1
|
Iovanov R, Cornilă A, Bogdan C, Hales D, Tomuță I, Achim M, Tăut A, Iman N, Casian T, Iurian S. Testing the disintegration and texture-related palatability predictions for orodispersible tablets using an instrumental tool coupled with multivariate analysis: Focus on process variables and analysis settings. Eur J Pharm Sci 2024; 198:106801. [PMID: 38754594 DOI: 10.1016/j.ejps.2024.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/18/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Orodispersible tablets (ODTs) represent a growing category of dosage forms intended to increase the treatment acceptability for special groups of patients. ODTs are designed to rapidly disintegrate in the oral cavity and to be administered without water. In addition, ODTs are easy to manufacture using standard excipients and pharmaceutical equipment. This study adds to previously published research that developed an instrumental tool to predict oral disintegration and texture-related palatability of ODTs with different formulations. The current study aimed to challenge the predictive capacity of the models under variable process conditions. The studied process parameters with potential impact on the pharmaceutical properties, texture profiles, and palatability were the compression pressure, punch shape and diameter. Subsequently, for all the placebo and drug-loaded ODTs, the in vivo disintegration time and texture-related palatability were determined with healthy volunteers. Previously developed regression models were applied to predict the formulation's disintegration time and texture-related palatability characteristics of ODTs obtained under different experimental conditions. The influence of process variables on the predictive performance of the models was estimated by calculating the residuals as the difference between the predicted and observed values for the investigated response. Increasing the speed of the analyser`s probe from 0.01 mm/s to 0.02 mm/s led to an improved differentiation of the texture profiles. The in vivo disintegration time and texture-related palatability scores were only influenced by the mechanical resistance and the tablet shape. Lower score was observed for the larger diameter tablets (10 mm). Overall, the prediction of the disintegration time at 0.02 mm/s was more accurate, except for stronger tablets. The best prediction of texture-related palatability was achieved for the 10 mm tablets, tested at 0.01 mm/s speed. The same model achieved good predictions of the oral disintegration time for all API-loaded formulations, which confirmed the ability of the texture analysis to capture process-related variability. Drug loading decreased the predictive capacity of the texture-related palatability because of the taste effect.
Collapse
Affiliation(s)
- Rareș Iovanov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, Cluj-Napoca, Romania
| | - Andreea Cornilă
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, Cluj-Napoca, Romania.
| | - Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 12 Ion Creangă Street, Cluj-Napoca, Romania
| | - Dana Hales
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, Cluj-Napoca, Romania
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, Cluj-Napoca, Romania
| | - Marcela Achim
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, Cluj-Napoca, Romania
| | - Andrada Tăut
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, Cluj-Napoca, Romania
| | - Nela Iman
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, Cluj-Napoca, Romania
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, Cluj-Napoca, Romania
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Casian T, Nagy B, Kovács B, Galata DL, Hirsch E, Farkas A. Challenges and Opportunities of Implementing Data Fusion in Process Analytical Technology-A Review. Molecules 2022; 27:4846. [PMID: 35956791 PMCID: PMC9369811 DOI: 10.3390/molecules27154846] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
The release of the FDA's guidance on Process Analytical Technology has motivated and supported the pharmaceutical industry to deliver consistent quality medicine by acquiring a deeper understanding of the product performance and process interplay. The technical opportunities to reach this high-level control have considerably evolved since 2004 due to the development of advanced analytical sensors and chemometric tools. However, their transfer to the highly regulated pharmaceutical sector has been limited. To this respect, data fusion strategies have been extensively applied in different sectors, such as food or chemical, to provide a more robust performance of the analytical platforms. This survey evaluates the challenges and opportunities of implementing data fusion within the PAT concept by identifying transfer opportunities from other sectors. Special attention is given to the data types available from pharmaceutical manufacturing and their compatibility with data fusion strategies. Furthermore, the integration into Pharma 4.0 is discussed.
