1
|
Li Y, Li S, Ren J, Li J, Zhao Y, Chen D, Wu Y. Occurrence, spatial distribution, and risk assessment of perchlorate in tea from typical regions in China. Curr Res Food Sci 2023; 7:100606. [PMID: 37822319 PMCID: PMC10563047 DOI: 10.1016/j.crfs.2023.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Perchlorate is a kind of persistent pollutant which occurs widely in the environment. The news of "high content of perchlorate detected in tea exported from China to Europe" has aroused public concerns on perchlorate in tea. However, limited data on its occurrence in tea and health risks for the tea consumers are available. To this end, this study explored the occurrence and spatial distribution of perchlorate based on 747 tea samples collected from the 13 major tea producing regions in China. Perchlorate was detected in 100% of tea samples. The average concentration of perchlorate was 163 μg/kg with the range from 1.2 μg/kg to 3132 μg/kg. From the perspective of spatial distribution, a remarkable difference was observed for perchlorate concentrations in tea samples between different regions (p < 0.0001), and the average concentration of perchlorate from the central China (409 μg/kg) was higher than that from the eastern (90.7 μg/kg) and western (140 μg/kg) regions. However, this study cannot obtain the difference of perchlorate concentrations between different tea categories. Furthermore, a human exposure assessment of perchlorate intake through tea consumption was performed by deterministic and probabilistic risk assessment. The average chronic daily intake (CDI) to perchlorate of Chinese tea consumers was 0.0183 μg/kg bw/day, however, CDI for high tea consumers (99% and 99.9%) was 0.1514-0.4675 μg/kg bw/day. The health risk assessment conducted with a hazard quotient showed that perchlorate exposure through tea consumption was under a safety threshold. Nevertheless, if other dietary exposure pathways were considered, health risks to perchlorate for high tea consumers would be paid attention to.
Collapse
Affiliation(s)
- Yan Li
- Department of Sanitary Technology, West China School of Public Health, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Shaohua Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
- Department of Rehabilitation, Wuyi University, Wuyishan, 354300, China
| | - Jun Ren
- Wuhai Inspection and Testing Center, Wuhai, 016000, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Dawei Chen
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yongning Wu
- Department of Sanitary Technology, West China School of Public Health, Sichuan University, Chengdu, 610041, China
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (No. 2019RU014), China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| |
Collapse
|
2
|
Liu WX, Zhou WN, Song S, Zhao YG, Lu Y. Preparation and Characterization of Nano-Fe 3O 4 and Its Application for C18-Functionalized Magnetic Nanomaterials Used as Chromatographic Packing Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1111. [PMID: 36986005 PMCID: PMC10058610 DOI: 10.3390/nano13061111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
A new type of magnetic nanomaterial with Fe3O4 as the core and organic polymer as the shell was synthesized by seed emulsion polymerization. This material not only overcomes the problem of insufficient mechanical strength of the organic polymer, it also solves the problem that Fe3O4 is prone to oxidation and agglomeration. In order to make the particle size of Fe3O4 meet the requirement of the seed, the solvothermal method was used to prepare Fe3O4. The effects of the reaction time, amount of solvent, pH value, and polyethylene glycol (PEG) on the particle size of Fe3O4 were investigated. In addition, in order to accelerate the reaction rate, the feasibility of preparing Fe3O4 by microwave was studied. The results showed that under the optimum conditions, the particle size of Fe3O4 could reach 400 nm and had good magnetic properties. After three stages of oleic acid coating, seed emulsion polymerization, and C18 modification, the obtained C18-functionalized magnetic nanomaterials were used for the preparation of the chromatographic column. Under optimal conditions, stepwise elution significantly shortened the elution time of sulfamethyldiazine, sulfamethazine, sulfamethoxypyridazine, and sulfamethoxazole while still achieving a baseline separation.
Collapse
Affiliation(s)
- Wen-Xin Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (W.-X.L.); (S.S.)
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Wei-Na Zhou
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; (W.-X.L.); (S.S.)
