1
|
Liao X, Lu C, Duan Y, Ren C, Chen H. Preparation of D-NCCDs and its application in fluorescent/colorimetric dual-mode discrimination of glutamine enantiomers. Mikrochim Acta 2024; 191:704. [PMID: 39467880 DOI: 10.1007/s00604-024-06788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
A new type of carbon dots (D-NCCDs) was synthesized by 3, 5-diaminobenzoic acid, N,N-dimethyl-o-phenylenediamine, and D-cysteine. The morphology and structure of D-NCCDs were investigated by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and FT-IR spectra, and the chirality was characterized by circular dichroism. In the presence of hydrogen peroxide, the fluorescence of D-NCCDs at 487 nm (λex = 410 nm) showed great discrimination ability towards glutamine enantiomers. The ratio of fluorescence intensity (F/F0) to the concentration of D-Gln showed good linearity in the range 0.5-10 mM, with a detection limits of 0.11 mM. Meanwhile, the color of the solution gradually changed from light yellow to yellow-brown. The UV-Vis absorption ratio (A/A0) at 410 nm showed good linearity with the concentration of D-Gln in the range 0.5 to 20 mM; the detection limit is 7.7 μM. But the fluorescence and absorbance of D-NCCDs showed no significant change after the addition of L-glutamine. Thus, fluorescence and colorimetry dual-mode discrimination of glutamine enantiomers was achieved. The fluorescence enantioselectivity of Gln (FL-Gln/FD-Gln) is 1.62, and the colorimetric enantioselectivity of Gln (AD-Gln/AL-Gln) is 2.14. The chiral discrimination mechanism of D-NCCDs to Gln enantiomers was also investigated systematically. This work not only can discriminate glutamine enantiomers with high sensitivity and convenience, but also offers a new strategy for preparing new dual mode chiral nanoprobes.
Collapse
Affiliation(s)
- Xuan Liao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Cancan Lu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yaning Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Cuiling Ren
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Hongli Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
2
|
Shykholeslami A, Ghavami R, Rasouli Z. Nanosized quantum dots-wrapped metallic particles ensembles integrated into filter disc-based analytical device for garlic evaluation. Application to monitor fake pickled garlic in balsamic vinegar. Food Chem 2024; 437:137809. [PMID: 37866344 DOI: 10.1016/j.foodchem.2023.137809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Herein, an affordable and simple analytical device is presented to portable identify of garlic in 30 min; the evaluation needs no pre-treatment of sample. The analytical device fabrication was did employing a headspace-based nanosensor array using of inexpensive materials as commercial filter discs, quantum dots (QDs), and metallic nanoparticles (MNPs). The nanoarray is fabricated by the accumulation QDs on MNPs surface, that results in the production of ensembles of QDs/MNPs. The ensembles generate diverse colorimetric profiles as "fingerprints" regarding to each garlic sample. The volatile organosulfur compounds (OSCs) of garlic can prefer binding to the MNPs comparing with QDs. The color profiles can be displayed with a smartphone camera, which can be quantitatively distinguished by chemometrics approaches. The analytical device was used to assessment of fake pickled samples in balsamic vinegar. This device proves well potential for qualitative control of garlic.
Collapse
Affiliation(s)
- Ailin Shykholeslami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, P. O. Box 416, Sanandaj 66177-15175, Iran
| | - Raouf Ghavami
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, P. O. Box 416, Sanandaj 66177-15175, Iran.
| | - Zolaikha Rasouli
- Chemometrics Laboratory, Department of Chemistry, Faculty of Science, University of Kurdistan, P. O. Box 416, Sanandaj 66177-15175, Iran.
| |
Collapse
|
3
|
Zhou Y, Bai T, Duan Y. Chiral mesostructured NiFe 2O 4 films with chirality induced spin selectivity. Chem Commun (Camb) 2023; 59:13207-13210. [PMID: 37853755 DOI: 10.1039/d3cc03183g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Chiral mesostructured NiFe2O4 films (CMNFFs) were synthesized using L-/D-tyrosine as symmetry-breaking and structure-directing agents through a hydrothermal method. For the first time, chirality induced spin selectivity was directly observed in these ferrimagnetic materials using chirality-dependent magnetic-tip conducting atomic force microscopy (mc-AFM).
