1
|
Nasrollahpour H, Mirzaie A, Sharifi M, Rezabakhsh A, Khalilzadeh B, Rahbarghazi R, Yousefi H, Klionsky DJ. Biosensors; a novel concept in real-time detection of autophagy. Biosens Bioelectron 2024; 254:116204. [PMID: 38507929 DOI: 10.1016/j.bios.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is an early-stage response with self-degradation properties against several insulting conditions. To date, the critical role of autophagy has been well-documented in physiological and pathological conditions. This process involves various signaling and functional biomolecules, which are involved in different steps of the autophagic response. During recent decades, a range of biochemical analyses, chemical assays, and varied imaging techniques have been used for monitoring this pathway. Due to the complexity and dynamic aspects of autophagy, the application of the conventional methodology for following autophagic progression is frequently associated with a mistake in discrimination between a complete and incomplete autophagic response. Biosensors provide a de novo platform for precise and accurate analysis of target molecules in different biological settings. It has been suggested that these devices are applicable for real-time monitoring and highly sensitive detection of autophagy effectors. In this review article, we focus on cutting-edge biosensing technologies associated with autophagy detection.
Collapse
Affiliation(s)
| | - Arezoo Mirzaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Sharifi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Yousefi
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Wang J, Dong W, Yang X, Li Y, Jin B. Biosensors based on DNA-functionalized CdTe quantum dots for the enhanced electrochemical detection of human-IgG. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37424508 DOI: 10.1039/d3ay00676j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Electrochemical detection of human-IgG via biosensors is vital in clinical diagnostics, owing to their simple equipment, facile operation, high selectivity, economical, short diagnostic time, fast response, and easy miniaturization, but the need to improve sensitivity for protein detection is still a barrier limiting its wider practical applications. A hypersensitized electrochemical biosensor based on steric effects for IgG detection was developed in this work. The results indicate that IgG-modified sig-DNA attached to CdTe quantum dots (CdTe-sig-DNA) limited the ability of CdTe-sig-DNA or CdTe-sig-DNA-IgG conjugate to hybridize through the captured DNA strand (cap-DNA) immobilized on a chitosan/nitrogen-doped carbon nanocomposite (CS/N-C) modified glassy carbon electrode surface (GCE). The concentration of IgG based on CdTe concentration was detected by differential pulse anode stripping voltammetry (DPASV) on the electrode surface. The efficiency for hybridizing CdTe-sig-DNA with cap-DNA was found to be logarithmically inverse to the concentration of IgG attached. A highly sensitive and selective detection of IgG from 5 pM to 50 μM with a relatively low detection limit of 1.7 pM was achieved. Therefore, the steric hindrance effect of IgG limited the quantity of DNA that could be functionalized on CdTe QDs, significantly improving the signal, and providing a practical strategy for the clinical analysis of IgG.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Wenhui Dong
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Xiaomin Yang
- Respiratory Medicine Department, The First People's Hospital of Chuzhou, Chuzhou 239001, China
| | - Yanan Li
- Department of Chemistry, Anhui University, Hefei 230601, China.
| | - Baokang Jin
- Department of Chemistry, Anhui University, Hefei 230601, China.
| |
Collapse
|
3
|
Recent advances in II-VI quantum dots based-signal strategy of electrochemiluminescence sensor. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
4
|
Wang L, Zhang L, Yu Y, Lin B, Wang Y, Guo M, Cao Y. DNA cyclic assembling control in an electrochemical strategy with MoS 2@AuNPs for determination of kanamycin. Mikrochim Acta 2021; 188:264. [PMID: 34287718 DOI: 10.1007/s00604-021-04916-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
A sensitive electrochemical strategy was established for kanamycin determination. A specific aptamer was modified on the electrode as the probe, followed by a cyclic hybridization chain reaction (HCR) with methylene blue, causing an increasing signal response. In the presence of kanamycin, it can initiatively convolve the aptamer and prevent further DNA assembling, resulting in a signal distinction sensitive to the target amount. However, the signal reproducibility is low. To improve the precision, the HCR procedure was investigated. The results demonstrated that the optimal amount of assembled DNA is 12-fold to that of aptamer. This amount was then controlled in further assays. Admittedly, controlled DNA assembling commonly indicates a limited signal amplification. To further enhance the sensitivity, a nanocomposite based on MoS2 and AuNPs was modified on the electrode. The results of the assay proved that the signal distinction sensitive to target amount increased by 50%. A linearity range is obtained from 0.01 nM to 1.0 μM of kanamycin, and the LOD is 8.4 pM. Subsequently, this strategy was employed to detect kanamycin in chicken liver and milk sample; the recovery results suggest that it possess a satisfactory application prospect in analysis of agricultural products.
