1
|
Zhang J, Chen Y, Ni M, Hou C, Qiao X, Wang T. A novel halloysite nanotubes-based hybrid monolith for in-tube solid-phase microextraction of polar cationic pesticides. Food Chem 2024; 458:140205. [PMID: 38943962 DOI: 10.1016/j.foodchem.2024.140205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
The accurate determination of polar cationic pesticides in food poses a challenge due to their high polarity and trace levels in complex matrices. This study hypothesized that the use of halloysite nanotubes (HNTs) can significantly enhance the extraction efficiency and sensitivity of these analytes because of their rich hydroxyl groups and cation exchange sites. Therefore, we chemically incorporated HNTs with organic polymer monoliths for in-tube solid-phase microextraction (SPME). This novel hybrid monolith extended service life, improved adsorption capacity, and exhibited excellent extraction performance for polar cationic pesticides. Based on these advancements, a robust and sensitive in-tube SPME-HILIC-MS/MS method was constructed to determine trace levels of polar cationic pesticides in complex food matrices. The method achieved limits of detection of 1.9, 2.1, and 0.1 μg/kg for maleic hydrazide, amitrole, and cyromazine, respectively. The spiked recoveries in five food samples ranged from 80.2 to 100.8%, with relative standard deviations below 10.7%.
Collapse
Affiliation(s)
- Jinhan Zhang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China
| | - Yihui Chen
- Ningbo Customs Technology Center, Ningbo 315040, PR China.
| | - Meilin Ni
- Ningbo Customs Technology Center, Ningbo 315040, PR China
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Xiaoqiang Qiao
- College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Tingting Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, PR China.
| |
Collapse
|
2
|
Chen T, Shu Y, Song G, Liu T, Jiang J, Jiang B, Zong X, Zhao Z, Zhao B, Zeng Y. Per aqueous liquid chromatography of Radix hedysari polysaccharides and Au nanoparticles co-functionalized stationary phase and its application in the determination of iridoids and phenylethanols. Anal Chim Acta 2024; 1329:343247. [PMID: 39396309 DOI: 10.1016/j.aca.2024.343247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Hydrophilic Interaction Liquid Chromatography (HILIC) is an outstanding strategy for the challenging analysis of hydrophilic and polar components. Nevertheless, analysis under HILIC mode typically consumes 70%-95 % acetonitrile with the disadvantage of high analytical costs, being environmentally unfriendly and causing biohazards, which is not in line with the concept of green chromatography. Research has shown that Per Aqueous Liquid Chromatography (PALC) simultaneously emphasizes efficient analytical performance for hydrophilic analytes and green analytical concepts. The development of new PALC stationary phases with superior performance is necessary. RESULTS In this paper, silanized silica was sequentially subjected to esterification reaction, polymerization reaction and covalent bonding through five steps to obtain SiO2-RHP-AuNPs material, which was prepared as a novel stationary phase for PALC. Comprehensive characterization of the materials by means of Fourier transform infrared spectroscopy, Transmission scanning electron microscope, Elemental analysis and Thermogravimetric analysis showed the successful bonding of the functionalized groups on the original silica. The polymeric stationary phase based on Radix hedysari polysaccharide and Au nanoparticles had higher density of hydroxyl and ester functionalized groups. The Au nanoparticles upgraded their mesoporous structure and thermal stability, providing exceptional chromatographic performance and selectivity for chromatographic analysis. The influence of mobile phase water content, salt concentration, pH and column temperature on the retention behavior was evaluated. The novel Column was found to exhibit a dual mechanism of hydrophobic interactions/ion exchange interactions in a mobile phase with high water content. SIGNIFICANCE AND NOVELTY The separation efficiency and selectivity of SiO2-RHP-AuNPs columns for synthetic pigments and organic acids in PALC mode were superior to those of commercial HILIC and C18 columns. In addition, a method for the determination of seven active ingredients in Fructus Ligustri Lucidi by SiO2-RHP-AuNPs column in PALC mode was developed. The method had good stability, reproducibility and accuracy, which was capable of realizing the quality evaluation of Chinese Materia Medicas.
Collapse
Affiliation(s)
- Tong Chen
- Comprehensive Technology Centre, Zhenjiang Customs District PR China, Zhenjiang, 212008, China.
| | - Ye Shu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| | - Guangsan Song
- Comprehensive Technology Centre, Zhenjiang Customs District PR China, Zhenjiang, 212008, China.
| | - Tao Liu
- Comprehensive Technology Centre, Zhenjiang Customs District PR China, Zhenjiang, 212008, China.
| | - Jun Jiang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| | - Bingxin Jiang
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212003, China.
| | - Xufang Zong
- Affiliated Hospital of Jiangsu University, Zhenjiang, 212003, China.
