1
|
Kongkaew S, Janduang S, Srilikhit A, Kaewnu K, Thipwimonmas Y, Cotchim S, Torrarit K, Phua CH, Limbut W. Waste DVD polycarbonate substrate for screen-printed carbon electrode modified with PVP-stabilized AuNPs for continuous free chlorine detection. Talanta 2024; 277:126406. [PMID: 38901193 DOI: 10.1016/j.talanta.2024.126406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024]
Abstract
An electrochemical free chlorine sensor was developed by modifying a lab-made screen-printed carbon electrode (SPCE) with gold nanoparticles synthesized with polyvinylpyrrolidone (AuNPs-PVP). The electrode was made by screen printing carbon ink on a waste digital versatile disc (SPC-wDVD). PVP was used to stabilize AuNPs. Scanning electron microscopy showed that AuNPs aggregated without the stabilizer. The electrochemical behavior of the SPC-wDVD was evaluated by comparison with commercial SPCEs from two companies. Electrochemical characterization involved cyclic voltammetry and electrochemical impedance spectroscopy. The detection of free chlorine in water samples was continuous, facilitated by a flow-injection system. In the best condition, the developed sensor exhibited linearity from 0.25 to 3.0 and 3.0 to 500 mg L-1. The limit of detection was 0.1 mg L-1. The stability of the sensor enabled the detection of free chlorine at least 475 times with an RSD of 3.2 %. The AuNPs-PVP/SPC-wDVD was able to detect free chlorine in drinking water, tap water and swimming pool water. The agreement between the results obtained with the proposed method and the standard spectrophotometric method confirmed the precision of the developed sensor.
Collapse
Affiliation(s)
- Supatinee Kongkaew
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Santipap Janduang
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Angkana Srilikhit
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Krittapas Kaewnu
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Yudtapum Thipwimonmas
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Suparat Cotchim
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Kamonchanok Torrarit
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Cheng Ho Phua
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand; Forensic Science Innovation and Service Center, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
2
|
Jafari S, Pourmortazavi SM, Ehsani A, Mirsadeghi S. CuO-ZIF-8 modified electrode surface as a new electrochemical sensing platform for detection of free chlorine in aqueous solution. Sci Rep 2024; 14:18961. [PMID: 39147855 PMCID: PMC11327310 DOI: 10.1038/s41598-024-69869-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
This work has applied metal-organic frameworks (MOFs) with high adsorbability and catalytic activity to develop electrochemical sensors to determine free chlorine (free-Cl) concentrations in aqueous media. A zeolitic imidazolate frameworks, Zn(Hmim)2 (ZIF-8) has been synthesized and incorporated with CuO nanosheets to decorate a glassy carbon electrode (GCE) and provide a new sensor for free-Cl determination. The as-prepared ZIF-8 and CuO-ZIF-8 composites have been characterized by FESEM, EDX, XRD, and FT-IR analyses. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) utilized to characterize the CuO-ZIF-8/GC modified electrode electrochemically, demonstrated the ability of the sensor to measure free-Cl concentration. Using differential pulse voltammetry (DPV) and under the optimal conditions, the prepared CuO-ZIF-8/GC modified electrode showed a linear response in the 0.25-60 ppm range with a 12 ppb detection limit (LOD) for free-Cl concentration. Finally, the fabricated sensor was applied to analyze free-Cl from actual swimming pool water samples with promising 97.5 to 103.0% recoveries.
Collapse
Affiliation(s)
- Somayeh Jafari
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
| | | | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Somayeh Mirsadeghi
- KonadHerbs Co., Sharif Innovation Area, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Jafari S, Pourmortazavi SM, Ehsani A, Mirsadeghi S. Cobalt-based metal-organic framework-functionalized graphene oxide modified electrode as a new electrochemical sensing platform for detection of free chlorine in aqueous solution. Anal Biochem 2023; 681:115334. [PMID: 37774996 DOI: 10.1016/j.ab.2023.115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
This work reports the profit of using a MOF compound for developing a sensitive electrochemical sensor to free chlorine detection in an aqueous solution. Co-MOF and FGO composites were synthesized and combined with the carbon paste (CP) to prepare an efficient electrochemical sensor with high sensing ability. The fabricated Co-MOF and FGO composites were characterized by SEM, EDX, FT-IR, and XRD techniques. Meanwhile, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to assess the electrochemical performance of the Co-MOF-FGO/CP modified electrode. Under the optimized condition, the amperometric detection showed that the reduction current of free chlorine increased linearly with a coefficient determination of 0.995 during its wide concentration range of 0.1-700 ppm. Also the detection limit (LOD) (S/N = 3) was 0.01 ppm. The selectivity of the sensor was tested with possible interferences, and satisfactory results were obtained. The proposed sensor was successfully used to determine the free chlorine in tap water and swimming pool water real samples. The results suggested that this proposed sensor could pave the way for developing the electrochemical sensor of free chlorine in aqueous media with MOFs.