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
3
|
Reznicek J, Bednarik V, Filip J. PERCHLORATE SENSING – CAN ELECTROCHEMISTRY MEET THE SENSITIVITY OF STANDARD METHODS? Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
4
|
Meng Z, Fan J, Cui X, Yan Y, Ju Z, Lu R, Zhou W, Gao H. Removal of perchlorate from aqueous solution using quaternary ammonium modified magnetic Mg/Al-layered double hydroxide. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Nanomaterials with Excellent Adsorption Characteristics for Sample Pretreatment: A Review. NANOMATERIALS 2022; 12:nano12111845. [PMID: 35683700 PMCID: PMC9182308 DOI: 10.3390/nano12111845] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022]
Abstract
Sample pretreatment in analytical chemistry is critical, and the selection of materials for sample pretreatment is a key factor for high enrichment ability, good practicality, and satisfactory recoveries. In this review, the recent progress of the sample pretreatment methods based on various nanomaterials (i.e., carbon nanomaterials, porous nanomaterials, and magnetic nanomaterials) with excellent adsorption efficiency, selectivity, and reproducibility, as well as their applications, are presented. Due to the unique nanoscale physical–chemical properties, magnetic nanomaterials have been used for the extraction of target analytes by easy-to-handle magnetic separation under a magnetic field, which can avoid cumbersome centrifugation and filtration steps. This review also highlights the preparation process and reaction mechanism of nanomaterials used in the sample pretreatment methods, which have been applied for the extraction organophosphorus pesticides, fluoroquinolone antibiotics, phenoxy carboxylic acids, tetracycline antibiotics, hazardous metal ions, and rosmarinic acid. In addition, the remaining challenges and future directions for nanomaterials used as sorbents in the sample pretreatment are discussed.
Collapse
|
6
|
Liao Z, Cao D, Gao Z. Monitoring and risk assessment of perchlorate in tea samples produced in China. Food Res Int 2022; 157:111435. [DOI: 10.1016/j.foodres.2022.111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
|
7
|
Li Y, Liu S, Zhang Q, Gong W, Yin H, Yang B, Qin L, Zhao Q, Zhu Y. Sustainable hydrophilic ultrasmall carbonaceous spheres modified by click reaction for high-performance polymeric ion chromatographic stationary phase. J Chromatogr A 2022; 1663:462762. [PMID: 34974367 DOI: 10.1016/j.chroma.2021.462762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Novel poly(ethylvinylbenzene-divinylbenzene) (EVB-DVB) agglomerated with ultrasmall carbonaceous spheres (UCSs) anion-exchange packings for ion chromatography (IC) were constructed. Hydrophilic UCSs with mean sizes of 62-98 nm were synthesized in quantity by the polydiallyl dimethyl ammonium chloride aided hydrothermal carbonization of fructose. The green strategy based on the thiol-ene click reaction with cysteamine in aqueous system was first designed for the hyperbranched polyquaternary amine (HPA) grafting of UCSs with negligible damage on their monodispersity. The HPA modified UCSs were evenly distributed on sulfonated EVB-DVB substrate to form one uniform layer of functional nanospheres without observable coagulum. Seven typical anions (F-, Cl-, NO2-, Br-, NO3-, SO42- and PO43-) were baseline separated on constructed packing in 5 min with high efficiencies in the range of 44,800-71,100 plates m - 1. The rapid separation of polarizable anions, small organic acids and saccharides could be also accomplished under isocratic elution with competitive peak symmetry and efficiency. Good reproducibility was demonstrated by consecutive injection. Thiosulfate in water reducer was further detected on prepared packing in 4 min with detection limit of 0.04 mg L - 1 (S/N = 3) and good repeatability.
Collapse
Affiliation(s)
- Yuqing Li
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Street, Hangzhou 311402, China
| | - Sha Liu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Street, Hangzhou 311402, China
| | - Qiaoyan Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Street, Hangzhou 311402, China
| | - Wan Gong
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Street, Hangzhou 311402, China
| | - Hua Yin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Street, Hangzhou 311402, China
| | - Bo Yang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Street, Hangzhou 311402, China
| | - Luping Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Street, Hangzhou 311402, China.
| | - Qiming Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Street, Hangzhou 311402, China.