Collapse
Affiliation(s)
- Yiping Zhou
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Te Bai
- Wuxi Vocational College of Science and Technology, 8 Xinxi Road, Wuxi, 214028, P. R. China
| | - Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| |
Collapse
|
4
|
Wei P, Li Z, E Y, Jiang Y, Chen P, Li L, Krenzel TF, Qian K. Trace identification of cysteine enantiomers based on an electrochemical sensor assembled from Cu xS@SOD zeolite. Biosens Bioelectron 2023; 239:115631. [PMID: 37639886 DOI: 10.1016/j.bios.2023.115631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The nonchiral sensor concept based on a sodalite (SOD) zeolite loaded CuxS (CuxS@SOD) catalyst is proposed as a sensing platform for chiral cysteine (Cys) determination. Chiral Cys is analyzed by the difference of binding capacity between CuxS catalysts. The observed current in amperometric i-t curve (A i-t C) is always positive for the L-cysteine (L-Cys), while it is negative for the D-cysteine (D-Cys). Under differential pulse voltammetry (DPV) method, the characteristic current peak for the CuxS@SOD moves to right (positive potential position) with the addition of L-Cys while it moves to left (negative potential direction) with the addition of D-Cys, respectively. Cyclic voltammetry (CV) is consistent with DPV and discusses the diffusion control mechanism. In this work, the ultra-trace determination of cysteine enantiomers reaches the limit of detection (LOD) of 0.70 fM and 0.60 fM by the highly efficient CuxS catalyst restrained in the nanosized SOD zeolite cages of the opening window pores, respectively. The sensor opens up a novel potential prospect for achiral composite in the field of chiral recognition through electrochemical methods with extra-low concentration.
Collapse
Affiliation(s)
- Pengyan Wei
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Zhuozhe Li
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Yifeng E
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Yuying Jiang
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Peng Chen
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Li Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry in Jilin University, Changchun, 130012, PR China.
| | - Thomas F Krenzel
- Materials Engineering, Faculty Technology and Bionics, Rhine-Waal University of Applied Sciences, Kleve D-47533, Germany.
| | - Kun Qian
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| |
Collapse
|
5
|
Susanti, Riswoko A, Laksmono JA, Widiyarti G, Hermawan D. Surface modified nanoparticles and their applications for enantioselective detection, analysis, and separation of various chiral compounds. RSC Adv 2023; 13:18070-18089. [PMID: 37323439 PMCID: PMC10267673 DOI: 10.1039/d3ra02399k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
The development of efficient enantioselective detection, analysis, and separation relies significantly on molecular interaction. In the scale of molecular interaction, nanomaterials have a significant influence on the performance of enantioselective recognitions. The use of nanomaterials for enantioselective recognition involved synthesizing new materials and immobilization techniques to produce various surface-modified nanoparticles that are either encapsulated or attached to surfaces, as well as layers and coatings. The combination of surface-modified nanomaterials and chiral selectors can improve enantioselective recognition. This review aims to offer engagement insights into the production and application of surface-modified nanomaterials to achieve sensitive and selective detection, better chiral analysis, and separation of numerous chiral compounds.
Collapse
Affiliation(s)
- Susanti
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN) KST BJ. Habibie, Kawasan Puspiptek Building 460 Tangerang Selatan 15314 Indonesia
| | - Asep Riswoko
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN) KST BJ. Habibie, Kawasan Puspiptek Building 460 Tangerang Selatan 15314 Indonesia
| | - Joddy Arya Laksmono
- Research Center for Polymer Technology - National Research and Innovation Agency (BRIN) KST BJ. Habibie, Kawasan Puspiptek Building 460 Tangerang Selatan 15314 Indonesia
| | - Galuh Widiyarti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine - National Research and Innovation Agency (BRIN) KST BJ Habibie, Kawasan Puspiptek Building 452 Tangerang Selatan 15314 Indonesia
| | - Dadan Hermawan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Jenderal Soedirman University (UNSOED) Indonesia
| |
Collapse
|
6
|
Silver-Based Surface Plasmon Sensors: Fabrication and Applications. Int J Mol Sci 2023; 24:ijms24044142. [PMID: 36835553 PMCID: PMC9963732 DOI: 10.3390/ijms24044142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
A series of novel phenomena such as optical nonlinear enhancement effect, transmission enhancement, orientation effect, high sensitivity to refractive index, negative refraction and dynamic regulation of low threshold can be generated by the control of surface plasmon (SP) with metal micro-nano structure and metal/material composite structure. The application of SP in nano-photonics, super-resolution imaging, energy, sensor detection, life science, and other fields shows an important prospect. Silver nanoparticles are one of the commonly used metal materials for SP because of their high sensitivity to refractive index change, convenient synthesis, and high controllable degree of shape and size. In this review, the basic concept, fabrication, and applications of silver-based surface plasmon sensors are summarized.