Collapse
Affiliation(s)
- Somayeh Jafari
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran.
| | | | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Somayeh Mirsadeghi
- KonadHerbs Co., Sharif Innovation Area, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
4
|
Yin J, Zhang J, Feng L, Guan Y, Gao W, Jin Q. Free chlorine ultra-sensitive detection in tap water via an enrichment-sensing process by an interdigitated microelectrode sensor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Determination of free chlorine concentration and pH of the water using neural network based colorimetric method. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Gogoi C, Nagarjun N, Rana A, Dhakshinamoorthy A, Biswas S. Diamino group-functionalized Zr-based metal-organic framework for fluorescence sensing of free chlorine in the aqueous phase and Knoevenagel condensation. Dalton Trans 2022; 51:6964-6975. [PMID: 35452068 DOI: 10.1039/d2dt00194b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We developed a porous diamino group-functionalized Zr(IV) metal-organic framework (MOF). The synthesized MOF has a similar structure to DUT-52 (DUT = Dresden University of Technology), which has a face-centered cubic structure with an Fm3̄m space group. The synthesized material (DUT-52-(NH2)2-1) was solvent exchanged with methanol (MeOH) and activated at 100 °C overnight. Both the as-synthesized and activated materials (DUT-52-(NH2)2-1') are thermally stable until 300 °C. The Brunauer-Emmett-Teller (BET) surface area of DUT-52-(NH2)2-1' was found to be 413 m2 g-1. DUT-52-(NH2)2-1' showed a significant quenching of fluorescence response after coming in contact with free chlorine (ClO-) in an aqueous medium. The selectivity of DUT-52-(NH2)2-1' towards ClO- was not significantly hampered in the presence of any competitive ion. The limit of detection (LOD) value was found to be 0.08 μM in phosphate-buffered saline (PBS, pH = 7.4). DUT-52-(NH2)2-1' is recyclable and very sensitive towards ClO-. Moreover, the paper strip method was developed for onsite identification of ClO-. Furthermore, the catalytic activity of DUT-52-(NH2)2-1' was tested in the Knoevenagel condensation between benzaldehyde and cyanoacetamide. The experimental results clearly indicate that DUT-52-(NH2)2-1' exhibits high activity with very high selectivity towards condensation products. The solid was reusable three times with no decay in its activity, as evidenced by powder X-ray diffraction (PXRD), field emission scanning electron microscopy (FE-SEM) and fourier transform infrared (FT-IR).
Collapse
Affiliation(s)
- Chiranjib Gogoi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam, India.
| | - Nagarathinam Nagarjun
- School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India.
| | - Abhijeet Rana
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam, India.
| | | | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039 Assam, India.
| |
Collapse
|
7
|
Ink-jet-printed CuO nanoparticle-enhanced miniaturized paper-based electrochemical platform for hypochlorite sensing. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Ko KH, Kim GH, Song JG, Kim SG. A novel cyclic voltammetric determination of free chlorine generated by ozone disinfection in seawater aquariums. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Veloso WB, Almeida ATDFO, Ribeiro LK, de Assis M, Longo E, Garcia MAS, Tanaka AA, Santos da Silva I, Dantas LMF. Rapid and sensitivity determination of macrolides antibiotics using disposable electrochemical sensor based on Super P carbon black and chitosan composite. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Siddiqui J, Jamal Deen M. Biodegradable asparagine–graphene oxide free chlorine sensors fabricated using solution-based processing. Analyst 2022; 147:3643-3651. [DOI: 10.1039/d2an00533f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A free chlorine-sensing biodegradable ink was made by functionalizing asparagine onto graphene oxide then deposited on an electrode. The sensor showed a sensitivity of 0.30 μA ppm−1, selectivity amid interfering ions, and low temperature dependence.
