1
|
Liu D, Xiong Y, Zeng H, Xu J, Tang B, Li Y, Zhang M. Deep UV-LED induced nitrate-to-nitrite conversion for total dissolved nitrogen determination in water samples through persulfate digestion and capillary electrophoresis. Anal Chim Acta 2023; 1278:341743. [PMID: 37709434 DOI: 10.1016/j.aca.2023.341743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/20/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4D) is widely used for water quality monitoring. However, there is currently no reported CE method for detecting total dissolved nitrogen (TDN), a crucial parameter for assessing water eutrophication. One challenge is the high sulfate concentration (100 mM) introduced during persulfate digestion, leading to overlap of nitrate (from TDN) and poor electrical stacking of nitrate in CE-C4D analysis. RESULTS We introduced an in-capillary UV-LED induced photoreaction to convert nitrate to nitrite, which can be baseline-separated from sulfate via the CE method, enabling accurate quantification of nitrate concentration derived from nitrite. A 2 nL post-persulfate digested sample solution within a fused silica capillary was exposed to UV-LED irradiation at the capillary tip. Subsequently, photoreduction-produced nitrite was electrophoretically separated from sulfate in an acidic buffer (pH = 3.7) within the same capillary, followed by contactless conductivity detection. The nitrate-to-nitrite conversion efficiency was influenced by irradiation wavelength, power, and duration, reaching a maximum efficiency of 77.4% when employing two 230 nm LEDs for 5 min. For more general applications, two 255 nm LEDs were used, providing a conversion efficiency of (66.4 ± 3.3)% (n = 11) for 5 min of irradiation. The proposed CE-C4D method exhibits a detection limit of 13 μM (0.18 mg N/L) and has been successfully employed for TDN determination in lake water samples. SIGNIFICANCE This innovative approach not only enhances the attractiveness of the CE-C4D method for the determination of water quality indicators but also highlights the potential for integrating deep-UV LEDs into environmental analysis.
Collapse
Affiliation(s)
- Dongmei Liu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Yu Xiong
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Hui Zeng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China.
| | - Jin Xu
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Biyu Tang
- China Nonferrous Metals (Guilin) Geology and Mining Co., Ltd., Guilin, Guangxi, 541004, China
| | - Yan Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China
| | - Min Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China.
| |
Collapse
|
2
|
Geng J, Yang C, Lan L, Li Y, Han J, Zhou C. Online rapid total nitrogen detection method based on UV spectrum and spatial interval permutation combination population analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121009. [PMID: 35248853 DOI: 10.1016/j.saa.2022.121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/17/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Rapidly and accurately detect the total nitrogen (TN) concentration is enormously important for surface water protection considering the critical role it plays in reflecting the eutrophication of surface water. However, traditional TN detection methods have to experience a tedious oxygen digestion process, which tremendously limits the detection speed of TN. To solve this problem, we propose a novel online rapid TN detection method. The transformations of nitrogenous substances during the oxidative digestion process are observed by using ultraviolet (UV) spectroscopy and the concentration of TN can be predicted by only using the variation of spectrum in the early oxygen digestion process. To select the most informative variables hidden in the collected three-dimension spectrum, a new wavelength selection algorithm called spatial interval permutation combination population analysis (siPCPA) is proposed, which considers the spatial-temporal relationships among each variable in the spectrum. By using the real surface water samples collected from Houhu Lake, Changsha, China, the effectiveness of our proposed new detection and selection methods are verified and compared with other state-of-the-art methods. As a result, the practical application experiment shows that our methods can determine the concentration of TN in 5 min with a relative error of less than 5%.
