1
|
Stoikov II, Antipin IS, Burilov VA, Kurbangalieva AR, Rostovskii NV, Pankova AS, Balova IA, Remizov YO, Pevzner LM, Petrov ML, Vasilyev AV, Averin AD, Beletskaya IP, Nenajdenko VG, Beloglazkina EK, Gromov SP, Karlov SS, Magdesieva TV, Prishchenko AA, Popkov SV, Terent’ev AO, Tsaplin GV, Kustova TP, Kochetova LB, Magdalinova NA, Krasnokutskaya EA, Nyuchev AV, Kuznetsova YL, Fedorov AY, Egorova AY, Grinev VS, Sorokin VV, Ovchinnikov KL, Kofanov ER, Kolobov AV, Rusinov VL, Zyryanov GV, Nosov EV, Bakulev VA, Belskaya NP, Berezkina TV, Obydennov DL, Sosnovskikh VY, Bakhtin SG, Baranova OV, Doroshkevich VS, Raskildina GZ, Sultanova RM, Zlotskii SS, Dyachenko VD, Dyachenko IV, Fisyuk AS, Konshin VV, Dotsenko VV, Ivleva EA, Reznikov AN, Klimochkin YN, Aksenov DA, Aksenov NA, Aksenov AV, Burmistrov VV, Butov GM, Novakov IA, Shikhaliev KS, Stolpovskaya NV, Medvedev SM, Kandalintseva NV, Prosenko OI, Menshchikova EB, Golovanov AA, Khashirova SY. Organic Chemistry in Russian Universities. Achievements of Recent Years. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2024; 60:1361-1584. [DOI: 10.1134/s1070428024080013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 01/06/2025]
|
2
|
Matczuk M, Ruzik L, Keppler BK, Timerbaev AR. Nanoscale Ion-Exchange Materials: From Analytical Chemistry to Industrial and Biomedical Applications. Molecules 2023; 28:6490. [PMID: 37764266 PMCID: PMC10536074 DOI: 10.3390/molecules28186490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nano-sized ion exchangers (NIEs) combine the properties of common bulk ion-exchange polymers with the unique advantages of downsizing into nanoparticulate matter. In particular, being by nature milti-charged ions exchangers, NIEs possess high reactivity and stability in suspensions. This brief review provides an introduction to the emerging landscape of various NIE materials and summarizes their actual and potential applications. Special attention is paid to the different methods of NIE fabrication and studying their ion-exchange behavior. Critically discussed are different examples of using NIEs in chemical analysis, e.g., as solid-phase extraction materials, ion chromatography separating phases, modifiers for capillary electrophoresis, etc., and in industry (fuel cells, catalysis, water softening). Also brought into focus is the potential of NIEs for controlled drug and contrast agent delivery.
Collapse
Affiliation(s)
- Magdalena Matczuk
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Lena Ruzik
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland;
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Andrei R. Timerbaev
- Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
3
|
Capillary electrophoresis in phytochemical analysis: Advances and applications in the period 2018–2021. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
4
|
Enantioselective separation and simulation studies of five flavanone glycosides on a cellulose tris-(3,5-dichlorophenylcarbamate) chiral stationary phase. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Kartsova L, Makeeva D, Kravchenko A, Moskvichev D, Polikarpova D. Capillary electrophoresis as a powerful tool for the analyses of bacterial samples. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Kartsova LA, Makeeva DV, Bessonova EA. Current Status of Capillary Electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Mohammadnia M, Heydari R, Sohrabi MR, Motiee F. Determination of diazinon in water and food samples using magnetic solid‐phase extraction coupled with liquid chromatography. SEPARATION SCIENCE PLUS 2020. [DOI: 10.1002/sscp.202000043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Maryam Mohammadnia
- Department of Chemistry, Tehran North Branch Islamic Azad University Tehran Iran
| | - Rouhollah Heydari
- Research Center for Environmental Determinants of Health Kermanshah University of Medical Sciences Kermanshah Iran