Collapse
|
7
|
Scroccarello A, Della Pelle F, Del Carlo M, Compagnone D. Optical plasmonic sensing based on nanomaterials integrated in solid supports. A critical review. Anal Chim Acta 2022; 1237:340594. [DOI: 10.1016/j.aca.2022.340594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
8
|
Gumus E, Bingol H, Zor E. Nanomaterials-enriched sensors for detection of chiral pharmaceuticals. J Pharm Biomed Anal 2022; 221:115031. [PMID: 36115205 DOI: 10.1016/j.jpba.2022.115031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022]
Abstract
Advancements in nanoscience and nanotechnology have opened new pathways to fabricate novel nanostructures with interesting properties that would be used for different applications. In this respect, nanostructures comprising chirality are one of the most rapidly developing research fields encompassing chemistry, physics and biology. Chirality, also known as mirror asymmetry, describes the geometrical property of an object that is not superimposable on its mirror image. This characteristic plays a crucial role because these identical forms of chiral species in pharmaceuticals or food additives may exhibit different effects on living organisms. Therefore, chiral analysis is an important field of modern chemical analysis in health-related industries that are reliant on the production of enantiomeric compounds involving pharmaceuticals. This review covers the recent advances dealing with the synthesis, design and advantageous analytical performance of nanomaterials-enriched sensors used for chiral pharmaceuticals. We conclude this review with the challenges existing in this research field and our perspectives on some potential strategies with cutting-edge approaches for the rational design of sensors for chiral pharmaceuticals. We expect this comprehensive review will inspire future studies in nanomaterials-enriched chiral sensors.
Collapse
Affiliation(s)
- Eda Gumus
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey
| | - Haluk Bingol
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Chemistry Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey
| | - Erhan Zor
- Biomaterials and Biotechnology Laboratory, Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, 42140 Konya, Turkey; Department of Science Education, A.K. Education Faculty, Necmettin Erbakan University, 42090 Konya, Turkey.
| |
Collapse
|
9
|
Maiti P, Saren U, Chakraborty U, Singha T, Paul S, Paul PK. Comparative and Selective Interaction of Amino Acid d-Cysteine with Colloidal Gold Nanoparticles in the Presence of a Fluorescent Probe in Aqueous Medium. ACS OMEGA 2022; 7:29013-29026. [PMID: 36033694 PMCID: PMC9404198 DOI: 10.1021/acsomega.2c02725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/01/2022] [Indexed: 05/20/2023]
Abstract
In this communication, we report the comparative and selective interaction of amino acid d-cysteine (d-Cys) with citrate caped gold nanoparticles (Au NPs) in the presence of a fluorescent dye, rhodamine B (RhB), in aqueous solution. Au NPs of size 27.5 nm could almost fully quench the steady-state fluorescence emission of RhB at their optimum concentrations in the mixed solution. The interactions of d-Cys, l-Cys, all other relevant d- and l-amino acids, neurotransmitters, and other relevant biological compounds with the Au NPs/RhB mixed solution have been explored by monitoring the fluorescence recovery efficiencies from the almost fully quenched state of RhB fluorescence via a simple steady-state spectrofluorometric method. The higher fluorescence recovery for the interaction of d-Cys with the Au NPs/RhB mixed system is accompanied by a distinct color change (red-wine to bluish-black) of the assay medium after the reaction compared to that of all other interfering compounds considered in this work. The sensitivity of this fluorometric response lies in a broad linear range of concentrations of d-Cys and the limit of detection (LOD) is found to be 4.2 nM, which is low compared to many other methods available in the literature. The different degrees of interaction of d-Cys and l-Cys with the Au NPs/RhB mixed sample have been further explored by circular dichroism (CD) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The selective interaction of d-Cys with the proposed Au NPs/RhB mixed system is also found to be correlated with interparticle cross-linking and aggregations of nanoparticles by the analysis of ζ potential and dynamic light scattering (DLS) study, transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-vis absorption spectroscopy etc. The proposed interaction mechanism is further studied with a normal human urine sample to elucidate that the optimized combination of Au NPs and RhB may be realized as an efficient platform for detection of the amino acid d-Cys in a real biosample via a simple fluorometric approach.
