1
|
Hu C, Yang S, Li S, Liu X, Liu Y, Chen Z, Chen H, Li S, He N, Cui H, Deng Y. Viral aptamer screening and aptamer-based biosensors for virus detection: A review. Int J Biol Macromol 2024; 276:133935. [PMID: 39029851 DOI: 10.1016/j.ijbiomac.2024.133935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Virus-induced infectious diseases have a detrimental effect on public health and exert significant influence on the global economy. Therefore, the rapid and accurate detection of viruses is crucial for effectively preventing and diagnosing infections. Aptamer-based detection technologies have attracted researchers' attention as promising solutions. Aptamers, small single-stranded DNA or RNA screened via systematic evolution of ligands by exponential enrichment (SELEX), possess a high affinity towards their target molecules. Numerous aptamers targeting viral marker proteins or virions have been developed and widely employed in aptamer-based biosensors (aptasensor) for virus detection. This review introduces SELEX schemes for screening aptamers and discusses distinctive SELEX strategies designed explicitly for viral targets. Furthermore, recent advances in aptamer-based biosensing methods for detecting common viruses using different virus-specific aptamers are summarized. Finally, limitations and prospects associated with developing of aptamer-based biosensors are discussed.
Collapse
Affiliation(s)
- Changchun Hu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuting Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Shuo Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Xueying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Yuan Liu
- Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China
| | - Haipo Cui
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, Hunan 412007, China; Institute for Future Sciences, University of South China, Changsha, Hunan 410000, China; Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Xing X, Gao M, Lei M, Cheng K, Zhao Y, Du X, Zong L, Qiu D, Liu X. MOF-mediated dual energy transfer nanoprobe integrated with exonuclease III amplification strategy for highly sensitive detection of DNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1916-1922. [PMID: 38497280 DOI: 10.1039/d4ay00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Accurate quantitative detection of DNA is an advanced strategy in various fields (such as disease diagnosis and environmental monitoring), but the classical DNA detection method usually suffers from low sensitivity, expensive thermal cyclers, or strict annealing conditions. Herein, a MOF-ERA platform for ultrasensitive HBV-DNA detection is constructed by integrating metal-organic framework (MOF)-mediated double energy transfer nanoprobe with exonuclease III (Exo III)-assisted target recycling amplification. The proposed double energy transfer containing a donor and two receptors is simply composed of MOFs (UiO-66-NH2, a well-studied MOF) modified with a signal probe formed by the hybridization of carboxyuorescein (FAM)-labeled DNA (FDNA) and black hole quencher (BHQ1)-terminated DNA (QDNA), resulting in low fluorescence signal. After the addition of HBV-DNA, Exo III degradation to FDNA is activated, leading to the liberation of the numerous FAM molecules, followed by the generation of a significant fluorescence signal owing to the negligible binding of MOFs with free FAM molecules. The results certify that the MOF-ERA platform can be successfully used to assay HBV-DNA in the range of 1.0-25.0 nM with a detection limit of 97.2 pM, which is lower than that without BHQ1 or Exo III. The proposed method with the superiorities of low background signal and high selectivity holds promise for early disease diagnosis and clinical biomedicine applications.
Collapse
Affiliation(s)
- Xiaojing Xing
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Mengying Gao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Minglin Lei
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Kunqi Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Yifan Zhao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xianchao Du
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Luyi Zong
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Dongfang Qiu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xueguo Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Department of Biology and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China.
| |
Collapse
|
3
|
Guo J, Zhang H, Yang J, Zhang Y, Wang J, Yan G. ssDNA-QDs/GO multicolor fluorescence system for synchronous screening of hepatitis virus DNA. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
4
|
Park DH, Choi MY, Choi JH. Recent Development in Plasmonic Nanobiosensors for Viral DNA/RNA Biomarkers. BIOSENSORS 2022; 12:bios12121121. [PMID: 36551088 PMCID: PMC9776357 DOI: 10.3390/bios12121121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 05/28/2023]
Abstract
Recently, due to the coronavirus pandemic, the need for early diagnosis of infectious diseases, including viruses, is emerging. Though early diagnosis is essential to prevent infection and progression to severe illness, there are few technologies that accurately measure low concentrations of biomarkers. Plasmonic nanomaterials are attracting materials that can effectively amplify various signals, including fluorescence, Raman, and other optical and electromagnetic output. In this review, we introduce recently developed plasmonic nanobiosensors for measuring viral DNA/RNA as potential biomarkers of viral diseases. In addition, we discuss the future perspective of plasmonic nanobiosensors for DNA/RNA detection. This review is expected to help the early diagnosis and pathological interpretation of viruses and other diseases.
