Therefore, accurate and rapid detection is an urgent requirement for food safety. Although various detection methods, including the mouse bioassay, liquid chromatography-mass spectrometry, and cell detection methods, and protein phosphatase inhibition assays have been developed in the past decades, the current detection methods cannot fully meet these demands. Among these methods, the outstanding immunoassay virtues of high sensitivity, reliability, and low cost are highly advantageous for marine biotoxin detection in complex samples. In this work, we review the recent 5-year progress in marine biotoxin immunodetection technologies such as optical immunoassays, electrochemical immunoassays, and piezoelectric immunoassays. With the assistance of immunoassays, the detection of food-related marine biotoxins can be implemented for ensuring public health and preventing food poisoning. In addition, the immunodetection technique platforms including lateral flow chips and microfluidic chips are also discussed. We carefully investigate the advantages and disadvantages for each immunoassay, which are compared to demonstrate the guidance for selecting appropriate immunoassays and platforms for the detection of marine biotoxins. It is expected that this review will provide insights for the further development of immunoassays and promote the rapid progress and successful translation of advanced immunoassays with food safety detection.
Collapse
Affiliation(s)
- Yuxiang Ji
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resources Utilization in South China Sea and Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Cao T, Li S, Wang X, Sun Y, Luo C. A novel target-triggered signal chemiluminescence kit for thrombin detection based on fusiform Au/MIL-53(Fe). Talanta 2024; 267:125144. [PMID: 37699268 DOI: 10.1016/j.talanta.2023.125144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/24/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
In this work, a fusiform Au/MIL-53(Fe) catalyst was used to construct a chemiluminescence (CL) kit for the sensitive and rapid detection of thrombin (THR). The porous silica microspheres encapsulated with luminol in holes by thrombin aptamer (THR-APT/Luminol/SPSiO2) and the fusiform Au/MIL-53(Fe) modified with thrombin aptamer complementary chains (Au/MIL-53(Fe)-SSDNA) were prepared. Then, a CL kit for THR detection was constructed by using the prepared composites. When thrombin is added to the reaction system, it binds to its aptamer (THR-APT) to open the holes of SPSiO2, which cause luminol and Au/MIL-53(Fe) release. Released luminol enters the detection system and triggers the reaction of luminol-H2O2-NaOH with the catalyst of Au/MIL-53(Fe), and produces a CL signal. The detection limit and the linear range of the kit were 4.7 × 10-15 M and 1.5 × 10-14 - 3.5 × 10-10 M, respectively. The CL kit also showed high stability, selectivity and reproducibility, and was successfully applied to the determination of THR in serum samples. Therefore, the proposed method for detecting THR has great application potential in the diagnosis of blood-related disease markers.
Collapse
Affiliation(s)
- Tianzi Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Shurui Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yuanling Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Chuannan Luo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
3
|
Zhang C, Belwal T, Luo Z, Su B, Lin X. Application of Nanomaterials in Isothermal Nucleic Acid Amplification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102711. [PMID: 34626064 DOI: 10.1002/smll.202102711] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/29/2021] [Indexed: 05/26/2023]
Abstract
Because of high sensitivity and specificity, isothermal nucleic acid amplification are widely applied in many fields. To facilitate and improve their performance, various nanomaterials, like nanoparticles, nanowires, nanosheets, nanotubes, and nanoporous films are introduced in isothermal nucleic acid amplification. However, the specific application, roles, and prospect of nanomaterials in isothermal nucleic acid amplification have not been comprehensively reviewed. Here, the application of different nanomaterials (0D, 1D, 2D, and 3D) in isothermal nucleic acid amplification is comprehensively discussed and recent progress in the field is summarized. The nanomaterials are mainly used for reaction enhancer, signal generation/amplification, or surface loading carriers. In addition, 3D nanomaterials can be also functioned as isolated chambers for digital nucleic acid amplification and the tools for DNA sequencing of amplified products. Challenges and future recommendations are also proposed to be better used for recent covid-19 detection, point-of-care diagnostic, food safety, and other fields.