Collapse
Affiliation(s)
- Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Béla Kovács
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| |
Collapse
|
3
|
Casian T, Iurian S, Gâvan A, Porfire A, Pop AL, Crișan S, Pușcaș AM, Tomuță I. In-Depth Understanding of Granule Compression Behavior under Variable Raw Material and Processing Conditions. Pharmaceutics 2022; 14:pharmaceutics14010177. [PMID: 35057072 PMCID: PMC8780340 DOI: 10.3390/pharmaceutics14010177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022] Open
Abstract
Tablet manufacturing involves the processing of raw materials through several unit operations. Thus, the mitigation of input-induced variability should also consider the downstream processability of intermediary products. The objective of the present work was to study the effect of variable raw materials and processing conditions on the compression properties of granules containing two active pharmaceutical ingredients (APIs) and microcrystalline cellulose. Differences in compressibility and tabletability of granules were highlighted in function of the initial particle size of the first API, granule polydispersity and fragmentation. Moreover, interactions were underlined with the atomizing pressure. Changing the supplier of the second API was efficiently controlled by adapting the binder addition rate and atomizing pressure during granulation, considering the starting crystal size. By fitting mathematical models on the available compression data, the influence of diluent source on granule compactibility and tabletability was identified. These differences resumed to the ease of compaction, tableting capacity and pressure sensitivity index due to variable water binding capacity of microcrystalline cellulose. Building the design space enabled the identification of suitable API types and the appropriate processing conditions (spray rate, atomizing pressure, compression force) required to ensure the desired tableting performance.
Collapse
Affiliation(s)
- Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
- Correspondence:
| | - Alexandru Gâvan
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| | - Anca Lucia Pop
- Department of Clinical Laboratory, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- RD Center, AC HELCOR, 430092 Baia Mare, Romania;
| | | | - Anda Maria Pușcaș
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (T.C.); (A.G.); (A.P.); (A.M.P.); (I.T.)
| |
Collapse
|
4
|
NIR spectroscopy for monitoring of the critical manufacturing steps and quality attributes of paliperidone prolonged release tablets. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Testing the Limits of a Portable NIR Spectrometer: Content Uniformity of Complex Powder Mixtures Followed by Calibration Transfer for In-Line Blend Monitoring. Molecules 2021; 26:molecules26041129. [PMID: 33672675 PMCID: PMC7924328 DOI: 10.3390/molecules26041129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Portable NIR spectrometers gain more and more ground in the field of Process Analytical Technology due to the easy on-site flexibility and interfacing versatility. These advantages that originate from the instrument miniaturization, also come with a downside with respect to performance compared to benchtop devices. The objective of this work was to evaluate the performance of MicroNIR in a pharmaceutical powder blend application, having three active ingredients and 5 excipients. (2) Methods: Spectral data was recorded in reflectance mode using static and dynamic acquisition, on calibration set samples developed using an experimental design. (3) Results: The developed method accurately predicted the content uniformity of these complex mixtures, moreover it was validated in the entire calibration range using ±10% acceptance limits. With respect to at-line prediction, the method presented lower performance compared to a previously studied benchtop spectrometer. Regarding the in-line monitoring of the blending process, it was shown that the spectral variability-induced by dynamic acquisition could be efficiently managed using spectral pre-processing. (4) Conclusions: The in-line process monitoring resulted in accurate concentration profiles, highlighting differences in the mixing behaviour of the investigated ingredients. For the low dose component homogeneity was not reached due to an inefficient dispersive mixing.