Collapse
Affiliation(s)
- Jingxuan Geng
- School of Automation, Central South University, 410083 Changsha, China
| | - Chunhua Yang
- School of Automation, Central South University, 410083 Changsha, China
| | - Lijuan Lan
- School of Automation, Central South University, 410083 Changsha, China.
| | - Yonggang Li
- School of Automation, Central South University, 410083 Changsha, China
| | - Jie Han
- School of Automation, Central South University, 410083 Changsha, China
| | - Can Zhou
- School of Automation, Central South University, 410083 Changsha, China
| |
Collapse
|
3
|
Zeng S, Lei S, Li Y, Lyu H, Dong X, Li J, Cai X. Remote monitoring of total dissolved phosphorus in eutrophic Lake Taihu based on a novel algorithm: Implications for contributing factors and lake management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118740. [PMID: 34971740 DOI: 10.1016/j.envpol.2021.118740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Understanding the spatiotemporal dynamics of total dissolved phosphorus concentration (CTDP) and its regulatory factors is essential to improving our understanding of its impact on inland water eutrophication, but few studies have assessed this in eutrophic inland lakes due to a lack of suitable bio-optical algorithms allowing the use of remote sensing data. We developed a novel semi-analytical algorithm for this purpose and tested it in the eutrophic Lake Taihu, China. Our algorithm produced robust results with a mean absolute square percentage error of 29.65% and root mean square error of 9.54 μg/L. Meanwhile, the new algorithm demonstrates good portability to other waters with different optical properties and could be applied to various image data, including Moderate Resolution Imaging Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS), and Ocean and Land Color Instrument (OLCI). Further analysis based on Geostationary Ocean Color Imager observations from 2011 to 2020 revealed a significant spatiotemporal heterogeneity of CTDP in Lake Taihu. Correlation analysis of the long-term trend between CTDP and driving factors demonstrated that air temperature is the dominant regulating factor in variations of CTDP. This study provides a novel algorithm allowing remote-sensing monitoring of CTDP in eutrophic lakes and can lead to new insights into the role of dissolved phosphorus in water eutrophication.
Collapse
Affiliation(s)
- Shuai Zeng
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Shaohua Lei
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Yunmei Li
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China.
| | - Heng Lyu
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Xianzhang Dong
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Junda Li
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| | - Xiaolan Cai
- School of Geography, Nanjing Normal University, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, 210023, China
| |
Collapse
|
4
|
Zeng S, Du C, Li Y, Lyu H, Dong X, Lei S, Li J, Wang H. Monitoring the particulate phosphorus concentration of inland waters on the Yangtze Plain and understanding its relationship with driving factors based on OLCI data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151992. [PMID: 34883171 DOI: 10.1016/j.scitotenv.2021.151992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Tracking the spatiotemporal dynamics of particulate phosphorus concentration (CPP) and understanding its regulating factors is essential to improve our understanding of its impact on inland water eutrophication. However, few studies have assessed this in eutrophic inland lakes, owing to a lack of suitable bio-optical algorithms allowing the use of remote sensing data. Herein, a novel semi-analytical algorithm of CPP was developed to estimate CPP in lakes on the Yangtze Plain, China. The independent validations of the proposed algorithm showed a satisfying performance with the mean absolute percentage error and root mean square error less than 27% and 27 μg/L, respectively. The Ocean and Land Color Instrument observations revealed a remarkable spatiotemporal heterogeneity of CPP in 23 lakes on the Yangtze Plain from 2016 to 2020, with the lowest value in December (62.91 ± 34.59 μg/L) and the highest CPP in August (114.9 ± 51.69 μg/L). Among the 23 examined lakes, the highest mean CPP was found in Lake Poyang (124.58 ± 44.71 μg/L), while the lowest value was found in Lake Qiandao (33.51 ± 4.71 μg/L). Additionally, 13 lakes demonstrated significant decreasing or increasing trends (P < 0.05) of annual mean CPP during the observation period. The driving factor analysis revealed that four natural factors (wind speed, air temperature, precipitation, and sunshine duration) and two anthropogenic factors (the normalized difference vegetation index and nighttime light) combined explained more than 91% of the variation in CPP, while the impacts of these factors on CPP showed considerable differences among lakes. This study offered a novel and scalable algorithm for the study of the spatiotemporal variation of CPP in inland waters and provided new insights into the regulating factors in water eutrophication.