Collapse
Affiliation(s)
- Pradip Maiti
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Ujjal Saren
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Utsav Chakraborty
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Tanmoy Singha
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Sharmistha Paul
- West
Bengal State Council of Science and Technology, Department of Science and Technology and Biotechnology, Vigyan Chetana Bhavan, Sector-I, Salt Lake, Kolkata 700064, India
| | - Pabitra Kumar Paul
- Department
of Physics, Jadavpur University, Jadavpur, Kolkata 700032, India
- , . Phone: +91-9477631142 (M), +91-33-24138917 (O). Fax:
+91-33-24138917 (O)
| |
Collapse
|
10
|
Jaffar SS, Saallah S, Misson M, Siddiquee S, Roslan J, Saalah S, Lenggoro W. Recent Development and Environmental Applications of Nanocellulose-Based Membranes. MEMBRANES 2022; 12:287. [PMID: 35323762 PMCID: PMC8950644 DOI: 10.3390/membranes12030287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022]
Abstract
Extensive research and development in the production of nanocellulose production, a green, bio-based, and renewable biomaterial has paved the way for the development of advanced functional materials for a multitude of applications. From a membrane technology perspective, the exceptional mechanical strength, high crystallinity, tunable surface chemistry, and anti-fouling behavior of nanocellulose, manifested from its structural and nanodimensional properties are particularly attractive. Thus, an opportunity has emerged to exploit these features to develop nanocellulose-based membranes for environmental applications. This review provides insights into the prospect of nanocellulose as a matrix or as an additive to enhance membrane performance in water filtration, environmental remediation, and the development of pollutant sensors and energy devices, focusing on the most recent progress from 2017 to 2022. A brief overview of the strategies to tailor the nanocellulose surface chemistry for the effective removal of specific pollutants and nanocellulose-based membrane fabrication approaches are also presented. The major challenges and future directions associated with the environmental applications of nanocellulose-based membranes are put into perspective, with primary emphasis on advanced multifunctional membranes.
Collapse
Affiliation(s)
- Syafiqah Syazwani Jaffar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Mailin Misson
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (S.S.J.); (M.M.); (S.S.)
| | - Jumardi Roslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Sariah Saalah
- Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Wuled Lenggoro
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan;
| |
Collapse
|
11
|
Trends in on-site removal, treatment, and sensitive assay of common pharmaceuticals in surface waters. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
Shili Q, Yangyang S, Xudong H, Hongtao C, Lidi G, Zhongyu H, Dongsheng Z, Xinyao L, Sibing Z. Chiral fluorescence recognition of glutamine enantiomers by a modified Zr-based MOF based on solvent-assisted ligand incorporation. RSC Adv 2021; 11:37584-37594. [PMID: 35496398 PMCID: PMC9043823 DOI: 10.1039/d1ra06857a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
In this study, three types of chiral fluorescent zirconium-based metal-organic framework materials were synthesized using l-dibenzoyl tartaric acid as the chiral modifier by the solvent-assisted ligand incorporation method, which was the porous coordination network yellow material, denoted as PCN-128Y. PCN-128Y-1 and PCN-128Y-2 featured unique chiral selectivity for the Gln enantiomers amongst seven acids and the highly stable luminescence property, which were caused by the heterochiral interaction and aggregation-induced emission. Furthermore, a rapid fluorescence method for the chiral detection of glutamine (Gln) enantiomers was developed. The homochiral crystals of PCN-128Y-1 displayed enantiodiscrimination in the quenching by d-Gln such that the ratio of enantioselectivity was 2.0 in 30 seconds at pH 7.0, according to the Stern-Volmer quenching plots. The detection limits of d- and l-Gln were 6.6 × 10-4 mol L-1 and 3.3 × 10-4 mol L-1, respectively. Finally, both the maximum adsorption capacities of PCN-128Y-1 for the Gln enantiomers (Q e(l-Gln) = 967 mg g-1; Q e(d-Gln) = 1607 mg g-1) and the enantiomeric excess value (6.2%) manifested that PCN-128Y-1 had strong adsorption capacity for the Gln enantiomers and higher affinity for d-Gln.
Collapse
Affiliation(s)
- Qin Shili
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 P. R. China +86 0452 2738214
| | - Sun Yangyang
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 P. R. China +86 0452 2738214
| | - He Xudong
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 P. R. China +86 0452 2738214
| | - Chu Hongtao
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 P. R. China +86 0452 2738214
| | - Gao Lidi
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 P. R. China +86 0452 2738214
| | - Hou Zhongyu
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 P. R. China +86 0452 2738214
| | - Zhao Dongsheng
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 P. R. China +86 0452 2738214
| | - Liu Xinyao
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 P. R. China +86 0452 2738214
| | - Zhou Sibing
- College of Chemistry and Chemical Engineering, Qiqihar University Qiqihar Heilongjiang 161006 P. R. China +86 0452 2738214
| |
Collapse
|
13
|
Park KH, Kwon J, Jeong U, Kim JY, Kotov NA, Yeom J. Broad Chiroptical Activity from Ultraviolet to Short-Wave Infrared by Chirality Transfer from Molecular to Micrometer Scale. ACS NANO 2021; 15:15229-15237. [PMID: 34519483 DOI: 10.1021/acsnano.1c05888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chiral nanomaterials provide a rich platform for versatile applications. Tuning the wavelength of polarization rotation maxima in the broad range including short-wave infrared (SWIR) is a promising candidate for infrared neural stimulation, imaging, and nanothermometry. However, the majority of previously developed chiral nanomaterials reveal the optical activity in a relatively shorter wavelength range (ultraviolet-visible, UV-vis), not in SWIR. Here, we demonstrate a versatile method to synthesize chiral copper sulfides using cysteine, as the stabilizer, and transferring the chirality from molecular- to the microscale through self-assembly. The assembled structures show broad chiroptical activity in the UV-vis-NIR-SWIR region (200-2500 nm). Importantly, we can tune the chiroptical activity by simply changing the reaction conditions. This approach can be extended to materials platforms for developing next-generation optical devices, metamaterials, telecommunications, and asymmetric catalysts.