Collapse
|
5
|
Pilch-Wrobel A, Kotulska AM, Lahtinen S, Soukka T, Bednarkiewicz A. Engineering the Compositional Architecture of Core-Shell Upconverting Lanthanide-Doped Nanoparticles for Optimal Luminescent Donor in Resonance Energy Transfer: The Effects of Energy Migration and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200464. [PMID: 35355389 DOI: 10.1002/smll.202200464] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 05/08/2023]
Abstract
Förster Resonance Energy Transfer (FRET) between single molecule donor (D) and acceptor (A) is well understood from a fundamental perspective and is widely applied in biology, biotechnology, medical diagnostics, and bio-imaging. Lanthanide doped upconverting nanoparticles (UCNPs) have demonstrated their suitability as alternative donor species. Nevertheless, while they solve most disadvantageous features of organic donor molecules, such as photo-bleaching, spectral cross-excitation, and emission bleed-through, the fundamental understanding and practical realizations of bioassays with UCNP donors remain challenging. Among others, the interaction between many donor ions (in donor UCNP) and many acceptors anchored on the NP surface and the upconversion itself within UCNPs, complicate the decay-based analysis of D-A interaction. In this work, the assessment of designed virtual core-shell NP (VNP) models leads to the new designs of UCNPs, such as …@Er, Yb@Er, Yb@YbEr, which are experimentally evaluated as donor NPs and compared to the simulations. Moreover, the luminescence rise and decay kinetics in UCNP donors upon RET is discussed in newly proposed disparity measurements. The presented studies help to understand the role of energy-transfer and energy migration between lanthanide ion dopants and how the architecture of core-shell UCNPs affects their performance as FRET donors to organic acceptor dyes.
Collapse
Affiliation(s)
- Aleksandra Pilch-Wrobel
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| | - Agata Maria Kotulska
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| | - Satu Lahtinen
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Artur Bednarkiewicz
- Division of Biomedical Physicochemistry, Institute of Low Temperature and Structure Research, PAN, ul.Okolna 2, Wrocław, 50-422, Poland
| |
Collapse
|
6
|
Fu X, Dong W, Liu C, Han J, Huang C. Cationic conjugated polymer-based FRET aptasensor for label-free and ultrasensitive ractopamine detection. RSC Adv 2022; 12:10911-10914. [PMID: 35425041 PMCID: PMC8987537 DOI: 10.1039/d2ra00574c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
A label-free fluorescence resonance energy transfer (FRET) platform based on cationic conjugated polymers and aptamers for ultrasensitive and specific ractopamine detection was constructed. This method exhibited a wide linear range from 0.05 to 500 μM and a low limit of detection of 47 nM, which make it an attractive assay platform for foodborne doping. A label-free fluorescence resonance energy transfer (FRET) platform based on cationic conjugated polymers and aptamer has established for ultrasensitive and specific ractopamine (RAC) detection.![]()
Collapse
Affiliation(s)
- Xuancheng Fu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- Institute of Anti-Doping in China, Beijing Sport University, Beijing 100084, China
| | - Wei Dong
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- Institute of Anti-Doping in China, Beijing Sport University, Beijing 100084, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- Institute of Anti-Doping in China, Beijing Sport University, Beijing 100084, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Teengam P, Nisab N, Chuaypen N, Tangkijvanich P, Vilaivan T, Chailapakul O. Fluorescent paper-based DNA sensor using pyrrolidinyl peptide nucleic acids for hepatitis C virus detection. Biosens Bioelectron 2021; 189:113381. [PMID: 34090155 DOI: 10.1016/j.bios.2021.113381] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