| | - Yan Zhu
- Department of Chemistry, Xixi Campus, Zhejiang University, 148 Tianmushan Road, Hangzhou 310028, China
| |
Collapse
|
8
|
Babić Leko M, Gunjača I, Pleić N, Zemunik T. Environmental Factors Affecting Thyroid-Stimulating Hormone and Thyroid Hormone Levels. Int J Mol Sci 2021; 22:6521. [PMID: 34204586 PMCID: PMC8234807 DOI: 10.3390/ijms22126521] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023] Open
Abstract
Thyroid hormones are necessary for the normal functioning of physiological systems. Therefore, knowledge of any factor (whether genetic, environmental or intrinsic) that alters the levels of thyroid-stimulating hormone (TSH) and thyroid hormones is crucial. Genetic factors contribute up to 65% of interindividual variations in TSH and thyroid hormone levels, but many environmental factors can also affect thyroid function. This review discusses studies that have analyzed the impact of environmental factors on TSH and thyroid hormone levels in healthy adults. We included lifestyle factors (smoking, alcohol consumption, diet and exercise) and pollutants (chemicals and heavy metals). Many inconsistencies in the results have been observed between studies, making it difficult to draw a general conclusion about how a particular environmental factor influences TSH and thyroid hormone levels. However, lifestyle factors that showed the clearest association with TSH and thyroid hormones were smoking, body mass index (BMI) and iodine (micronutrient taken from the diet). Smoking mainly led to a decrease in TSH levels and an increase in triiodothyronine (T3) and thyroxine (T4) levels, while BMI levels were positively correlated with TSH and free T3 levels. Excess iodine led to an increase in TSH levels and a decrease in thyroid hormone levels. Among the pollutants analyzed, most studies observed a decrease in thyroid hormone levels after exposure to perchlorate. Future studies should continue to analyze the impact of environmental factors on thyroid function as they could contribute to understanding the complex background of gene-environment interactions underlying the pathology of thyroid diseases.
Collapse
Affiliation(s)
| | | | | | - Tatijana Zemunik
- Department of Medical Biology, School of Medicine, University of Split, Šoltanska 2, 21000 Split, Croatia; (M.B.L.); (I.G.); (N.P.)
| |
Collapse
|
9
|
Hu J, Xian Y, Wu Y, Chen R, Dong H, Hou X, Liang M, Wang B, Wang L. Perchlorate occurrence in foodstuffs and water: Analytical methods and techniques for removal from water - A review. Food Chem 2021; 360:130146. [PMID: 34034057 DOI: 10.1016/j.foodchem.2021.130146] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/15/2022]
Abstract
Perchlorate (ClO4-), a type of contaminant with high diffusivity and durability, has been widely detected in water and foodstuffs, arousing a global concern. It can interfere with normal function of the human thyroid gland, affecting human health. Therefore, determination of perchlorate in water and foodstuffs, and removal from water are important. This review focuses on the occurrence of perchlorate, mainly in water and foodstuffs, and provides an overview of analytical methods for determination of perchlorate over the last two decades. In addition, merits and drawbacks of the various methods have been considered. This review also highlights the most commonly used approaches for removal of perchlorate from water. Finally, current trends and future perspectives in determination of perchlorate and removal from water are proposed. This review provided a comprehensive understanding of perchlorate occurrence and its removal from water, and had practical significance in reducing the harm of perchlorate to human.
Collapse
Affiliation(s)
- Junpeng Hu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yanping Xian
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Yuluan Wu
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Rongqiao Chen
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiangchang Hou
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Ming Liang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Bin Wang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| | - Li Wang
- Guangzhou Quality Supervision and Testing Institute, Research Center of Risk Dynamic Detection and Early Warning for Food Safety of Guangzhou City, Key Laboratory of Detection Technology for Food Safety of Guangzhou City, Guangzhou 511447, China
| |
Collapse
|
10
|
Wang Y, Dong J, Chen M, Tian Y, Liu X, Liu L, Wu Y, Gong Z. Dietary exposure and risk assessment of perchlorate in diverse food from Wuhan, China. Food Chem 2021; 358:129881. [PMID: 33933950 DOI: 10.1016/j.foodchem.2021.129881] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022]
Abstract
The perchlorate levels in 330 foods belonging to 5 varieties obtained from Wuhan were monitored. An ultra-high performance liquid chromatography coupled with triple quadrupoles mass spectrometry in combination with Cl18O4- internal standard method was performed to determine the level of perchlorate in various foods. Hereafter, dietary exposure and risk assessment of perchlorate was evaluated. The results revealed that the average level of perchlorate was 15.04 µg/kg with a detection of 95% among the whole food groups. The level of perchlorate in vegetables was the highest among the 5 varieties of food with an average content of 27.39 µg/kg, which in meat was the lowest with an average of 3.65 µg/kg. Estimated dietary intake results illustrated that males showed exposure in the range 0.004-0.18 µg/kg bw/day, which for females was 0.01-0.21 µg/kg bw/day. The results indicated that exposure to perchlorate via the food consumption for Wuhan people was evaluated as safe.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Jingjing Dong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Mengyuan Chen
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yimei Tian
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Liang Liu
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Yongning Wu
- HC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil of Ministry of Education, Wuhan Polytechnic University, Wuhan, Hubei 430023, China.