Collapse
Affiliation(s)
- Ki Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Junyoung Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Uichang Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Young Kim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicholas A Kotov
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Institute for the NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Elahi N, Rizwan M. Progress and prospects of magnetic iron oxide nanoparticles in biomedical applications: A review. Artif Organs 2021; 45:1272-1299. [PMID: 34245037 DOI: 10.1111/aor.14027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022]
Abstract
Nanoscience has been considered as one of the most substantial research in modern science. The utilization of nanoparticle (NP) materials provides numerous advantages in biomedical applications due to their unique properties. Among various types of nanoparticles, the magnetic nanoparticles (MNPs) of iron oxide possess intrinsic features, which have been efficiently exploited for biomedical purposes including drug delivery, magnetic resonance imaging, Magnetic-activated cell sorting, nanobiosensors, hyperthermia, and tissue engineering and regenerative medicine. The size and shape of nanostructures are the main factors affecting the physicochemical features of superparamagnetic iron oxide nanoparticles, which play an important role in the improvement of MNP properties, and can be controlled by appropriate synthesis strategies. On the other hand, the proper modification and functionalization of the surface of iron oxide nanoparticles have significant effects on the improvement of physicochemical and mechanical features, biocompatibility, stability, and surface activity of MNPs. This review focuses on popular methods of fabrication, beneficial surface coatings with regard to the main required features for their biomedical use, as well as new applications.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advance Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Nanotechnology, School of Advance Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Muhammad Rizwan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Sun YX, Zhang DD, Sheng Y, Xu D, Zhang R, Bradley M. Supramolecular assembly induced chiral interface for electrochemical recognition of tryptophan enantiomers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2011-2020. [PMID: 33955988 DOI: 10.1039/d1ay00222h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The β-CD@PEI-Fc chiral interface was prepared based on the supramolecular host-guest interaction between ferrocene (Fc) grafted polyethyleneimine (PEI-Fc) and chiral β-cyclodextrin (β-CD). SEM results show that β-CD@PEI-Fc interface has a regular spatial structure, which can effectively distinguish tryptophan (Trp) enantiomers. Under the optimal conditions, differential pulse voltammetry shows that the peak current ratio (Id/Il) of Trp enantiomers can reach 2.84 at 15 °C. More interestingly, the β-CD@PEI-Fc/GCE exhibited chiral recognition of d-Trp and l-Trp via water contact angle measurements. There was a good linear relationship between the peak current and the concentration of Trp enantiomers in the range from 0.005 mM to 0.10 mM. Finally, the chiral interface can be applied for quick detection of the proportion of isomers in Trp racemic solution, which is very important for chiral recognition in racemic mixture of chiral compounds. Meanwhile, the β-CD@PEI-Fc/GCE showed good stability and reproducibility.
Collapse
Affiliation(s)
- Yi-Xin Sun
- School of Materials Science and Engineering, Changzhou University, Changzhou 213614, Jiangsu, China and National Experimental Demonstration Center for Materials Science and Engineering (ChangzhouUniversity), Changzhou, Jiangsu 213164, China
| | - Dan-Dan Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213614, Jiangsu, China and National Experimental Demonstration Center for Materials Science and Engineering (ChangzhouUniversity), Changzhou, Jiangsu 213164, China
| | - Yang Sheng
- School of Materials Science and Engineering, Changzhou University, Changzhou 213614, Jiangsu, China and National Experimental Demonstration Center for Materials Science and Engineering (ChangzhouUniversity), Changzhou, Jiangsu 213164, China
| | - Defeng Xu
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou 213164, Jiangsu, P.R. China
| | - Rong Zhang
- School of Materials Science and Engineering, Changzhou University, Changzhou 213614, Jiangsu, China and National Experimental Demonstration Center for Materials Science and Engineering (ChangzhouUniversity), Changzhou, Jiangsu 213164, China
| | - Mark Bradley
- School of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH93JJ, UK.