Collapse
Affiliation(s)
- Lina Wang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.,Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, People's Republic of China
| | - Li Zhang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Ying Yu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Bixia Lin
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yumin Wang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
5
|
Li Y, Ding Z, Bao Y, Han K, Li G. Electrochemiluminescence Determination of a Specific Sequence of the BCR/ABL Gene Related to Chronic Myelogenous Leukemia with a Ferrocene-Labelled Molecular Beacon and a Gold Nanoparticle (AuNP)-Luminol-Silica Nanocomposite. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1921785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yue Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| | - Zhifang Ding
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| | - Ying Bao
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| | - Kexin Han
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| | - Guixin Li
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials, School of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, P.R. China
| |
Collapse
|
6
|
Metal composite oxides Bi 2MoO 6/IL membrane as matrix for constructing ultrasensitive electrochemical immunosensor. Anal Bioanal Chem 2021; 413:1173-1183. [PMID: 33415435 DOI: 10.1007/s00216-020-03080-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 01/06/2023]
Abstract
In the process of diagnosis and disease monitoring, it is important to quickly and easily detect protein biomarkers. The strategy reported here is an attempt to prepare Bi2MoO6 nanomaterial with new three-dimensional holes morphology surrounded by rod and sheet to construct a simple and sensitive sensing platform, where Bi2MoO6/ionic liquid (IL) composite was modified on the carbon paste electrode (CPE). In order to monitor the assembly process of human IgG immunosensors, a plurality of electrochemical tests such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was executed. The obtained BSA/anti-IgG/GA/Bi2MoO6/IL-CPE displayed prominent conductivity and high sensitivity in detecting human immunoglobulin G (human IgG). Under the optimal experimental conditions, the results by differential pulse voltammetry (DPV) showed that the constructed label-free IgG immunosensor can detect IgG in the range of 0.01 to 1000 ng mL-1, and limit of detection (LOD) was 4 pg mL-1. The immunosensor displayed good performances including selectivity, reproducibility, and stability. Based on preliminary experiments, Bi2MoO6 and its composite materials are very promising for the construction of a variety biosensors for the analysis of other biological substances. Graphical abstract.
Collapse
|
7
|
Meng Y, Bai W, Zhang Y, Sun H, Li Y. Electrogenerated chemiluminescence biosensing method based on 5-hydroxymethylcytosine antibody and PDDA-CNTs nanocomposites for the determination of 5-hydroxymethylcytosine double-stranded DNA. Talanta 2020; 210:120597. [DOI: 10.1016/j.talanta.2019.120597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023]
|
8
|
Kannan P, Chen J, Su F, Guo Z, Huang Y. Faraday-Cage-Type Electrochemiluminescence Immunoassay: A Rise of Advanced Biosensing Strategy. Anal Chem 2019; 91:14792-14802. [PMID: 31692335 DOI: 10.1021/acs.analchem.9b04503] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemiluminescence immunoassays are usually carried out through "on-electrode" strategy, i.e., sandwich-type immunoassay format, the sensitivity of which is restricted by two key bottlenecks: (1) the number of signal labels is limited and (2) only a part of signal labels could participate in the electrode reaction. In this Perspective, we discuss the development of an "in-electrode" Faraday-cage-type concept-based immunocomplex immobilization strategy. The biggest difference from the traditional sandwich-type one is that the designed "in-electrode" Faraday-cage-type immunoassay uses a conductive two-dimensional (2-D) nanomaterial simultaneously coated with signal labels and a recognition component as the detection unit, which could directly overlap on the electrode surface. In such a case, electrons could flow freely from the electrode to the detection unit, the outer Helmholtz plane (OHP) of the electrode is extended, and thousands of signal labels coated on the 2-D nanomaterial are all electrochemically "effective." Thus, then, the above-mentioned bottlenecks obstructing the improvement of the sensitivity in sandwich-type immunoassay are eliminated, and as a result a much higher sensitivity of the Faraday-cage-type immunoassay can be obtained. And, the applications of the proposed versatile "in-electrode" Faraday-cage-type immunoassay have been explored in the detection of target polypeptide, protein, pathogen, and microRNA, with the detection sensitivity improved tens to hundreds of times. Finally, the outlook and challenges in the field are summarized. The rise of Faraday-cage-type electrochemiluminescence immunoassay (FCT-ECLIA)-based biosensing strategies opens new horizons for a wide range of early clinical identification and diagnostic applications.
Collapse
Affiliation(s)
- Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering , Jiaxing University , Jiaxing 314001 , People's Republic of China
| | - Jing Chen
- Division of Polymer and Composite Materials , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science (CAS) , Ningbo 315201 , People's Republic of China
| | - Fengmei Su
- National Engineering Research Centre for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education , Zhengzhou University , Zhengzhou 450002 , People's Republic of China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering , Ningbo University , Ningbo 315211 , People's Republic of China
| | - Youju Huang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 311121 , People's Republic of China
| |
Collapse
|
9
|
Mohajeri N, Imani M, Akbarzadeh A, Sadighi A, Zarghami N. An update on advances in new developing DNA conjugation diagnostics and ultra-resolution imaging technologies: Possible applications in medical and biotechnological utilities. Biosens Bioelectron 2019; 144:111633. [DOI: 10.1016/j.bios.2019.111633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
|
10
|
Deng S, Wu J, Zhang K, Li Y, Yang L, Hu D, Jin Y, Hao Y, Wang X, Liu Y, Liu H, Chen Y, Xie M. Fluorescence Resonance Energy Transfer-Mediated Immunosensor Based on Design and Synthesis of the Substrate of Amp Cephalosporinase for Biosensing. Anal Chem 2019; 91:11316-11323. [DOI: 10.1021/acs.analchem.9b02427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suimin Deng
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Jing Wu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Kaina Zhang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yike Li
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Lina Yang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Dehua Hu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuhao Jin
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yun Hao
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Xiangfeng Wang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuan Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Hailing Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yiping Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei China
| | - Mengxia Xie
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| |
Collapse
|