| | - Mahmoud Reza Sohrabi
- Department of Chemistry, Tehran North Branch Islamic Azad University Tehran Iran
| | - Fereshteh Motiee
- Department of Chemistry, Tehran North Branch Islamic Azad University Tehran Iran
| |
Collapse
|
8
|
Bai Q, Zhang C, Zhao Y, Wang C, Maihemuti M, Sun C, Qi Y, Peng J, Guo X, Zhang Z, Fang L. Evaluation of chiral separation based on bovine serum albumin–conjugated carbon nanotubes as stationary phase in capillary electrochromatography. Electrophoresis 2020; 41:1253-1260. [PMID: 32350876 DOI: 10.1002/elps.202000003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/02/2020] [Accepted: 04/17/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Qiufang Bai
- Department of Pharmacy Affiliated Zhongshan Hospital of Dalian University Dalian P. R. China
| | - Chenning Zhang
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital Hubei University of Medicine Shiyan P. R. China
| | - Yanyan Zhao
- College of Pharmacy Dalian Medical University Dalian P. R. China
| | - Chao Wang
- College of Pharmacy Dalian Medical University Dalian P. R. China
| | - Mairewaniguli Maihemuti
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University Shenyang P. R. China
| | - Chengpeng Sun
- College of Pharmacy Dalian Medical University Dalian P. R. China
| | - Yan Qi
- College of Pharmacy Dalian Medical University Dalian P. R. China
| | - Jinyong Peng
- College of Pharmacy Dalian Medical University Dalian P. R. China
| | - Xingjie Guo
- School of Pharmaceutical Engineering Shenyang Pharmaceutical University Shenyang P. R. China
| | - Zhen Zhang
- Department of Cardiology Ⅳ (Cardiac Failure) Affiliated Hospital 2 of Dalian Medical University Dalian P. R. China
| | - Linlin Fang
- College of Pharmacy Dalian Medical University Dalian P. R. China
| |
Collapse
|
9
|
Polikarpova D, Makeeva D, Kolotilina N, Dolgonosov A, Peshkova M, Kartsova L. Nanosized cation exchanger for the electrophoretic separation and preconcentration of catecholamines and amino acids. Electrophoresis 2020; 41:1031-1038. [DOI: 10.1002/elps.201900416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Daria Polikarpova
- Institute of ChemistrySaint Petersburg State University Saint Petersburg Russia
| | - Daria Makeeva
- Institute of ChemistrySaint Petersburg State University Saint Petersburg Russia
| | - Nadezhda Kolotilina
- Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences Moscow Russia
| | - Anatoly Dolgonosov
- Vernadsky Institute of Geochemistry and Analytical Chemistry of Russian Academу of Sciences Moscow Russia
| | - Maria Peshkova
- Institute of ChemistrySaint Petersburg State University Saint Petersburg Russia
| | - Liudmila Kartsova
- Institute of ChemistrySaint Petersburg State University Saint Petersburg Russia
| |
Collapse
|
10
|
Hu LF, Yin SJ, Zhang H, Yang FQ. Recent developments of monolithic and open-tubular capillary electrochromatography (2017-2019). J Sep Sci 2020; 43:1942-1966. [PMID: 31909566 DOI: 10.1002/jssc.201901168] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/26/2019] [Accepted: 12/28/2019] [Indexed: 12/21/2022]
Abstract
Capillary electrochromatography, which combined the high selectivity of high-performance liquid chromatography and the high separation efficiency of capillary electrophoresis, is an attractive separation tool. In this review, the developments on monolithic and open tubular capillary electrochromatography during 2017 to August 2019 are summarized. Considering the development of novel stationary phases is the most active research field in capillary electrochromatography, monolithic capillary electrochromatography is classified according to the polymer-based and hybrid monolithic columns, while open-tubular capillary electrochromatography is categorized by cyclodextrin, silica, polymer, nanomaterials, microporous materials, and biomaterials-based open tubular columns.