| |
Collapse
|
11
|
Wang Q, Chen K, Huang S, Zhu X, Kang F. Spontaneous assembly of microbial extracellular polymeric substances into microcapsules involved in trapping and immobilizing degradation-resistant oxoanions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143651. [PMID: 33257076 DOI: 10.1016/j.scitotenv.2020.143651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Despite the ubiquity of microbial extracellular polymeric substances (EPS) in soils and aquatic environments, the roles played by EPS in the nonreductive transformation of toxic and degradation-resistant oxoanions are poorly understood. Here, we used perchlorate, which is ubiquitous in surface environments, as an initiator to study the spontaneous assembly of EPS into microcapsules involved in trapping and immobilizing oxoanions. The results confirmed that ClO4- oxoanions could be rapidly trapped in 20 min by EPS extracted from a common Bacillus subtilis, whereas no chemical reduction of ClO4- occurred in 48 h. Integrated spectroscopic analyses with florescence quenching microtitration and theoretical models showed that amino functionalities of EPS are responsible for sequestering ClO4-, with lower pH values being more favorable to formation of EPS-ClO4- micelles. Combined molecular dynamics scheme with wave function analyses showed that besides amino residues, the protonated side-chain amino groups in the basic proteins have a greater capacity for sequestering ClO4- through a noncovalent H-bonding mechanism in which dissociable protons serve as the nodes to bridge ClO4-. A quantitative association between the number of hydrogen bonds and bioavailability revealed that immobilization by EPS mitigates the uptake of toxic oxoanions by forage ryegrass, reducing their risk exposure to edible produce. MAIN FINDING OF THE WORK: Micelles formed by freely dissolved EPS mitigate the uptake of toxic oxoanions by forage ryegrass.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Jiangsu 210008, China
| | - Kai Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, China
| | - Shuhan Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, China
| | - Xuezhu Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, China
| | - Fuxing Kang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Jiangsu 210095, China.
| |
Collapse
|
12
|
Ścigalski P, Kosobucki P. Recent Materials Developed for Dispersive Solid Phase Extraction. Molecules 2020; 25:E4869. [PMID: 33105561 PMCID: PMC7659476 DOI: 10.3390/molecules25214869] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022] Open
Abstract
Solid phase extraction (SPE) is an analytical procedure developed with the purpose of separating a target analyte from a complex sample matrix prior to quantitative or qualitative determination. The purpose of such treatment is twofold: elimination of matrix constituents that could interfere with the detection process or even damage analytical equipment as well as enriching the analyte in the sample so that it is readily available for detection. Dispersive solid phase extraction (dSPE) is a recent development of the standard SPE technique that is attracting growing attention due to its remarkable simplicity, short extraction time and low requirement for solvent expenditure, accompanied by high effectiveness and wide applicability. This review aims to thoroughly survey recently conducted analytical studies focusing on methods utilizing novel, interesting nanomaterials as dSPE sorbents, as well as known materials that have been only recently successfully applied in dSPE techniques, and evaluate their performance and suitability based on comparison with previously reported analytical procedures.