Collapse
Affiliation(s)
- Shuai Zeng
- School of Geography, Nanjing Normal University, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Chenggong Du
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, China
| | - Yunmei Li
- School of Geography, Nanjing Normal University, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| | - Heng Lyu
- School of Geography, Nanjing Normal University, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Xianzhang Dong
- School of Geography, Nanjing Normal University, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Shaohua Lei
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Junda Li
- School of Geography, Nanjing Normal University, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Huaijing Wang
- School of Geography, Nanjing Normal University, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| |
Collapse
|
5
|
Trojanowicz M, Pyszynska M. Flow-Injection Methods in Water Analysis-Recent Developments. Molecules 2022; 27:1410. [PMID: 35209198 PMCID: PMC8879103 DOI: 10.3390/molecules27041410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
Widespread demand for the analysis and control of water quality and supply for human activity and ecosystem sustainability has necessitated the continuous improvement of water analysis methods in terms of their reliability, efficiency, and costs. To satisfy these requirements, flow-injection analysis using different detection methods has successfully been developed in recent decades. This review, based on about 100 original research papers, presents the achievements in this field over the past ten years. Various methodologies for establishing flow-injection measurements are reviewed, together with microfluidics and portable systems. The developed applications mostly concern not only the determination of inorganic analytes but also the speciation analysis of different elements, and the determination of several total indices of water quality. Examples of the determination of organic residues (e.g., pesticides, phenolic compounds, and surfactants) in natural surface waters, seawater, groundwater, and drinking water have also been identified. Usually, changes in the format of manual procedures for flow-injection determination results in the improvement of various operational parameters, such as the limits of detection, the sampling rate, or selectivity in different matrices.
Collapse
Affiliation(s)
- Marek Trojanowicz
- Laboratory of Nuclear Analytical Methods, Institute of Nuclear Chemistry and Technology, Dorodna 16, 02-195 Warsaw, Poland;
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Marta Pyszynska
- Laboratory of Nuclear Analytical Methods, Institute of Nuclear Chemistry and Technology, Dorodna 16, 02-195 Warsaw, Poland;
| |
Collapse
|
6
|
Reverse flow injection method for field determination of nitrate in estuarine and coastal waters using a custom-made linear light path flow cell and the vanadium reduction method. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Almeida PLD, Lima LMA, Almeida LFD. A 3D-printed robotic system for fully automated multiparameter analysis of drinkable water samples. Anal Chim Acta 2021; 1169:338491. [PMID: 34088373 DOI: 10.1016/j.aca.2021.338491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
This work describes a 3D-printed robotic system named RSAWA (robotic system for automatic water analysis) for fully automated water analysis. RSAWA consists of a robotic arm coupled to a syringe pump, temperature and conductivity sensors, a low-cost webcam as colorimetric detector, and a 96-well microplate placed on a 3D-printed platform. The robotic system is controlled by software and it performs all analytical procedures. RSAWA was applied to measure conductivity (CDT), pH, total alkalinity (TA), total hardness (TH), chloride (Cl-), nitrite (NO2-), total dissolved phosphorus (TP), and total iron (TI) in drinkable water samples. A simple circuit was designed for conductivity determinations, while colorimetric pH determinations were carried out using Hue values extracted from digital images and a pH universal indicator. HSV histograms were used to calculate Pearson's correlation coefficients, allowing the construction of accurate titration curves. In addition to achieving sample throughputs of 112 h-1 for TA and TH determinations and 92 h-1 for Cl- determinations, RSAWA produced 99.5% less waste than the corresponding reference methods during titrations. Colorimetric measurements were performed through RGB vector norms calculated from digital images were used as analytical signals. Limits of quantification (μg L-1) were 6.83, 13.0 and 1.5 mg L-1 for NO2-, TP, and TI determinations, respectively. Sample throughputs (samples h-1) were 83 for NO2- and TP and 72 for TI with a 98.5% reduction in waste generation. Thus, RSAWA is a low-cost, feasible, and environmentally friendly alternative to quickly and accurately determine several chemical and physicochemical parameters in aqueous samples.