Collapse
Affiliation(s)
- Chao Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
4
|
Cao Y, Ma C, Zhu JJ. DNA Technology-assisted Signal Amplification Strategies in Electrochemiluminescence Bioanalysis. JOURNAL OF ANALYSIS AND TESTING 2021. [DOI: 10.1007/s41664-021-00175-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Al-Madhagi S, O'Sullivan CK, Prodromidis MI, Katakis I. Combination of ferrocene decorated gold nanoparticles and engineered primers for the direct reagentless determination of isothermally amplified DNA. Mikrochim Acta 2021; 188:117. [PMID: 33687553 DOI: 10.1007/s00604-021-04771-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 11/30/2022]
Abstract
A reagent-less DNA sensor has been developed exploiting a combination of gold nanoparticles, modified primers, and isothermal amplification. It is applied to the determination ofKarlodinium armiger, a toxic microalgae, as a model analyte to demonstrate this generic platform. Colloidal gold nanoparticles with an average diameter of 14 ± 0.87 nm were modified with a mixed self-assembled monolayer of thiolated 33-mer DNA probes and (6-mercaptohexyl) ferrocene. Modified primers, exploiting a C3 spacer between the primer-binding site and an engineered single-stranded tail, were used in an isothermal recombinase polymerase amplification reaction to produce an amplicon by two single-stranded tails. These tails were designed to be complementary to a gold electrode tethered capture oligo probe, and an oligo probe immobilized on the gold nanoparticles, respectively. The time required for hybridization of the target tailed DNA with the surface immobilized probe and reporter probe immobilized on AuNPs was optimized and reduced to 10 min, in both cases. Amplification time was further optimized to be 40 min to ensure the maximum signal. Under optimal conditions, the limit of detection was found to be 1.6 fM of target dsDNA. Finally, the developed biosensor was successfully applied to the detection of genomic DNA extracted from a seawater sample that had been spiked with K. armiger cells. The demonstrated generic electrochemical genosensor can be exploited for the detection of any DNA sequence and ongoing work is moving towards an integrated system for use at the point-of-need.
Collapse
Affiliation(s)
- Sallam Al-Madhagi
- Interfibio Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain
| | - Ciara K O'Sullivan
- Interfibio Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain. .,Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| | | | - Ioanis Katakis
- Interfibio Research Group, Department of Chemical Engineering, Universitat Rovira i Virgili, Avinguda Països Catalans 26, 43007, Tarragona, Spain.
| |
Collapse
|
6
|
Ge J, Chen X, Yang J, Wang Y. Progress in electrochemiluminescence of nanoclusters: how to improve the quantum yield of nanoclusters. Analyst 2021; 146:803-815. [DOI: 10.1039/d0an02110e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Classification of nanoclusters and methods to improve their quantum yield and applications.