Collapse
Affiliation(s)
- Junaid Siddiqui
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario L8S 4K1, Canada
| | - M. Jamal Deen
- Electrical and Computer Engineering (ECE) Department, McMaster University, 1280 Main Street W, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
11
|
Kongkaew S, Joonyong K, Kanatharana P, Thavarungkul P, Limbut W. Fabrication and characterization of Prussian blue screen-printed working electrode and their application for free chlorine monitoring in swimming pool water. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Zhang Y, Li Z, Guo X, Liu G, Zhang S. Potentiometric Sensor Based on Carbon Paste Electrode for Monitoring Total Residual Chlorine in Electrolytically-Treated Ballast Water. SENSORS (BASEL, SWITZERLAND) 2021; 21:E350. [PMID: 33430170 PMCID: PMC7825626 DOI: 10.3390/s21020350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/18/2022]
Abstract
A new potentiometric sensor based on modified carbon paste electrode (CPE) was prepared for the sensitive and selective detection of total residual chlorine (TRC) in simulated electrolytically-treated ballast water (BW). The modified CPE was prepared using ferrocene (Fc) as the sensing species and paraffin oil as the binder. It is revealed that the addition of Fc can significantly shorten the response time and improve the reproducibility, selectivity, and stability of the sensor. The open circuit potential of the Fc-CPE is in linear proportion to the logarithm of TRC within the TRC concentration range from 1 mg∙dm-3 to 15 mg∙dm-3. In addition, the Fc-CPE sensor exhibits good selectivity to TRC over a wide concentration range of the possible co-exiting interference ions in seawater. The Fc-CPE electrode can be used as a convenient and reliable sensor for the continuous monitoring of TRC during the electrolytic treatment of BW.
Collapse
Affiliation(s)
- Yaning Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Zhihui Li
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (Z.L.); (X.G.); (G.L.)
| | - Xiaotong Guo
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (Z.L.); (X.G.); (G.L.)
| | - Guangzhou Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (Z.L.); (X.G.); (G.L.)
| | - Shuyong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China; (Z.L.); (X.G.); (G.L.)
| |
Collapse
|
13
|
Electrochemical determination of capsaicin in pepper samples using sustainable paper-based screen-printed bulk modified with carbon black. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136628] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Tomei MR, Marcoccio E, Neagu D, Moscone D, Arduini F. A Miniaturized Carbon Black‐based Electrochemical Sensor for Chlorine Dioxide Detection in Swimming Pool Water. ELECTROANAL 2020. [DOI: 10.1002/elan.201900667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Eleonora Marcoccio
- Department of Chemical Science and Technologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Daniela Neagu
- TecnoSens srl Via Francesco Antolisei 25 00173 Rome Italy
| | - Danila Moscone
- Department of Chemical Science and Technologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
- SENSE4MED srl Via Renato Rascel 30 00128 Rome Italy
| |
Collapse
|
15
|
Wong A, Santos AM, Cincotto FH, Moraes FC, Fatibello-Filho O, Sotomayor MD. A new electrochemical platform based on low cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta 2020; 206:120252. [DOI: 10.1016/j.talanta.2019.120252] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/20/2022]
|
16
|
Mazzaracchio V, Tomei MR, Cacciotti I, Chiodoni A, Novara C, Castellino M, Scordo G, Amine A, Moscone D, Arduini F. Inside the different types of carbon black as nanomodifiers for screen-printed electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.117] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Deroco PB, Fatibello‐Filho O, Arduini F, Moscone D. Effect of Different Carbon Blacks on the Simultaneous Electroanalysis of Drugs as Water Contaminants Based on Screen‐printed Sensors. ELECTROANAL 2019. [DOI: 10.1002/elan.201900042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Patricia Batista Deroco
- Department of ChemistryFederal University of São Carlos, C.P. 676 13560-970 São Carlos–SP Brazil
| | - Orlando Fatibello‐Filho
- Department of ChemistryFederal University of São Carlos, C.P. 676 13560-970 São Carlos–SP Brazil
| | - Fabiana Arduini
- Department of Chemical Science and TechnologiesUniversity of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Danila Moscone
- Department of Chemical Science and TechnologiesUniversity of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
18
|
Shang J, Yu L, Sun Y, Chen X, Kang Q, Shen D. On site determination of free chlorine in water samples by a smartphone-based colorimetric device with improved sensitivity and reliability. NEW J CHEM 2019. [DOI: 10.1039/c9nj03954f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Absorbance in a long-path portable colorimetric device was measured by a ratiometric fluorescent strategy in a smartphone platform.
Collapse
Affiliation(s)
- Jian Shang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Lei Yu
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Yan Sun
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Xiaolan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Qi Kang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Dazhong Shen
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| |
Collapse
|
19
|
Hersey M, Berger SN, Holmes J, West A, Hashemi P. Recent Developments in Carbon Sensors for At-Source Electroanalysis. Anal Chem 2018; 91:27-43. [PMID: 30481001 DOI: 10.1021/acs.analchem.8b05151] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|