Collapse
Affiliation(s)
- Pedro Lemos de Almeida
- Instituto Federal de Educação, Ciência e Tecnologia Do Sertão de Pernambuco, Campus Salgueiro, CEP, 56000-000, Salgueiro, Pernambuco, Brazil; Universidade Federal da Paraíba, CCEN, Departamento de Química, CEP, 58051-970, João Pessoa, Paraíba, Brazil
| | - Lidiane Macedo Alves Lima
- Universidade Federal Rural de Pernambuco, Departamento de Química, CEP, 52171-900, Recife, Pernambuco, Brazil
| | - Luciano Farias de Almeida
- Universidade Federal da Paraíba, CCEN, Departamento de Química, CEP, 58051-970, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
8
|
Prasad A, Sahu SP, Figueiredo Stofela SK, Chaichi A, Hasan SMA, Bam W, Maiti K, McPeak KM, Liu GL, Gartia MR. Printed Electrode for Measuring Phosphate in Environmental Water. ACS OMEGA 2021; 6:11297-11306. [PMID: 34056285 PMCID: PMC8153944 DOI: 10.1021/acsomega.1c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Phosphate is a major nonpoint source pollutant in both the Louisiana local streams as well as in the Gulf of Mexico coastal waters. Phosphates from agricultural run-off have contributed to the eutrophication of global surface waters. Phosphate environmental dissemination and eutrophication problems are not yet well understood. Thus, this study aimed to monitor phosphate in the local watershed to help identify potential hot spots in the local community (Mississippi River, Louisiana) that may contribute to nutrient loading downstream (in the Gulf of Mexico). An electrochemical method using a physical vapor deposited cobalt microelectrode was utilized for phosphate detection using cyclic voltammetry and amperometry. The testing results were utilized to evaluate the phosphate distribution in river water and characterize the performance of the microsensor. Various characterizations, including the limit of detection, sensitivity, and reliability, were conducted by measuring the effect of interferences, including dissolved oxygen, pH, and common ions. The electrochemical sensor performance was validated by comparing the results with the standard colorimetry phosphate detection method. X-ray photoelectron spectroscopy (XPS) measurements were performed to understand the phosphate sensing mechanism on the cobalt electrode. This proof-of-concept sensor chip could be utilized for on-field monitoring using a portable, hand-held potentiostat.
Collapse
Affiliation(s)
- Alisha Prasad
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sushant P. Sahu
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Ardalan Chaichi
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Syed Mohammad Abid Hasan
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Wokil Bam
- Department
of Oceanography and Coastal Sciences, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - Kanchan Maiti
- Department
of Oceanography and Coastal Sciences, Louisiana
State University, Baton Rouge, Louisiana 70803, United States
| | - Kevin M. McPeak
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Gang Logan Liu
- Department
of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | - Manas Ranjan Gartia
- Department
of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
9
|
Lin K, Xu J, Guo H, Huo Y, Zhang Y. Flow injection analysis method for determination of total dissolved nitrogen in natural waters using on-line ultraviolet digestion and vanadium chloride reduction. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
A vessel-inside-vessel microwave-assisted digestion method based on SO 3 generation in situ for the mineral determination of fatty samples. Talanta 2021; 226:122094. [PMID: 33676651 DOI: 10.1016/j.talanta.2021.122094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/23/2022]
Abstract
Vessel-inside-vessel microwave-assisted acid digestion was developed for the analysis of samples with high-unsaturated fat content. For the first time, thermal decomposition of (NH4)2S2O8 solutions was evidenced for SO3 generation in situ and gas-phase modification in pressurized digestion flasks. NMR analysis demonstrated the oxidative effect of SO3 on olefin double bonds despite incomplete mineralization of oil samples. In this context, (NH4)2S2O8 decomposition was used in association with HNO3 solutions for sample digestion and mineral determination in edible oils (safflower, coconut, flaxseed, and chia). For all oils, dissolved organic carbon (DOC) contents lower than 5% m m-1 were obtained under optimum conditions: 210 °C with an irradiation time of 40 min, 7.0 mol L-1 HNO3 and 2.0 mol L-1 (NH4)2S2O8 in 0.9 mol L-1 H2SO4. Thus, a DOC reduction of about 70% was reached compared to digestions using only HNO3 at the same conditions. Additionally, a time reduction of up to three-fold was achieved compared to typically demanding edible oil digestions. The proposed method allowed the determination of As, Cd, Cr, Mn, Ni, and Pb in edible vegetable oil samples by ICP-MS. Accuracy was evaluated against the reference method, and no significant difference was observed (p = 0.05), with wide linear ranges and good linearity (r ≥ 0.999) and LOD ranging from 0.48 (As) to 2.41 (Cd) μg L-1.