Collapse
Affiliation(s)
- Junjun Ge
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Xufeng Chen
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Jinling Yang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| | - Yuanyuan Wang
- State Key Laboratory of Coordination Chemistry
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
- China
| |
Collapse
|
7
|
Ouyang J, Zhan X, Guo S, Cai S, Lei J, Zeng S, Yu L. Progress and trends on the analysis of nucleic acid and its modification. J Pharm Biomed Anal 2020; 191:113589. [DOI: 10.1016/j.jpba.2020.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
|
8
|
Qiao LL, Yao WJ, Zhang ZQ, Yang X, Zhao MX. The Biological Activity Research of the Nano-Drugs Based on 5-Fluorouracil-Modified Quantum Dots. Int J Nanomedicine 2020; 15:2765-2776. [PMID: 32425520 PMCID: PMC7186888 DOI: 10.2147/ijn.s244693] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Over the past decades, quantum dots (QDs) have shown the broad application in diverse fields, especially in intracellular probing and drug delivery, due to their high fluorescence intensity, long fluorescence lifetime, strong light-resistant bleaching ability, and strong light stability. Therefore, we explore a kind of therapeutic potential against cancer with fluorescent imaging. METHODS In the current study, a new type of QDs (QDs@L-Cys-TAEA-5-FUA) capped with L-cysteine (L-Cys) and tris(2-aminoethyl)amine (TAEA) ligands, and conjugated with 5-fluorouracil-1-acetic acid (5-FUA) has been synthesized. Ligands were characterized by electrospray ionization mass spectrometry and H-nuclear magnetic resonance (1H NMR) spectroscopy. The modified QDs were characterized by transmission electron microscopy, ultraviolet and visible spectrophotometry (UV-Vis), and fluorescence microscopy. And the biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-7721 HepG2, and QSG-7701 cells. The fluorescence imaging of modified QDs was obtained by fluorescence microscope. RESULTS The modified QDs are of controllable sizes in the range of 4-5 nm and they possess strong optical emission properties. UV-Vis and fluorescence spectra demonstrated that the L-Cys-TAEA-5-FUA was successfully incorporated into QD nanoparticles. The MTT results demonstrated that L-Cys-TAEA-5-FUA modified QDs could efficiently inhibit the proliferation of cancer cells as compared to the normal cells, illustrating their antitumor efficacy. The mechanistic studies revealed that the effective internalization of modified QDs inside cancer cells could inhibit their proliferation, through excessive production of intracellular reactive oxygen species, leading to apoptosis process. CONCLUSION The present study suggests that modified QDs can enter cells efficiently and could be employed as therapeutic agents for the treatment of various types of cancers with fluorescent imaging.
Collapse
Affiliation(s)
- Lu-Lu Qiao
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| | - Wen-Jing Yao
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| | - Zhi-Qiang Zhang
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune Engineering of Henan Province, Henan University, Kaifeng475004, People’s Republic of China
| |
Collapse
|
9
|
Zhang ZQ, Yao WJ, Qiao LL, Yang X, Shi J, Zhao MX. A Lysosome-Targetable Fluorescence Probe Based on L-Cysteine-Polyamine-Morpholine-Modified Quantum Dots for Imaging in Living Cells. Int J Nanomedicine 2020; 15:1611-1622. [PMID: 32210555 PMCID: PMC7069590 DOI: 10.2147/ijn.s234927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Quantum dots (QDs) are used as fluorescent probes due to their high fluorescence intensity, longevity of fluorescence, strong light-resistant bleaching ability and high light stability. Therefore, we explore a more precise probe that can target an organelle. METHODS In the current study, a new class of fluorescence probes were developed using QDs capped with 4 different L-cysteine-polyamine-morpholine linked by mercapto groups. Ligands were characterised by Electrospray ionization mass spectrometry (ESI-MS), H-Nuclear Magnetic Resonance (1H NMR) spectroscopy, and 13C NMR spectroscopy. Modified QDs were characterized by Transmission Electron Microscope (TEM), Ultraviolet and visible spectrophotometry (UV-Vis), and fluorescence microscopy. And the biological activity of modified QDs was explored by using MTT assay with HeLa, SMMC-7721 and HepG2 cells. The fluorescence imaging of modified QDs was obtained by confocal laser scanning fluorescence microscopy (CLSM). RESULTS Synthesized QDs ranged between 4 to 5 nm and had strong optical emission properties. UV-Vis and fluorescence spectra demonstrated that the cysteine-polyamine-morpholine were successfully incorporated into QD nanoparticles. The MTT results demonstrated that modified QDs had lesser cytotoxicity when compared to unmodified QDs. In addition, modified QDs had strong fluorescence intensity in HeLa cells and targeted lysosomes of HeLa cells. CONCLUSION This study demonstrates the modified QDs efficiently entered cells and could be used as a potential lysosome-targeting fluorescent probe.
