1
|
Labrador-Páez L, Casasnovas-Melián A, Junquera E, Guerrero-Martínez A, Ahijado-Guzmán R. Optical dark-field spectroscopy of single plasmonic nanoparticles for molecular biosciences. NANOSCALE 2024; 16:19192-19206. [PMID: 39351920 DOI: 10.1039/d4nr03055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
An ideal sensor capable of quantifying analytes in minuscule sample volumes represents a significant technological advancement. Plasmonic nanoparticles integrated with optical dark-field spectroscopy have reached this capability, demonstrating versatility and expanding applicability across in vitro and in vivo subjects. This review underscores the applicability of optical dark-field spectroscopy with single plasmonic nanoparticles to elucidate a wide range of biomolecular characteristics, including binding constants, molecular dynamics, distances, and forces, as well as recording cell communication signals. Perspectives highlight the potential for the development of implantable nanosensors for metabolite detection in animal models, illustrating the technique's efficacy without the need for labeling molecules. In summary, this review aims to consolidate knowledge of this adaptable and robust technique for decoding molecular biological phenomena within the nano- and bio-scientific community.
Collapse
Affiliation(s)
- Lucía Labrador-Páez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Alfredo Casasnovas-Melián
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Elena Junquera
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| | - Rubén Ahijado-Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Anh Thu PN, Men NH, Thi Vo CD, Van Toi V, Truong PL. A simple and rapid colorimetric detection of Staphylococcus aureus relied on the distance-dependent optical properties of silver nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2913-2920. [PMID: 38660999 DOI: 10.1039/d3ay02189k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The quick and accurate diagnosis of pathogens has appeared as a pressing issue in clinical diagnostics, environmental monitoring, and food safety. The available assays are suffering from limited capacities in simple, fast, low-cost, and on-site detection to increase prevention and proper treatment. Herein, we address these challenges by developing a simple, speedy, affordable, and ultrasensitive nanoplasmonic biosensor for colorimetric detection of cDNA from staphylococcal RNA relying on the distance-dependent optical features of silver nanostructures for the measurement of color variations and spectral shifts owing to the plasmon coupling generated by the cross-linking accumulation of AgNPs. The method described utilizes silver nanoparticles (AgNPs) immobilized with two different single-stranded oligonucleotides (ssDNA1 and ssDNA2) that specifically recognize the target DNA. Sandwich hybridization of target DNA with ssDNA1 and ssDNA2 induced color variations and spectral shifts of AgNPs, whereas test samples without the target DNA remained yellow as the initial color of colloidal silver. The designed nanoplasmonic biosensor demonstrated high specificity with the detection limit (LOD) of ∼1.8 amol target DNA (∼106 molecules per test) in the broad linear dynamic range from 0.01 to 100 nM, and LOD down to a few cells was attained for amplified bacterial nucleic acids and a linear range from 102 CFU mL-1 to 107 CFU mL-1. The sensing approach showed great potential for the timely diagnosis of pathogens in low-density samples, and it has considerable merits over traditional culture approaches and qPCR techniques.
Collapse
Affiliation(s)
- Phan Ngoc Anh Thu
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Hoang Men
- Department of Physics and Biophysics, Faculty of Basic Science, Can Tho University of Medicine and Pharmacy, Can Tho city 900000, Vietnam
| | - Cam-Duyen Thi Vo
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam.
| | - Vo Van Toi
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam.