Collapse
|
6
|
Shi G, Lin L, Liu Y, Chen G, Luo Y, Wu Y, Li H. Pharmaceutical application of multivariate modelling techniques: a review on the manufacturing of tablets. RSC Adv 2021; 11:8323-8345. [PMID: 35423324 PMCID: PMC8695199 DOI: 10.1039/d0ra08030f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
The tablet manufacturing process is a complex system, especially in continuous manufacturing (CM). It includes multiple unit operations, such as mixing, granulation, and tableting. In tablet manufacturing, critical quality attributes are influenced by multiple factorial relationships between material properties, process variables, and interactions. Moreover, the variation in raw material attributes and manufacturing processes is an inherent characteristic and seriously affects the quality of pharmaceutical products. To deepen our understanding of the tablet manufacturing process, multivariable modeling techniques can replace univariate analysis to investigate tablet manufacturing. In this review, the roles of the most prominent multivariate modeling techniques in the tablet manufacturing process are discussed. The review mainly focuses on applying multivariate modeling techniques to process understanding, optimization, process monitoring, and process control within multiple unit operations. To minimize the errors in the process of modeling, good modeling practice (GMoP) was introduced into the pharmaceutical process. Furthermore, current progress in the continuous manufacturing of tablets and the role of multivariate modeling techniques in continuous manufacturing are introduced. In this review, information is provided to both researchers and manufacturers to improve tablet quality.
Collapse
Affiliation(s)
- Guolin Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuling Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Gongsen Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yuting Luo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yanqiu Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
7
|
Raw Material Variability and Its Impact on the Online Adaptive Control of Cohesive Powder Blend Homogeneity Using NIR Spectroscopy. Processes (Basel) 2019. [DOI: 10.3390/pr7090568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is significant to analyze the blend homogeneity of cohesive powders during pharmaceutical manufacturing in order to provide the exact content of the active pharmaceutical ingredient (API) for each individual dose unit. In this paper, an online monitoring platform using an MEMS near infrared (NIR) sensor was designed to control the bin blending process of cohesive powders. The state of blend homogeneity was detected by an adaptive algorithm, which was calibration free. The online control procedures and algorithm’s parameters were fine-tuned through six pilot experiments and were successfully transferred to the industrial production. The reliability of homogeneity detection results was validated by 16 commercial scale experiments using 16 kinds of natural product powders (NPPs), respectively. Furthermore, 19 physical quality attributes of all NPPs and the excipient were fully characterized. The blending end time was used to denote the degree of difficulty of blending. The empirical relationships between variability of NPPs and the blending end time were captured by latent variable modeling. The critical material attributes (CMAs) affecting the blending process were identified as the particle shape and flowability descriptors of cohesive powders. Under the framework of quality by design (QbD) and process analytical technology (PAT), the online NIR spectroscopy together with the powder characterization facilitated a deeper understanding of the mixing process.
Collapse
|
8
|
Casian T, Farkas A, Ilyés K, Démuth B, Borbás E, Madarász L, Rapi Z, Farkas B, Balogh A, Domokos A, Marosi G, Tomută I, Nagy ZK. Data fusion strategies for performance improvement of a Process Analytical Technology platform consisting of four instruments: An electrospinning case study. Int J Pharm 2019; 567:118473. [PMID: 31252149 DOI: 10.1016/j.ijpharm.2019.118473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/25/2022]
Abstract
The aim of this work was to develop a PAT platform consisting of four complementary instruments for the characterization of electrospun amorphous solid dispersions with meloxicam. The investigated methods, namely NIR spectroscopy, Raman spectroscopy, Colorimetry and Image analysis were tested and compared considering the ability to quantify the active pharmaceutical ingredient and to detect production errors reflected in inhomogeneous deposition of fibers. Based on individual performance the calculated RMSEP values ranged between 0.654% and 2.292%. Mid-level data fusion consisting of data compression through latent variables and application of ANN for regression purposes proved efficient, yielding an RMSEP value of 0.153%. Under these conditions the model could be validated accordingly on the full calibration range. The complementarity of the PAT tools, demonstrated from the perspective of captured variability and outlier detection ability, contributed to model performance enhancement through data fusion. To the best of the author's knowledge, this is the first application of data fusion in the field of PAT for efficient handling of big-analytical-data provided by high-throughput instruments.
Collapse
Affiliation(s)
- Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Kinga Ilyés
- Department of Pharmaceutical Technology and Biopharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Balázs Démuth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Enikő Borbás
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Lajos Madarász
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Zsolt Rapi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Balázs Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Attila Balogh
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - András Domokos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Ioan Tomută
- Department of Pharmaceutical Technology and Biopharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| |
Collapse
|