Collapse
Affiliation(s)
- Zhi-Qiang Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Wen-Jing Yao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Lu-Lu Qiao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng475004, People’s Republic of China
| |
Collapse
|
10
|
Zhou Y, He J, Zhang C, Li J, Fu X, Mao W, Li W, Yu C. Novel Ce(III)-Metal Organic Framework with a Luminescent Property To Fabricate an Electrochemiluminescence Immunosensor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:338-346. [PMID: 31794188 DOI: 10.1021/acsami.9b19246] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We designed a novel luminescent metal-organic framework (MOF) named Ce-TCPP-LMOF (CTM) through a simple one-pot solvothermal method. CTM was synthesized by using the emerging electrochemiluminescent (ECL) material (4,4',4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) as the organic ligand and Ce(III) as the metal node. We found that CTM not only has the remarkable ability to emit light but also has a uniform "sandwich biscuit" shape and suitable nanoscale size, which are promising for further applications. We also applied CTM to construct a novel ECL immunosensor and achieve sensitive detection of the proprotein convertase subtilisin/kexin type 9 (PCSK9), a biomarker related to cardiovascular diseases. To further amplify the ECL signal of CTM, a novel dual-amplified signal strategy was established by inducing a polyamidoamine dendrimer (PAMAM) and gold nanoparticles (AuNPs). Importantly, we first proved that the ECL signal of the CTM/S2O82- system could be enhanced by the PAMAM electric field. As the electron transfer rate was accelerated by the AuNP layer, this ECL signal was further enhanced in AuNP-modified electrodes. The ECL immunosensor showed desirable performance for PCSK9 analysis within a detection range of 50 fg mL-1 to 10 ng mL-1 and a low limit of detection of 19.12 ± 2.69 fg mL-1. Real sample detection suggested that the immunosensor holds great potential for analyzing clinical serum samples.
Collapse
Affiliation(s)
| | | | - Chengli Zhang
- The First People's Hospital of Zigong , Zigong , Sichuan 643000 , PR China
| | | | | | | | - Wenming Li
- University-Town Hospital of Chongqing Medical University , Chongqing 400016 , P. R. China
| | | |
Collapse
|
11
|
Wu T, Liu X, Liu Y, Cheng M, Liu Z, Zeng G, Shao B, Liang Q, Zhang W, He Q, Zhang W. Application of QD-MOF composites for photocatalysis: Energy production and environmental remediation. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213097] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
A "signal-on" chemiluminescence biosensor for thrombin detection based on DNA functionalized magnetic sodium alginate hydrogel and metalloporphyrinic metal-organic framework nanosheets. Talanta 2019; 207:120300. [PMID: 31594586 DOI: 10.1016/j.talanta.2019.120300] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
A "signal-on" chemiluminescence biosensor was established for detecting thrombin. The thrombin aptamer1-functionalized magnetic sodium alginate (Malg-Apt1) hydrogel was synthesized by physical interaction between sodium alginate and Ca2+, and it was used in the biosensor for separating and enriching thrombin. Ethylenediamine tetraacetic acid (EDTA) was used to chelate with Ca2+ to dissolve the hydrogel and release thrombin. A metalloporphyrinic metal-organic framework nanosheet, named as Cu-TCPP(Co) MOFs, was prepared as signal amplification strategy. Cu-TCPP(Co) MOFs/Au-ssDNA (ssDNA: single-strand DNA) was synthesized for controllable further amplification of chemiluminescent signal. The thrombin aptamer2-functionalized magnetic carbon nanotubes (MCNTs-Apt2) were used as a matrix, and Cu-TCPP(Co) MOFs/Au-ssDNA was adsorbed on the MCNTs by the complementary pairing of the partial bases between ssDNA and Apt2. Compared with ssDNA, Apt2 has a stronger interaction with thrombin. Therefore, thrombin can trigger the release of Cu-TCPP(Co) MOFs/Au-ssDNA to achieve signal amplification. Under the optimal conditions, the biosensor could detect thrombin as low as 2.178 × 10-13 mol/L with the range from 8.934 × 10-13 to 5.956 × 10-10 mol/L and exhibited excellent selectively. Moreover, the "signal-on" chemiluminescence biosensor showed potential application for the detection of thrombin in body fluids.
Collapse
|