| | - Phuoc Long Truong
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
- School of Biomedical Engineering, International University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|
3
|
Suwannin P, Jangpatarapongsa K, Polpanich D, Alhibshi A, Errachid A, Elaissari A. Enhancing leptospirosis control with nanosensing technology: A critical analysis. Comp Immunol Microbiol Infect Dis 2024; 104:102092. [PMID: 37992537 DOI: 10.1016/j.cimid.2023.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Leptospirosis is a serious health problem in tropical areas; thus, animals shed leptospires in the environment. Humans are accidental hosts infected through exposure to contaminating bacteria in the environment. One health strategy can be applied to protect and eliminate leptospirosis because this cooperates and coordinates activities between doctors, veterinarians, and ecologists. However, conventional methods still have limitations. Therefore, the main challenges of leptospirosis control are the high sensing of detection methods to screen and control the pathogens. Interestingly, nano sensing combined with a leptospirosis detection approach can increase the sensitivity and eliminate some limitations. This article reviews nanomaterial development for an advanced leptospirosis detection method, e.g., latex beads-based agglutination test, magnetic nanoparticles enrichment, and gold-nanoparticles-based immunochromatographic assay. Thus, nanomaterials can be functionalized with biomolecules or sensing molecules utilized in various mechanisms such as biosensors. Over the last decade, many biosensors have been developed for Leptospira spp. pathogen and others. The evolution of biosensors for leptospirosis detection was designed for high efficiency and might be an alternative tool. In addition, the high-sensing fabrications are useful for leptospires screening in very low levels, for example, soil or water from the environment.
Collapse
Affiliation(s)
- Patcharapan Suwannin
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France
| | - Kulachart Jangpatarapongsa
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Duangporn Polpanich
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Amani Alhibshi
- Department of Neuroscience Research, Institute of Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne 69622, France.
| |
Collapse
|
4
|
Qian X, Shen Y, Yuan J, Yang CT, Zhou X. Visual and Ultrasensitive Detection of a Coronavirus Using a Gold Nanorod Probe under Dark Field. BIOSENSORS 2022; 12:1146. [PMID: 36551113 PMCID: PMC9775988 DOI: 10.3390/bios12121146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), a coronavirus that causes highly infectious intestinal diarrhea in piglets, has led to severe economic losses worldwide. Rapid diagnosis and timely supervision are significant in the prophylaxis of PEDV. Herein, we proposed a gold-nanorod (GNR) probe-assisted counting method using dark field microscopy (DFM). The antibody-functionalized silicon chips were prepared to capture PEDV to form sandwich structures with GNR probes for imaging under DFM. Results show that our DFM-based assay for PEDV has a sensitivity of 23.80 copies/μL for simulated real samples, which is very close to that of qPCR in this study. This method of GNR probes combined with DFM for quantitative detection of PEDV not only has strong specificity, good repeatability, and a low detection limit, but it also can be implemented for rapid on-site detection of the pathogens.
Collapse
Affiliation(s)
- Xuejia Qian
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuanzhao Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jiasheng Yuan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chih-Tsung Yang
- Future Industries Institute, Mawson Lakes Campas, University of South Australia, Adelaide, SW 5095, Australia
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Zhou B, Guo X, Yang N, Huang Z, Huang L, Fang Z, Zhang C, Li L, Yu C. Surface engineering strategies of gold nanomaterials and their applications in biomedicine and detection. J Mater Chem B 2021; 9:5583-5598. [PMID: 34161402 DOI: 10.1039/d1tb00181g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gold nanomaterials have potential applications in biosensors and biomedicine due to their controllable synthesis steps, high biocompatibility, low toxicity and easy surface modification. However, there are still various limitations including low water solubility and stability, which greatly affect their applications. In addition, some synthetic methods are very complicated and costly. Therefore, huge efforts have been made to improve their properties. This review mainly introduces the strategies for surface modification of gold nanomaterials, such as amines, biological small molecules and organic small molecules as well as the biological applications of these functionalized AuNPs. We aim to provide effective ideas for better functionalization of gold nanomaterials in the future.