A novel fluorescent paper-based DNA sensor employing a highly specific pyrrolidinyl peptide nucleic acid (acpcPNA) probe was developed for the sensitive and selective detection of hepatitis C virus (HCV). The acpcPNA was covalently immobilized onto partially oxidized cellulose paper via reductive alkylation between the amine and the aldehyde groups. The fluorescence-based detection was performed by monitoring the fluorescence signal response of a fluorescent dye that selectively binds to the single-strand region of the DNA target over the PNA probe employing a custom-made portable fluorescent camera gadget in combination with a smartphone camera. Under the optimal conditions, a linear relationship between the fluorescence change in the green channel and the amount of HCV DNA from 5 to 100 pmol with a correlation coefficient of 0.9956, and the limit of detection of 5 pmol were obtained for short synthetic oligonucleotides. The acpcPNA probe exhibited very high selectivity for the complementary oligonucleotides over the single-base-mismatched, two-base-mismatched, and non-complementary DNA targets. Benefitting from the signal amplification achieved through the numerous binding sites for the dye provided by the overhanging tail of long ssDNA target sequences, this system was successfully applied to detect the HCV complementary DNA (cDNA) obtained from clinical samples with satisfactory results. The proposed fluorescent paper-based sensor demonstrated a great potential to be used as a low-cost, simple, label-free, sensitive, and selective DNA sensor for point-of-care applications.
Collapse
Affiliation(s)
- Prinjaporn Teengam
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Narathorn Nisab
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Jiang YJ, Wang N, Cheng F, Lin HR, Zhen SJ, Li YF, Li CM, Huang CZ. Dual Energy Transfer-Based DNA/Graphene Oxide Nanocomplex Probe for Highly Robust and Accurate Monitoring of Apoptosis-Related microRNAs. Anal Chem 2020; 92:11565-11572. [DOI: 10.1021/acs.analchem.0c00307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yong Jian Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Na Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Feng Cheng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Hua Rong Lin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Shu Jun Zhen
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Yuan Fang Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Chun Mei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People’s Republic of China
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
9
|
Charoenpakdee C, Vilaivan T. Quenching of fluorescently labeled pyrrolidinyl peptide nucleic acid by oligodeoxyguanosine and its application in DNA sensing. Org Biomol Chem 2020; 18:5951-5962. [PMID: 32696797 DOI: 10.1039/d0ob01299h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Quenching by nucleobases can significantly affect the fluorescence properties of many fluorophores. The quenching efficiency depends on the electronic properties of the fluorophore and adjacent nucleobases. In this study, we present a hitherto unreported high-efficiency quenching (up to 90%) of various fluorescently labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probes by oligodeoxyguanosine (dGX). The quenching principle relies on the electrostatic interaction between the positively charged lysine-modified acpcPNA probe and the negatively charged oligodeoxyguanosine. The addition of stoichiometric quantities of a DNA target with the sequence complementary to the PNA probe restored the fluorescence to the original level. This was explained by the binding of the DNA to the PNA via a specific base pairing, which resulted in the separation of the oligodeoxyguanosine quencher from the fluorophore. Much less fluorescence restoration was observed in the DNA containing one or more mismatched bases. Applications of the oligodeoxyguanosine-quenched PNA probes for DNA sequence determination, including in multiplex formats, are demonstrated. The performance in terms of sensitivity and mismatch discrimination is comparable to classical PNA-based molecular beacons but without the need for double-labeling, which is expensive and presents solubility issues, or a dedicated quencher probe. This exemplifies a novel use of the unique electrostatic properties of PNA to develop a DNA sensing platform for DNA sequence determination.