Collapse
Affiliation(s)
- Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, P.R. China
| | - Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P.R. China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P.R. China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P.R. China
| |
Collapse
|
11
|
Kartsova L, Makeeva D, Davankov V. Nano-sized polymer and polymer-coated particles in electrokinetic separations. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Hou M, Zhang M, Chen L, Gong K, Pan C, Wang Y. Amplification of lysozyme signal detected in capillary electrophoresis using mixed polymer brushes coating with switchable properties. Talanta 2019; 202:426-435. [PMID: 31171204 DOI: 10.1016/j.talanta.2019.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022]
Abstract
In this work, a mixed polymer brushes based on poly(2-methyl-2-oxazoline) (PMOXA) and poly(acrylic acid) (PAA) coated capillary with switchable protein adsorption/desorption properties was developed and applied for on-line extraction and preconcentration of lysozyme. The study of electroosmotic flow (EOF) and fluorescence microscope showed that the inner surface charge of PMOXA/PAA mixed brush coated capillary displayed the switchable behavior toward the change of pH value and ionic strength (I), and PMOXA/PAA mixed brushes coated capillary could adsorb high amounts of lysozyme at pH 7 (I = 10-5 M), and the most of adsorbed lysozyme could then be desorbed at pH 3 (I = 10-1 M). Subsequently, this coated capillary with switchable lysozyme adsorption/desorption ability was applied for on-line extraction and preconcentration of lysozyme during capillary electrophoresis (CE) performance. Under the process of on-line preconcentration, the detection signal (peak area) of lysozyme obtained in PMOXA/PAA coated capillary was 26 times that obtained in bare capillary under normal CE while the contour chain length of PAA was 1.56 times that of PMOXA. Moreover, the value of low detection limit (LOD) of lysozyme using above coated capillary under on-line preconcentration method reached to 4.5 × 10-9 mg/mL, and 1 × 105-fold sensitivity enhancement was realized for lysozyme as compared with the bare capillary under normal CE.
Collapse
Affiliation(s)
- Mingxin Hou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Miao Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Lijuan Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China; Colllege of Materials and Chemical Engineering, West Anhui University, Luan, 237012, PR China
| | - Kai Gong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Chao Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yanmei Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
13
|
Dolgonosov AM, Khamizov RK, Kolotilina NK. Nano Ion Exchangers as Modifiers of Chromatographic Phases and Sources of Analytical Signal. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Breadmore MC, Grochocki W, Kalsoom U, Alves MN, Phung SC, Rokh MT, Cabot JM, Ghiasvand A, Li F, Shallan AI, Keyon ASA, Alhusban AA, See HH, Wuethrich A, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016-2018). Electrophoresis 2018; 40:17-39. [PMID: 30362581 DOI: 10.1002/elps.201800384] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
One of the most cited limitations of capillary and microchip electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of online/in-line concentration methods in capillaries and microchips, covering the period July 2016-June 2018. It includes developments in the field of stacking, covering all methods from field-amplified sample stacking and large-volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to online or in-line extraction methods that have been used for electrophoresis.
Collapse
Affiliation(s)
- Michael C Breadmore
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Wojciech Grochocki
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Umme Kalsoom
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Mónica N Alves
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Sui Ching Phung
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Joan M Cabot
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Chemistry, Lorestan University, Khoramabad, Iran
| | - Feng Li
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Aliaa I Shallan
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, Australia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Aemi S Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Hong Heng See
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
15
|
Rapid Separation and Determination of Metronidazole Benzoate and Other Antiprotozoal Drugs by Pressurized Capillary Electrochromatography. J CHEM-NY 2018. [DOI: 10.1155/2018/8953296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel method for the rapid separation and determination of five polar 5-nitroimidazoles in water from different sources by pressurized capillary electrochromatography has been developed. Compared with the gradient elution mode and the packed nonpolar columns which were usually utilized for the separation of 5-nitroimidazoles, a simple isocratic elution mode and low-cost homemade polar molecularly imprinted polymer monolith were used in the experiment. Electrochromatographic conditions such as pH of buffer, organic modifier, concentration of buffer, and separation voltage were optimized. At 320 nm UV wavelengths, the five 5-nitroimidazoles could be baseline-separated rapidly in less than 11 min with the separation voltage of +20 kV in 10 mmol/L sodium dihydrogen phosphate-disodium hydrogen phosphate buffer solution (pH 4.82) containing 30% acetonitrile. Under the optimum conditions, the linear ranges of the metronidazole, secnidazole, tinidazole, ornidazole, and metronidazole benzoate were 0.50–100.00, 0.50–100.00, 0.80–500.00, 0.80–100.00, and 5.00–500.00 μg/mL, respectively, and the detection limits of these analytes were 0.11–0.73 μg/mL. Column efficiencies of 43 000, 36 000, 34 000, 14 000, and 29 000 plates/m were obtained for metronidazole, secnidazole, tinidazole, ornidazole, and metronidazole benzoate, respectively. The recoveries of different water samples were about 85.0–95.8%. Additionally, the proposed method has been successfully applied to the rapid separation of 5-nitroimidazoles in the locally available pure milk sample by simple pretreatment.
Collapse
|