| |
Collapse
|
16
|
Integrating amino acid oxidase with photoresponsive probe: A fast quantitative readout platform of amino acid enantiomers. Talanta 2021; 224:121894. [PMID: 33379102 DOI: 10.1016/j.talanta.2020.121894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Low-cost, high-throughput, broadly useful photoresponsive enantiomeric excess (ee) sensing of amino acids remains challenging to date. Herein, based on the selective oxidation reaction of amino acid oxidase (AAO) to amino acid enantiomers (D/L-AA) and the oxidation reaction of substrate (H2O2) with aromatic boronic ester, we put forward a photoresponsive strategy for the determination of D/L-AA at a certain concentration. In this scheme, the substrate H2O2 produced by the enzyme-catalyzed reaction was determined by sensitive fluorescent and colorimetric response of ethyl-3-(3-(benzothiazol-2-yl)-5-methyl-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)-2-cyanoacrylate (HBT-PB) to reflect the enantiomeric content at a certain concentration. The photoresponsive probe HBT-PB was readily available and inexpensive with sensitive long-wavelength red fluorescence and colorimetric light response to H2O2, the detection limit (LOD) was estimated as 2.91 μM. The operation of the sensing method was simple and data collection and processing are straightforward. The practicability of the scheme was favorably confirmed by accurate and scientific analysis of methionine and Dopa samples. As a result, the scheme was not only suitable for high-throughput screening but also adaptable to low-cost and sensitive RGB colorimetric analysis platform (LOD of methionine and Dopa was calculated as 9.23 μM and 8.34 μM respectively) with modern plate readers, and possessed extremely high enantioselectivity and wide applicability which benefited from the specificity and efficiency of enzyme catalytic reaction.
Collapse
|
17
|
Dehghani Z, Akhond M, Absalan G. Carbon quantum dots embedded silica molecular imprinted polymer as a novel and sensitive fluorescent nanoprobe for reproducible enantioselective quantification of naproxen enantiomers. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Fernandes GM, Silva WR, Barreto DN, Lamarca RS, Lima Gomes PCF, Flávio da S Petruci J, Batista AD. Novel approaches for colorimetric measurements in analytical chemistry - A review. Anal Chim Acta 2020; 1135:187-203. [PMID: 33070854 DOI: 10.1016/j.aca.2020.07.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/20/2023]
Abstract
Colorimetric techniques have been developed and used in routine analyses for over a century and apparently all their potentialities have been exhaustively explored. However, colorimetric techniques have gained high visibility in the last two decades mainly because of the development of the miniaturization concept, for example, paper-based analytical devices that mostly employ colorimetric reactions, and by the advances and popularity of image capture instruments. The impressive increase in the use of these devices was followed by the development and enhancement of different modes of color detection to meet the demands of making qualitative, semi-quantitative, and fully quantitative analyses of multiple analytes. Cameras, scanners, and smartphones are now being used for this purpose and have become suitable alternatives for different approaches to colorimetric analysis; this, in addition to advancements in miniaturized devices. On the other hand, recent developments in optoelectronics technologies have launched more powerful, more stable and cheaper light-emitting diodes (LEDs), which once again have become an interesting tool for the design of portable and miniaturized devices based on colored reactions. Here, we present a critical review of recent developments and challenges of colorimetric detection in modern analytical chemistry in the last five years, and present thoughts and insights towards future perspectives in the area to improve the use of colorimetric detection in different application approaches.
Collapse
Affiliation(s)
- Gabriel Martins Fernandes
- Institute of Chemistry, Federal University of Uberlandia, Av. João Naves de Ávila, 2121, Uberlândia, MG, Brazil
| | - Weida R Silva
- Institute of Chemistry, Federal University of Uberlandia, Av. João Naves de Ávila, 2121, Uberlândia, MG, Brazil
| | - Diandra Nunes Barreto
- Institute of Chemistry, Federal University of Uberlandia, Av. João Naves de Ávila, 2121, Uberlândia, MG, Brazil
| | - Rafaela S Lamarca
- National Institute for Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Materials (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, SP, Brazil
| | - Paulo Clairmont F Lima Gomes
- National Institute for Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Materials (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), 14800-060, Araraquara, SP, Brazil
| | - João Flávio da S Petruci
- Institute of Chemistry, Federal University of Uberlandia, Av. João Naves de Ávila, 2121, Uberlândia, MG, Brazil
| | - Alex D Batista
- Institute of Chemistry, Federal University of Uberlandia, Av. João Naves de Ávila, 2121, Uberlândia, MG, Brazil.