Collapse
Affiliation(s)
- Chayan Charoenpakdee
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
10
|
Solovjev AM, Kurzeev SA, Sakharov IY. Chemiluminescent microplate-based assay of DNA based on isothermal circular strand-displacement polymerization reaction (ICSDPR). Talanta 2020; 215:120895. [DOI: 10.1016/j.talanta.2020.120895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
|
11
|
Gao T, Xing S, Xu M, Fu P, Yao J, Zhang X, Zhao Y, Zhao C. A peptide nucleic acid-regulated fluorescence resonance energy transfer DNA assay based on the use of carbon dots and gold nanoparticles. Mikrochim Acta 2020; 187:375. [PMID: 32518969 DOI: 10.1007/s00604-020-04357-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
A convenient fluorometric method was developed for specific determination of DNA based on peptide nuclei acid (PNA)-regulated fluorescence resonance energy transfer (FRET) between carbon dots (CDs) and gold nanoparticles (AuNPs). In this system, CDs that display lake blue fluorescence with excitation/emission maxima at 345/445 nm were used as fluorometric reporter, while AuNPs were used as fluorescence nanoquencher. A neutral PNA probe, which is designed to recognize the target DNA, was used as a coagulant to control the dispersion and aggregation of AuNPs. Without DNA, PNA can induce immediate AuNP aggregation, thus leading to the recovery of the FRET-quenched fluorescence emission of CDs. However, the addition of the complementary target DNA can protect AuNPs from being aggregated due to the formation of DNA/PNA complexes, which subsequently produces a high fluorescence quenching efficiency of CDs by dispersed AuNPs. Under optimized conditions, quantitative evaluation of DNA was achieved in a linear range of 5-100 nM with a detection limit of 0.21 nM. This method exhibited an excellent specificity towards fully matched DNA. In addition, the application of this assay for sensitive determination of DNA in cell lysate demonstrates its potential for bioanalysis and biodetection. Graphical abstract A simple fluorometric biosensor for specific detection of DNA was developed based on peptide nuclei acid (PNA)-regulated fluorescence resonance energy transfer (FRET) between carbon dots (CDs) and gold nanoparticles (AuNPs).
Collapse
Affiliation(s)
- Tingting Gao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China.,Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Shu Xing
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| | - Mengjia Xu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiechen Yao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Xiaokang Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China
| | - Yang Zhao
- College of Science and Technology, Ningbo University, Ningbo, 315212, People's Republic of China.
| | - Chao Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, People's Republic of China.
| |
Collapse
|
12
|
|
13
|
Chai SQ, Lv WY, He JH, Li CH, Li YF, Li CM, Huang CZ. Dual Energy Transfer-Based Fluorescent Nanoprobe for Imaging miR-21 in Nonalcoholic Fatty Liver Cells with Low Background. Anal Chem 2019; 91:6761-6768. [PMID: 31020834 DOI: 10.1021/acs.analchem.9b00841] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) can progress gradually to liver failure, early warning of which is critical for improving the cure rate of NAFLD. In situ imaging and monitoring of overexpressed miR-21 is an advanced strategy for NAFLD diagnosis. However, this strategy usually suffers from the high background imaging in living cells owing to the complexity of the biological system. To overcome this problem, herein, we have developed a one-donor-two-acceptor nanoprobe by assembling gold nanoparticles (AuNPs) coupled with BHQ2 (AuBHQ) and quantum dots (QDs) through DNA hybridization for imaging of miR-21 in living cells. The fluorescence of QDs was quenched up to 82.8% simultaneously by the AuNPs and the BHQ2 via nanometal surface energy transfer and fluorescence resonance energy transfer, reducing the background signals for target imaging. This low background fluorescent nanoprobe was successfully applied for imaging the target miR-21 in nonalcoholic fatty liver cells by catalyzing the disassembly of QDs with the AuBHQ and the fluorescence recovery of QDs. In addition, the sensitivity of this nanoprobe has also been enhanced toward detecting miR-21 in the range of 2.0-15.0 nM with the detection limit (LOD, 3σ) of 0.22 nM, which was 13.5 times lower than that without BHQ2. The proposed approach provides a new way for early warning, treatments, and prognosis of NAFLD.
Collapse
Affiliation(s)
- Shui Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science , Southwest University , Chongqing 400715 , China
| | - Wen Yi Lv
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science , Southwest University , Chongqing 400715 , China
| | - Jia Hui He
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science , Southwest University , Chongqing 400715 , China
| | - Chun Hong Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science , Southwest University , Chongqing 400715 , China
| | - Yuan Fang Li
- Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| | - Chun Mei Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science , Southwest University , Chongqing 400715 , China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Science , Southwest University , Chongqing 400715 , China.,Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , China
| |
Collapse
|