Collapse
Affiliation(s)
- Bicong Zhou
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Xiaolu Guo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Naidi Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhongxi Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Lihua Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Zhijie Fang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| |
Collapse
|
6
|
Gao PF, Lei G, Huang CZ. Dark-Field Microscopy: Recent Advances in Accurate Analysis and Emerging Applications. Anal Chem 2021; 93:4707-4726. [DOI: 10.1021/acs.analchem.0c04390] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Gang Lei
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Ali SA, Boby N, Preena P, Singh SV, Kaur G, Ghosh SK, Nandi S, Chaudhuri P. Microcapillary LAMP for rapid and sensitive detection of pathogen in bovine semen. Anim Biotechnol 2021; 33:1025-1034. [PMID: 33427030 DOI: 10.1080/10495398.2020.1863225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A microcapillary-based loop-mediated isothermal amplification (µcLAMP) has been described for specific detection of infectious reproductive pathogens in semen samples of cattle without sophisticated instrumentation. Brucella abortus, Leptospira interrogans serovar Pomona and bovine herpesvirus 1 (BoHV-1) cultures were mixed in bovine semen samples. The µcLAMP assay is portable, user-friendly, cost-effective, and suitable to be performed as a POC diagnostic test. We have demonstrated high sensitivity and specificity of µcLAMP for detection of Brucella, Leptospira, and BoHV-1 in bovine semen samples comparable to PCR and qPCR assays. Thus, µcLAMP would be a promising field-based test for monitoring various infectious pathogens in biological samples.HighlightsDetect infectious organism in bovines semenReduction in carryover contamination is an important attribute, which may reduce the false-positive reaction.µcLAMP is a miniaturized form, which could be performed with a minimum volume of reagents.The µcLAMP assay is portable, user-friendly, and suitable to be performed as a POC diagnostic test.
Collapse
Affiliation(s)
- Syed Atif Ali
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, India
| | - Nongthombam Boby
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, India
| | - Prasanna Preena
- Division of Veterinary Medicine, Indian Veterinary Research Institute, Izatnagar, India
| | - Shiv Varan Singh
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, India
| | - Gurpreet Kaur
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, India
| | - Subrata Kumar Ghosh
- Division of Animal Reproduction, Indian Veterinary Research Institute, Izatnagar, India
| | - Sukdeb Nandi
- CADRAD, Indian Veterinary Research Institute, Izatnagar, India
| | - Pallab Chaudhuri
- Division of Bacteriology & Mycology, Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
8
|
Chen F, Di T, Yang CT, Zhang T, Thierry B, Zhou X. Naked-Eye Enumeration of Single Chlamydia pneumoniae Based on Light Scattering of Gold Nanoparticle Probe. ACS Sens 2020; 5:1140-1148. [PMID: 32207302 DOI: 10.1021/acssensors.0c00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chlamydia pneumoniae is a spherical zoonotic pathogen with a diameter of ∼200 nm, which can lead to a wide range of acute and chronic diseases in human body. Early and reliable on-site detection of C. pneumoniae is the key step to control the spread of the pathogen. However, the lack of a current technology with advantages of rapidity, ultrasensitivity, and convenience limits the implementation of traditional techniques for on-site detection of C. pneumoniae. Herein, we developed a naked-eye counting of C. pneumoniae based on the light scattering properties of gold nanoparticle (GNP) under dark-field microscopy (termed "GNP-labeled dark-field counting strategy"). The recognition of single C. pneumoniae by anti-C. pneumoniae antibodies-functionalized GNP probes with size of 15 nm leads to the formation of wreath-like structure due to the strong scattered light resulted from hundreds of GNP probes binding on one C. pneumoniae under dark-field microscopy. Hundreds of GNP probes can bind to the surface of C. pneumoniae due to the high stability and specificity of the nucleic acid immuno-GNP probes, which generates by the hybridization of DNA-modified GNP with DNA-functionalized antibodies. The limit of detection (LOD) of the GNP-labeled dark-field counting strategy for C. pneumoniae detection in spiked samples or real samples is down to four C. pneumoniae per microliter, which is about 4 times more sensitive than that of quantitative polymerase chain reaction (qPCR). Together with the advantages of the strong light scattering characteristic of aggregated GNPs under dark-field microscopy and the specific identification of functionalized GNP probes, we can detect C. pneumoniae in less than 30 min using a cheap and portable microscope even if the sample contains only a few targets of interest and other species at high concentration. The GNP-labeled dark-field counting strategy meets the demands of rapid detection, low cost, easy to operate, and on-site detection, which paves the way for early and on-site detection of infectious pathogens.
Collapse
Affiliation(s)
- Fenglei Chen
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tao Di
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chih-Tsung Yang
- Future Industries Institute and ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Tianyu Zhang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Xin Zhou
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|