| | - Zihan Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| | - Baixiu Zhao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| | - Yichen Zeng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Preparation and evaluation of a bacitracin-bonded silica stationary phase for hydrophilic interaction liquid chromatography. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Polyethyleneimine-functionalized Fe 3O 4/attapulgite particles for hydrophilic interaction-based magnetic dispersive solid-phase extraction of fluoroquinolones in chicken muscle. Anal Bioanal Chem 2021; 413:3529-3540. [PMID: 33813591 DOI: 10.1007/s00216-021-03304-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Fluoroquinolone (FQ) residues in foods of animal origin may threaten public health but are challenging to determine because of their low contents and complex matrices. In this study, novel polyethyleneimine-functionalized Fe3O4/attapulgite magnetic particles were prepared by a simple co-mixing method and applied as hydrophilic sorbents for the magnetic dispersive solid-phase extraction (MSPE) of three FQs, i.e., ciprofloxacin, norfloxacin, and enrofloxacin, from chicken muscle samples. The preparation of the magnetic particles was of high reproducibility and the products could be reused many times with high adsorption capacity. The key experimental factors possibly influencing the extraction efficiencies, including sample solution, extraction time, sample loading volume, desorption solution, desorption time, and elution volume were investigated. Under optimum MSPE conditions, the analytes in chicken muscle samples were extracted and then determined by RPLC-MS/MS in MRM mode. Good linearity was obtained for the analytes with correlation coefficients ranged from 0.9975 to 0.9995. The limits of detection were in the range of 0.02-0.08 μg kg-1, and the recoveries of the spiked FQs in chicken muscle samples ranged from 83.9 to 98.7% with relative standard deviations of 1.3-6.8% (n = 3). Compared with the traditional MSPE methods based on hydrophobic mechanism, this hydrophilic interaction-based method significantly simplifies the sample pretreatment procedure and improves repeatability. This method is promising for accurate monitoring of FQs in foods of animal origin.
Collapse
|
5
|
Novel synthesized attapulgite nanoparticles-based hydrophobic monolithic column for in-tube solid-phase microextraction of thiosildenafil, pseudovardenafil, and norneosildenafil in functional foods. Anal Bioanal Chem 2021; 413:1871-1882. [PMID: 33469710 DOI: 10.1007/s00216-021-03155-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
In this study, a novel method which involved in-tube solid-phase microextraction (SPME) using an attapulgite (ATP) nanoparticles-based hydrophobic monolithic column was successfully developed. It was coupled with high-performance liquid chromatography-ultraviolet detection for the determination of three phosphodiesterase-5 (PDE-5) inhibitors, including thiosildenafil, pseudovardenafil, and norneosildenafil, in functional foods. The monolithic column was prepared by one-step polymerization, using 3-trimethoxysilylpropyl methacrylate-modified ATP nanoparticles and 1-butyl-3-vinylimidazolium bromide (VBIMBr) as the functional monomers, and ethylene glycol dimethacrylate (EDMA) as the cross-linker. The obtained poly(ATP-VBIMBr-EDMA) monolith was characterized by scanning electron microscopy equipped with energy-dispersive analysis of X-ray, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. The adsorption capacity, up to 2.00 μg/cm calculated by the Langmuir isotherm model, was about six times that of the poly(VBIMBr-EDMA) monolith. Crucial factors affecting the extraction efficiency, including sample solvent, elution solvent, flow rates of sampling loading and elution, sample loading volume, and elution volume, were investigated in details. Under the optimal in-tube SPME conditions, the proposed method showed good reproducibility with run-to-run, column-to-column, and batch-to-batch relative standard deviations less than 7.2%, and low limits of detection of 0.5-0.9 ng/mL in real samples. Thiosildenafil was detected in four types of functional foods with the contents of 1.30-4.78 μg/g. This newly proposed in-tube SPME method based on poly(ATP-VBIMBr-EDMA) monolith may provide a simple, efficient, and promising alternative to daily monitoring of PDE-5 inhibitors in functional foods.
Collapse
|
6
|
Ma M, Chen C, Zhu X, Li X, Du Y, Zhang L, Gan J. A porous layer open-tubular capillary column supported with pepsin and zeolitic imidazolate framework for enantioseparation of four basic drugs in capillary electrochromatography. J Chromatogr A 2020; 1637:461866. [PMID: 33422798 DOI: 10.1016/j.chroma.2020.461866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022]
Abstract
New material zeolitic imidazolate framework-4, 5-imidazoledicarboxylic acid (ZIF-IMD) located on the pore surface of porous layer open-tubular (PLOT) column previously functionalized with N-(3-aminopropyl)-imidazole have been prepared via a layer-by-layer self-assembly strategy. This new ZIF-IMD coating hybrids are used as solid-phase carriers for chiral selector pepsin immobilization. The ZIF-IMD material was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscope and X-ray diffraction. The synthesized pepsin@ZIF-IMD@POLT column achieved the baseline separation of hydroxychloroquine (HCQ), chloroquine (CHQ) and hydroxyzine (HXY) (the resolution of HCQ: 2.19; CHQ: 1.84; HXY: 1.53). Compared with the pepsin@PLOT column (without ZIF-IMD material), the chiral separation capability of the pepsin@ZIF-IMD@POLT column can be remarkably improved. Several key parameters including concentration of chiral selector, buffer pH, applied voltage and buffer concentration were systematically evaluated to provide the optimal enantioseparation condition. The relative standard deviations (RSDs) of intra-day, inter-day, column-to-column and inter-batch of migration time and Rs of the HCQ were evaluated in detail, respectively (RSD < 7.21%). Additionally, the potential mechanism of increased resolution was discussed in the article.