Collapse
Affiliation(s)
- Piotr Ścigalski
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland;
| | | |
Collapse
|
13
|
A highly-efficient and cost-effective pretreatment method for selective extraction and detection of perchlorate in tea and dairy products. Food Chem 2020; 328:127113. [DOI: 10.1016/j.foodchem.2020.127113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
|
14
|
|
15
|
Wang C, Chen H, Zhu L, Liu X, Lu C. Accurate, sensitive and rapid determination of perchlorate in tea by hydrophilic interaction chromatography-tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3592-3599. [PMID: 32701081 DOI: 10.1039/d0ay00811g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Perchlorate is an environmental contaminant interrupting thyroid hormone production, and perchlorate in tea has raised wide concern recently. In this study, an accurate method was developed for the determination of perchlorate in tea using hydrophilic interaction chromatography-tandem mass spectrometry and a simplified QuEChERS procedure. The method utilized a zwitterion HILIC column for separation, and the optimal gradient eluents consisted of acetonitrile and aqueous solution with 0.1% formic acid and 20 mmol L-1 ammonium formate. Calibration curves were fitted by the quadratic model with 1/x weight instead of the linear model. As perchlorate was only partially extractable when using acetonitrile or methanol as the extraction solvent, acetonitrile/water (1 : 1, v/v) was chosen to extract perchlorate from tea samples. Graphitized carbon black was used as the dispersive solid phase extraction sorbent to clean up tea extracts. The method exhibited satisfactory accuracy with recoveries of 81.4-100.9% and relative standard deviations of 1.3-14.5% for green and black teas. The limit of quantitation was 0.005 mg kg-1, while the limits of detection were 0.0011 mg kg-1 for green tea and 0.0013 mg kg-1 for black tea, indicating an excellent sensitivity of this method. A 100% positive rate of perchlorate was found in 100 real tea samples, and the concentrations ranged from 0.0030 mg kg-1 to 0.78 mg kg-1. This accurate, sensitive and rapid method would be suitable for monitoring, risk assessment and source identification of perchlorate in tea.
Collapse
Affiliation(s)
- Chen Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
| | | | | | | | | |
Collapse
|
16
|
A composite consisting of a deep eutectic solvent and dispersed magnetic metal-organic framework (type UiO-66-NH 2) for solid-phase extraction of RNA. Mikrochim Acta 2019; 187:58. [PMID: 31848727 DOI: 10.1007/s00604-019-4040-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
A cactus-shaped magnetic composite was prepared for solid-phase extraction of RNA. It is composed of the metal organic framework UiO-66-NH2 that was modified with Fe3O4 nanoparticles. The composite was then dispersed in a lactic acid-based deep eutectic solvent (DES, Fe3O4-COOH@UiO-66-NH2@DES). The structures of the sorbents were characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, vibrating sample magnetometry and thermogravimetric analysis. The extraction performance of sorbents was optimized and the maximum extraction capacity reached 246 mg·g-1. Extraction is shown to mainly rely on chelation interaction, electrostatic interaction, hydrophobic interaction and hydrogen bonding interaction. The sorbent can selectively extract RNA over DNA, bovine hemoglobin and amino acids. Regeneration studies indicated that the sorbent can be re-used (after regenreation with DES) several times without obvious change of the extraction capacity. The successful extraction of RNA from yeast testified the practical application of the sorbent. Graphical abstractSchematic representation of the fabrication Fe3O4-COOH@UiO-66-NH2@DES, and its application in the magnetic solid phase extraction of RNA.
Collapse
|
17
|
Zhang J, Chen Z, Tang S, Luo X, Xi J, He Z, Yu J, Wu F. Fabrication of porphyrin-based magnetic covalent organic framework for effective extraction and enrichment of sulfonamides. Anal Chim Acta 2019; 1089:66-77. [DOI: 10.1016/j.aca.2019.08.066] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022]
|
18
|
Li WK, Shi YP. Recent advances and applications of carbon nanotubes based composites in magnetic solid-phase extraction. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.039] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Magnetic dispersive solid-phase extraction for the determination of three different glycosides in the Kang'ai injection. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Liu C, Liu X, Marriott PJ, Qian H, Meng Z, Yang Z, Lu R, Gao H, Zhou W. Magnetic solid-phase extraction of benzoylurea insecticides in tea samples with Fe3
O4
-hyperbranched polyester magnetic composite as sorbent. J Sep Sci 2019; 42:1610-1619. [DOI: 10.1002/jssc.201801159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Chaoran Liu
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing P. R. China
| | - Xinya Liu
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing P. R. China
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science, School of Chemistry; Monash University; Clayton Melbourne Australia
| | - Heng Qian
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing P. R. China
| | - Zilin Meng
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing P. R. China
| | - Zhirong Yang
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing P. R. China
| | - Runhua Lu
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing P. R. China
| | - Haixiang Gao
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing P. R. China
| | - Wenfeng Zhou
- Department of Applied Chemistry, College of Science; China Agricultural University; Beijing P. R. China
| |
Collapse
|