Collapse
|
11
|
Yasui-Tamura S, Hashihama F, Ogawa H, Nishimura T, Kanda J. Automated simultaneous determination of total dissolved nitrogen and phosphorus in seawater by persulfate oxidation method. TALANTA OPEN 2020. [DOI: 10.1016/j.talo.2020.100016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Pan F, Zhu R, Han H, Pan D. Flow-Injection Analysis (FIA) Electrochemical Speciation of Copper in Coastal Waters by Anodic Stripping Voltammetry (ASV). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1827262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Fei Pan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rilong Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Haitao Han
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dawei Pan
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Investigations on Ozone-Based and UV/US-Assisted Synergistic Digestion Methods for the Determination of Total Dissolved Nitrogen in Waters. Processes (Basel) 2020. [DOI: 10.3390/pr8040490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Over the past two decades, the alkaline persulfate oxidation (PO) with thermal and/or ultraviolet (UV) assisted digestion method has been widely used for digestion of nitrogen containing compounds (N-compounds) in water quality routine analysis in laboratory or on-line analysis, due to its simple principle, high conversion rate, high percent recovery, low-cost. However, this digestion method still has some inevitable problems such as complex operations, high contamination potential, batch N blanks, higher reaction temperature (120–124 °C) and time-consuming (30–60 min). In this study, ozone (O3) was selected as the oxidant for digestion of N-compounds through analysis and comparison firstly. Secondly, we proposed and compared the UV and/or ultrasound (US) combined with ozone (UV/O3, US/O3 and UV/US/O3) synergistic digestion methods based on O3 with sole O3 oxidation method on digestion efficiency (digestion time and conversion rate) of standard N-compounds. Simultaneously, the influence of reaction temperature, pH of water sample, concentration of O3 and mass flow rate, UV intensity, US frequency and power on digestion efficiency were investigated, and then the optimum parameters for digestion system were obtained. Experimental results indicated that UV radiation can effectively induce and promote the decomposition and photolysis of O3 in water to generate hydroxyl radicals (•OH), while US can promote the diffusion and dissolution of O3 in water and intensify the gas-liquid mass transfer process for the reaction system. Meanwhile, results showed that the UV/US/O3 synergistic digestion method had the best digestion efficiency under the optimum conditions: water sample volume, 10 mL; pH of water sample, 11; O3 mass flow rate, 3200 mg/h; reaction temperature, 30 °C; digestion time, 25 min; UV lamp power, 18 W; distance between UV lamp and reactor, 2 cm; US frequency, 20 kHz; US power, 75 W. The conversion rate (CR) of synthetic wastewater samples varied from 99.6% to 101.4% for total dissolved nitrogen (TDN) in the range of 1.0~4.0 mg/L. The UV/US/O3 synergistic digestion method would be an effective and potential alternative for digestion of N-compounds in water quality routine analysis in laboratory or on-line analysis.