Collapse
Affiliation(s)
- Mingxuan Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Cheng Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xinqi Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China.
| | - Yingxiang Du
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Liu Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jie Gan
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
7
|
Zhang X, Wang G, Xue H, Zhang J, Wang Q, Zhang Z, Zhang B. Metabolite Profile of Xylem Sap in Cotton Seedlings Is Changed by K Deficiency. FRONTIERS IN PLANT SCIENCE 2020; 11:592591. [PMID: 33362821 PMCID: PMC7758293 DOI: 10.3389/fpls.2020.592591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Xylem sap, belonging to the plant apoplast, not only provides plant tissues with inorganic and organic substances but also facilitates communication between the roots and the leaves and coordinates their development. This study investigated the effects of potassium (K) deficiency on the morphology and the physiology of cotton seedlings as well as pH, mineral nutrient contents, and metabolites of xylem sap. In particular, we compared changes in root-shoot communication under low K (LK) and normal K (NK, control) levels. Compared to control, LK stress significantly decreased seedling biomass (leaf, stem, and root dry weight; stem and root length; root surface area and root volume) and the levels of K, Na (sodium), Mg (magnesium), Fe (iron), and Zn (zinc) in xylem sap. A total of 82 metabolites in sap analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) showed significant differences between the two conditions; among these, 38 were up-regulated more than 2-fold, while the others were down-regulated less than 0.5-fold. In particular, several metabolites found in the cell membrane including three cholines (glycerophosphatecholine, 2-hexenylcholine, and caproylcholine) and desglucocoroloside and others such as malondialdehyde, α-amino acids and derivatives, sucrose, and sugar alcohol significantly increased under LK stress, indicating that cell membranes were damaged and protein metabolism was abnormal. It is worth noting that glycerophosphocholine was up-regulated 29-fold under LK stress, indicating that it can be used as an important signal of root-shoot communication. Furthermore, in pathway analyses, 26 metabolites were matched to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways; L-aspartic acid, which was associated with 10 KEGG pathways, was the most involved metabolite. Overall, K deficiency reduced the antioxidant capacity of cotton seedlings and led to a metabolic disorder including elevated levels of primary metabolites and inhibited production of secondary metabolites. This eventually resulted in decreased biomass of cotton seedlings under LK stress. This study lays a solid foundation for further research on targeted metabolites and signal substances in the xylem sap of cotton plants exposed to K deficiency.
Collapse
Affiliation(s)
- Xin Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Guo Wang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Huiyun Xue
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinbao Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Qinglian Wang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
8
|
Ding W, Yu T, Du Y, Sun X, Feng Z, Zhao S, Ma X, Ma M, Chen C. A metal organic framework-functionalized monolithic column for enantioseparation of six basic chiral drugs by capillary electrochromatography. Mikrochim Acta 2019; 187:51. [DOI: 10.1007/s00604-019-3998-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/03/2019] [Indexed: 01/19/2023]
|
9
|
Wang T, Chen D, Lubeckyj RA, Shen X, Yang Z, McCool EN, Qiao X, Sun L. Capillary zone electrophoresis-tandem mass spectrometry for top-down proteomics using attapulgite nanoparticles functionalized separation capillaries. Talanta 2019; 202:165-170. [PMID: 31171165 DOI: 10.1016/j.talanta.2019.04.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 10/27/2022]
Abstract
Attapulgite nanoparticles have good chemical properties and can be modified easily for broad applications. In this work, for the first time, attapulgite nanoparticles were employed to modify the inner wall of separation capillaries for capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS)-based top-down proteomics. The attapulgite nanoparticles and the inner wall of a fused silica capillary were first functionalized with γ-methacryloxypropyl trimethoxysilane. Then the modified nanoparticles and acrylamide were copolymerized in the fused silica capillary with the assistance of azobisisobutyronitrile and heat. The incorporation of high-surface-area nanoparticles in the linear polyacrylamide (LPA) coating resulted in significantly lower electroosmotic mobility compared with the typical LPA coating (3.48 × 10-5 vs. 9.03 × 10-5 cm2 V-1 S-1), most likely because more LPA molecules were immobilized on the inner wall of the separation capillary. The attapulgite nanoparticles functionalized separation capillaries have shown great stability and reproducibility across 43 discontinuous CZE-MS runs of a standard protein mixture. We applied the CZE-MS/MS system for top-down proteomics of Escherichia coli cells. In a proof-of-principle experiment, the CZE-MS/MS system achieved a 90-min separation window and a 1-μL sample loading volume, leading to nearly 300 proteoform and 135 protein identifications in a single run. Many post-translational modifications (PTMs) were identified, including methylation, acetylation, phosphorylation, biotinylation, succinylation, and disulfide bond.
Collapse
Affiliation(s)
- Tingting Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China; Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA
| | - Rachele A Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA
| | - Elijah N McCool
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA
| | - Xiaoqiang Qiao
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA; College of Pharmaceutical Sciences, Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding 071002, China
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA.
| |
Collapse
|