| |
Collapse
|
19
|
Chirality at the Nanoparticle Surface: Functionalization and Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chiral molecules, such as amino acids and carbohydrates, are the building blocks of nature. As a consequence, most natural supramolecular structures, such as enzymes and receptors, are able to distinguish among different orientations in space of functional groups, and enantiomers of chiral drugs usually have different pharmacokinetic properties and physiological effects. In this regard, the ability to recognize a single enantiomer from a racemic mixture is of paramount importance. Alternatively, the capacity to synthetize preferentially one enantiomer over another through a catalytic process can eliminate (or at least simplify) the subsequent isolation of only one enantiomer. The advent of nanotechnology has led to noteworthy improvements in many fields, from material science to nanomedicine. Similarly, nanoparticles functionalized with chiral molecules have been exploited in several fields. In this review, we report the recent advances of the use of chiral nanoparticles grouped in four major areas, i.e., enantioselective recognition, asymmetric catalysis, biosensing, and biomedicine.
Collapse
|
20
|
Wattanakit C, Kuhn A. Encoding Chiral Molecular Information in Metal Structures. Chemistry 2020; 26:2993-3003. [PMID: 31724789 DOI: 10.1002/chem.201904835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/13/2019] [Indexed: 11/07/2022]
Abstract
The concept of encoding molecular information in bulk metals has been proposed over the past decade. The structure of various types of molecules, including enantiomers, can be imprinted in achiral substrates. Typically, to encode metals with chiral information, several approaches, based on chemical and electrochemical concepts, can be used. In this Minireview, recent achievements with respect to the development of such materials are discussed, including the entrapment of chiral biomolecules in metals, the chiral imprinting of metals, as well as the combination of imprinting with nanostructuring. The features and potential applications of these designer materials, such as chirooptical properties, enantioselective adsorption and separation, as well as their use for asymmetric synthesis will be presented. This will illustrate that the development of molecularly encoded metal structures opens up very interesting perspectives, especially in the frame of chiral technologies.
Collapse
Affiliation(s)
- Chularat Wattanakit
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 21210, Rayong, Thailand
| | - Alexander Kuhn
- CNRS UMR 5255, Bordeaux INP, Site ENSCBP, University of Bordeaux, 33607, Pessac, France
| |
Collapse
|
21
|
Bettini S, Syrgiannis Z, Ottolini M, Bonfrate V, Giancane G, Valli L, Prato M. Supramolecular Chiral Discrimination of D-Phenylalanine Amino Acid Based on a Perylene Bisimide Derivative. Front Bioeng Biotechnol 2020; 8:160. [PMID: 32195240 PMCID: PMC7064719 DOI: 10.3389/fbioe.2020.00160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/17/2020] [Indexed: 11/17/2022] Open
Abstract
The interaction between homochiral substituted perylene bisimide (PBI) molecule and the D enantiomer of phenylalanine amino acid was monitored. Spectroscopic transitions of PBI derivative in aqueous solution in the visible range were used to evaluate the presence of D-phenylalanine. UV-visible, fluorescence, FT-IR, and AFM characterizations showed that D-phenylalanine induces significant variations in the chiral perylene derivative aggregation state and the mechanism is enantioselective as a consequence of the 3D analyte structure. The interaction mechanism was further investigated in presence of interfering amino acid (D-serine and D-histidine) confirming that both chemical structure and its 3D structure play a crucial role for the amino acid discrimination. A D-phenylalanine fluorescence sensor based on perylene was proposed. A limit of detection (LOD) of 64.2 ± 0.38 nM was calculated in the range 10-7-10-5 M and of 1.53 ± 0.89 μM was obtained in the range 10-5 and 10-3 M.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Innovation Engineering, Campus University Ecotekne, University of Salento, Lecce, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Florence, Italy
| | - Zois Syrgiannis
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, Unit of Trieste, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Michela Ottolini
- Department of Innovation Engineering, Campus University Ecotekne, University of Salento, Lecce, Italy
| | - Valentina Bonfrate
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Gabriele Giancane
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Florence, Italy
- Department of Cultural Heritage, University of Salento, Lecce, Italy
| | - Ludovico Valli
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Florence, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Maurizio Prato
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, Unit of Trieste, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Carbon Nanobiotechnology Laboratory, CIC biomaGUNE, Donostia-San Sebastian, Spain
| |
Collapse
|
22
|
Marques AC, Pinheiro T, Martins GV, Cardoso AR, Martins R, Sales MG, Fortunato E. Non-enzymatic lab-on-paper devices for biosensing applications. COMPREHENSIVE ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/bs.coac.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Naghdi T, Yousefi H, Sharifi AR, Golmohammadi H. Nanopaper-based sensors. COMPREHENSIVE ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/bs.coac.2020.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Zhang J, Miao Y, Cheng Z, Liang L, Ma X, Liu C. A paper-based colorimetric assay system for sensitive cysteine detection using a fluorescent probe. Analyst 2020; 145:1878-1884. [DOI: 10.1039/c9an02271f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitive analysis of Cys on a paper-based platform via colorimetric detection which abandons sophisticated instruments.