Collapse
|
14
|
Ren G, He X, Wu P, He Y, Zhang Y, Tang S, Song X, He Y, Wei Y, Ding P, Yang F. Biodegradation of microcystin-RR and nutrient pollutants using Sphingopyxis sp. YF1 immobilized activated carbon fibers-sodium alginate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10811-10821. [PMID: 31942719 DOI: 10.1007/s11356-020-07640-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
A novel biological material named activated carbon fibers-sodium alginate@Sphingopyxis sp. YF1 (ACF-SA@YF1) was synthesized for microcystin-RR (MC-RR) and nutrient pollutant degradation in eutrophic water. The synthesized biomaterial was characterized by scanning electron microscopy (SEM). Box-Behnken design and response surface methodology (RSM) were utilized for the optimization of conditions during the MC-RR degradation. The degradation of MC-RR and nutrient pollutants was dynamically detected. The results revealed that the optimal conditions were temperature 32.51 °C, pH 6.860, and inoculum 14.97%. The removal efficiency of MC-RR, nitrogen, phosphorus, and chemical oxygen demand were 0.76 μg/mL/h, 32.45%, 94.57%, and 64.07%, respectively. In addition, ACF-SA@YF1 also performed satisfactory cyclic stability, while the MC-RR removal efficiency was 70.38% after seven cycles and 78.54% of initial activity after 20 days of storage. Therefore, it is reasonable to believe that ACF-SA@YF1 is an effective material which has a great prospect in removing MC-RR and nutrients from freshwater ecosystems.
Collapse
Affiliation(s)
- Guofeng Ren
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Xinghou He
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Pian Wu
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yayuan He
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yong Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Shibiao Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, Hunan, China
| | - Xinli Song
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yafei He
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Yuandan Wei
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
15
|
Deng Y, Li P, Fang T, Jiang Y, Chen J, Chen N, Yuan D, Ma J. Automated Determination of Dissolved Reactive Phosphorus at Nanomolar to Micromolar Levels in Natural Waters Using a Portable Flow Analyzer. Anal Chem 2020; 92:4379-4386. [PMID: 32056426 DOI: 10.1021/acs.analchem.9b05252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Automated in-field methods for measuring dissolved reactive phosphorus (DRP) over a large concentration range are in high demand for the purpose of better understanding the biogeochemistry of phosphorus in the river-estuary-coast continuum to the open ocean. Here, an automated portable and robust analyzer was described for the determination of nanomolar to micromolar levels of DRP in natural waters. The quantification of DRP was based on classic phosphomolybdenum blue (PMB) chemistry. All the components of the analyzer were computer-controlled using LabVIEW-based laboratory-programmed software. When equipped with a 3 cm Z-type flow cell, the system demonstrated linearity with concentrations up to 12 μmol L-1, a sampling rate of 20 h-1, a limit of detection of 0.11 μmol L-1, and relative standard deviations (RSDs) of 0.4-4.6% (n = 11-576). When a solid-phase extraction cartridge was combined with the analyzer, the PMB formed from the sample was automatically concentrated on the hydrophilic-lipophilic balanced sorbent. The concentrated PMB compound was eluted with NaOH solution and measured in the spectrophotometric system. Under optimal conditions, the nanomolar-level mode afforded a sampling rate of 8 h-1, a limit of detection of 1.7 nmol L-1, and RSDs of 3.0-5.7% (n = 11-120). The system exhibited advantages that included a wide linear range, high sensitivity and reproducibility, low reagent consumption, and insignificant interference from salinity, silicate, arsenate, and other P-containing compounds. The system was successfully applied for discrete sample analysis, fixed site online monitoring, and the real-time underway measurement of DRP in riverine-estuarine-coastal waters.
Collapse
Affiliation(s)
- Yao Deng
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Dongshan Swire Marine Station, College of the Environment and Ecology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Peicong Li
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Dongshan Swire Marine Station, College of the Environment and Ecology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Tengyue Fang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Dongshan Swire Marine Station, College of the Environment and Ecology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yiyong Jiang
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Dongshan Swire Marine Station, College of the Environment and Ecology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Jixin Chen
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Dongshan Swire Marine Station, College of the Environment and Ecology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Nengwang Chen
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Dongshan Swire Marine Station, College of the Environment and Ecology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Dongxing Yuan
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Dongshan Swire Marine Station, College of the Environment and Ecology, Xiamen University, Xiamen 361102, People's Republic of China
| | - Jian Ma
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Dongshan Swire Marine Station, College of the Environment and Ecology, Xiamen University, Xiamen 361102, People's Republic of China
| |
Collapse
|
16
|
Du C, Hu Y, Han H, Sun W, Hou P, Liu R, Wang L, Yang Y, Liu R, Sun L, Yue T. Magnetic separation of phosphate contaminants from starch wastewater using magnetic seeding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133723. [PMID: 31425986 DOI: 10.1016/j.scitotenv.2019.133723] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/28/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Traditional chemical precipitation of phosphates from wastewater is somewhat inefficient because it produces some ultrafine hydroxyapatite particles that are difficult to settle. In this study, magnetic seeds with a core-shell structure were prepared by sulfation roasting for magnetic flocculation of those fine particles. Zeta potential measurements show that the hydroxyapatite particles are positively charged at pH 10, whereas the magnetic seeds are negatively charged. The Derjaguin-Landau-Verwey-Overbeek calculation indicates that the van der Waals force between the magnetic seeds and hydroxyapatite particles is always attractive. Moreover, the electrostatic attraction also contributes to aggregation of the magnetic seeds and hydroxyapatite particles. Orthogonal experiments show that the main factor affecting the magnetic flocculation is the dosage of magnetic seeds, and polymeric ferric sulfate also plays an important role. Under the optimal magnetic flocculation experimental conditions, the turbidity of wastewater after magnetic separation was only 16.388 NTU, contributing to the removal of phosphate contaminants. Therefore, magnetic flocculation and magnetic separation may provide an alternative solution for efficient purification of phosphate-containing wastewater.
Collapse
Affiliation(s)
- Chunjie Du
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Yuehua Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Haisheng Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China.
| | - Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China.
| | - Panpan Hou
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Runqing Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Li Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Yue Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Ruohua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Lei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| | - Tong Yue
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China
| |
Collapse
|
17
|
Torres-Valenzuela LS, Sanín-Villarrea A, Arango-Ramírez A, Serna-Jiménez JA. Caracterización fisicoquímica y microbiológica de aguas mieles del beneficio del café. REVISTA ION 2019. [DOI: 10.18273/revion.v32n2-2019006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
En el procesamiento del café, sólo se aprovecha el 5 % del producto fresco y se generan residuos como aguas mieles (AM), que pueden llegar hasta 40 L/kg de café pergamino seco y al ser vertidas pueden provocar contaminación de alto impacto ambiental. Consecuentemente, el objetivo fue caracterizar fisicoquímica y microbiológicamente dos muestras de AM (M1, M2) con el fin de evaluar el potencial en la extracción de biocomponentes. Los parámetros medidos a las dos muestras de agua fueron Demanda Química de Oxígeno (DQO), nitrógeno, amonio, cromo, oxígeno disuelto (OD), pH, conductividad, acidez volátil, fósforo, cloruros, sólidos, color y, adicionalmente se cuantificaron mesófilos, coliformes totales y estafilococos. Se identificaron diferencias significativas entre las muestras y un efecto del procesamiento del café, sobre las características evaluadas. M2 mostró mayor concentración de OD, conductividad y cambio de color respecto al control, mientras que M1 tuvo mayor concentración para los demás parámetros evaluados. Cromo y amonio estuvieron por debajo del límite de detección de la prueba empleada, por el contrario, la DQO fue superior a lo reglamentado para aguas domésticas. En el análisis microbiológico, se encontraron mesófilos en ambas muestras, y M2 presentó coliformes y estafilococos. Con lo anterior se evidencia que el método de procesamiento de café afecta los parámetros de calidad de las aguas residuales y por ende se deben implementar metodologías de tratamiento y/o aprovechamiento acordes a las características intrínsecas de cada proceso.