Collapse
Affiliation(s)
- Jian Zhang
- School of Pharmacy
- Xi’ an Medical University
- Xi'an 710021
- China
- Institute of Medicine
| | - Yanqing Miao
- School of Pharmacy
- Xi’ an Medical University
- Xi'an 710021
- China
- Institute of Medicine
| | - Zhao Cheng
- School of Pharmacy
- Xi’ an Medical University
- Xi'an 710021
- China
- Institute of Medicine
| | - Lingling Liang
- School of Pharmacy
- Xi’ an Medical University
- Xi'an 710021
- China
- Institute of Medicine
| | - Xiaoya Ma
- School of Pharmacy
- Xi’ an Medical University
- Xi'an 710021
- China
| | - Chunye Liu
- School of Pharmacy
- Xi’ an Medical University
- Xi'an 710021
- China
- Institute of Medicine
| |
Collapse
|
25
|
|
26
|
Faham S, Ghavami R, Golmohammadi H, Khayatian G. Spectrophotometric and visual determination of zoledronic acid by using a bacterial cell-derived nanopaper doped with curcumin. Mikrochim Acta 2019; 186:719. [DOI: 10.1007/s00604-019-3815-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
|
27
|
Wen Y, Li Z, Jiang J. Delving noble metal and semiconductor nanomaterials into enantioselective analysis. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
28
|
Gubarev AS, Lezov AA, Mikhailova ME, Senchukova AS, Ubyivovk EV, Nekrasova TN, Girbasova NV, Bilibin AY, Tsvetkov NV. Ag(0) Nanoparticles Stabilized with Poly(Ethylene Glycol)s Modified with Amino Groups: Formation and Properties in Solutions. COLLOID JOURNAL 2019. [DOI: 10.1134/s1061933x19030062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Marquez S, Morales-Narváez E. Nanoplasmonics in Paper-Based Analytical Devices. Front Bioeng Biotechnol 2019; 7:69. [PMID: 30984755 PMCID: PMC6449474 DOI: 10.3389/fbioe.2019.00069] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/11/2019] [Indexed: 11/24/2022] Open
Abstract
Chemical and biological sensing are crucial tools in science and technology. Plasmonic nanoparticles offer a virtually limitless number of photons for sensing applications, which can be available for visual detection over long periods. Moreover, cellulosic materials, such as paper, represent a versatile building block for implementation of simple, yet valuable, microfluidic analytical devices. This mini review outlines the basic theory of nanoplasmonics and the usability of paper as a nanoplasmonic substrate exploiting its features as a (bio)sensing platform based on different mechanisms depending on localized surface plasmon resonance response. Progress, current trends, challenges and opportunities are also underscored. It is intended for general researchers and technologists who are new to the topic as well as specialist/experts in the field.
Collapse
Affiliation(s)
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica A. C., León, Mexico
| |
Collapse
|
30
|
Bochenkov VE, Shabatina TI. Chiral Plasmonic Biosensors. BIOSENSORS 2018; 8:E120. [PMID: 30513775 PMCID: PMC6316110 DOI: 10.3390/bios8040120] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022]
Abstract
Biosensing requires fast, selective, and highly sensitive real-time detection of biomolecules using efficient simple-to-use techniques. Due to a unique capability to focus light at nanoscale, plasmonic nanostructures provide an excellent platform for label-free detection of molecular adsorption by sensing tiny changes in the local refractive index or by enhancing the light-induced processes in adjacent biomolecules. This review discusses the opportunities provided by surface plasmon resonance in probing the chirality of biomolecules as well as their conformations and orientations. Various types of chiral plasmonic nanostructures and the most recent developments in the field of chiral plasmonics related to biosensing are considered.
Collapse
Affiliation(s)
- Vladimir E Bochenkov
- Chemistry Department of Lomonosov, Moscow State University, 119991 Moskva, Russia.
| | - Tatyana I Shabatina
- Chemistry Department of Lomonosov, Moscow State University, 119991 Moskva, Russia.
| |
Collapse
|