Collapse
|
18
|
|
19
|
Xu J, Lin K, Huang Y, Guo Q, Li H, Yuan D. Development of an online analyzer for determination of total phosphorus in industrial circulating cooling water with UV photooxidation digestion and spectrophotometric detection. Talanta 2019; 201:74-81. [PMID: 31122463 DOI: 10.1016/j.talanta.2019.03.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
A simple, effective and automatic analyzer was developed for rapid determination of total phosphorus and the presence of phosphonates in industrial circulating cooling water monitored. The key components of the analyzer were an ultraviolet (UV) photooxidation digester and a spectrophotometer. The total phosphorus was first converted to orthophosphate using the UV digester, and then its content was measured using the vanadomolybdophosphoric acid method. A bus topology and distributed control system were used. Industrial standard communication Modbus protocol was used for communication between the main controller and a computer. The online analyzer automatically processed the determination steps such as sample injection, reagent mixing, online digestion, signal detection, data acquiring and analysis. The detection linear range was 0.2-50 mgP L-1, and detection limit of 0.04 mgP L-1. The relative standard deviations of the method for 1 mgP L-1 and 20 mgP L-1 phosphate samples were 2.6% and 2.1% (n = 11), respectively. The recoveries of several real samples at various concentrations ranged from 91.5% to 103.8%. The total phosphorus of a certified reference material (GSBZ50033-95) was 1.50 ± 0.04 mgP L-1 (n = 3), consistent with the certified value (1.51 ± 0.02 mgP L-1). The analyzer had been used successfully in a circulating cooling water workshop; its integrated software-hardware not only demonstrated to be versatile but also suitable for monitoring total phosphorus in industrial or other water bodies.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China; Department of Experiential Practice, Guilin University of Electronic Technology, 541004, Guilin, Guangxi, China
| | - Kunning Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yongming Huang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Qing Guo
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, 541004, Guilin, Guangxi, China
| | - Heng Li
- Department of Experiential Practice, Guilin University of Electronic Technology, 541004, Guilin, Guangxi, China
| | - Dongxing Yuan
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
20
|
Li P, Deng Y, Shu H, Lin K, Chen N, Jiang Y, Chen J, Yuan D, Ma J. High-frequency underway analysis of ammonium in coastal waters using an integrated syringe-pump-based environmental-water analyzer (iSEA). Talanta 2019; 195:638-646. [DOI: 10.1016/j.talanta.2018.11.108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022]
|
21
|
Chen H, Zhao L, Yu F, Du Q. Detection of phosphorus species in water: technology and strategies. Analyst 2019; 144:7130-7148. [DOI: 10.1039/c9an01161g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review highlights recent advances in methods of detection of total phosphorus in water, including photoelectric strategies, spectroscopy techniques, and modeling algorithms.
Collapse
Affiliation(s)
- Hongwei Chen
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun 130012
- China
| | - Linlu Zhao
- Institute of Functional Materials and Molecular Imaging
- Key Laboratory of Emergency and Trauma
- Ministry of Education
- Key Laboratory of Hainan Trauma and Disaster Rescue
- College of Clinical Medicine
| | - Fabiao Yu
- Institute of Functional Materials and Molecular Imaging
- Key Laboratory of Emergency and Trauma
- Ministry of Education
- Key Laboratory of Hainan Trauma and Disaster Rescue
- College of Clinical Medicine
| | - Qiaoling Du
- State Key Laboratory on Integrated Optoelectronics
- College of Electronic Science and Engineering
- Jilin University
- Changchun 130012
- China
| |
Collapse
|