1
|
Suljević D, Fočak M, Alijagic A. Assessing chromium toxicity across aquatic and terrestrial environments: a cross-species review. Drug Chem Toxicol 2024; 47:1312-1324. [PMID: 38727006 DOI: 10.1080/01480545.2024.2350660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 04/27/2024] [Indexed: 11/21/2024]
Abstract
Chromium (Cr) toxicity, even at low concentrations, poses a significant health threat to various environmental species. Cr is found in the environment in two oxidation states that differ in their bioavailability and toxicity. While Cr(III) is essential for glucose metabolism, the oxyanion chromate Cr(VI) is mostly of anthropogenic origin, toxic, and carcinogenic. The sources of Cr in the environment are multiple, including geochemical processes, disposal of industrial waste, and industrial wastewater. Cr pollution may consequently impact the health of numerous plant and animal species. Despite that, the number of published studies on Cr toxicity across environmental species remained mainly unchanged over the past two decades. The presence of Cr in the environment affects several plant physiological processes, including germination or photosynthesis, and consequently impacts growth, and lowers agricultural production and quality. Recent research has also reported the toxic effects of Cr in different aquatic and terrestrial organisms. Whereas some species showed sensitivity, others exhibited tolerance. Hence, this review discusses the understanding of the ecotoxicological effect of Cr on different plant and animal groups and serves as a concise source of consolidated information and a valuable reference for researchers and policymakers in an understanding of Cr toxicity. Future directions should focus on expanding research efforts to understand the mechanisms underlying species-specific responses to Cr pollution.
Collapse
Affiliation(s)
- Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Faiz F, Pan YF, Zhang S, Dai J, Qiao JQ, Lian HZ, Mao L, Cui XB. A novel zwitterionic magnetic nanocomposite developed for non-invasive speciation analysis of inorganic chromium. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134860. [PMID: 38861901 DOI: 10.1016/j.jhazmat.2024.134860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
3-(2-Aminoethylamino)propyltriethoxysilane and carboxyethylsilanetriol sodium salt were grafted on silica-coated Fe3O4 nanoparticles via sol-gel process to prepare novel amine- and carboxyl-bifunctionalized magnetic nanocomposites (SMNPs-(NH2 + COOH)). After well characterized, this doubly functionalized material was used as magnetic solid-phase extraction (MSPE) adsorbent to separate and enrich inorganic chromium species followed by inductively coupled plasma-mass spectrometry detection. The optimization of MSPE operation parameters including pH was conducted. It is reasonably elucidated that the adsorption mechanisms of zwitterionic SMNPs-(NH2 + COOH) towards chromium species are electrostatic and/or coordination interactions. Cr(VI) and Cr(III) can be adsorbed around pH 3.0 and around 10.0 respectively with strong anti-interference ability not only from other co-existing ions but also from the two labile species each other, and eluted by dilute nitric acid solution. With a 15-fold enrichment factor, the limits of detection of Cr(VI) and Cr(III) were 0.008 and 0.009 μg L-1, respectively, profiting from the maximum adsorption capacities of 7.52 and 6.11 mg g-1. The just one magnetic extraction matrix based speciation scheme possesses excellent convenience and friendliness to Cr(VI) and Cr(III) without any oxidation or reduction prior to capture of these two species. This protocol has been successfully applied to the speciation analysis of inorganic chromium in real-world environmental water samples.
Collapse
Affiliation(s)
- Faisal Faiz
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Yi-Fan Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Sen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Jinxia Dai
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Jun-Qin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China.
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xiao-Bing Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Bagheri V, Naseri A, Sajedi-Amin S, Soylak M, Zhang Z. Using Fe3O4-graphene oxide-modified chitosan with melamine magnetic nanocomposite in the removal and magnetic dispersive solid-phase microextraction of Cr (VI) ion in aquatic samples. CHEMICAL PAPERS 2024; 78:381-396. [DOI: 10.1007/s11696-023-03096-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 09/17/2023] [Indexed: 08/27/2024]
|
4
|
Jasim AN, Kamel A, Al-Awadi NS, Abd-Alrazack HF. Online column preconcentration for speciation and selective determination of Cr(III) in natural water samples using flow injection with chemiluminescence detection. LUMINESCENCE 2023; 38:360-368. [PMID: 36776140 DOI: 10.1002/bio.4464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
A simple, rapid, sensitive and inexpensive approach is described in this work based on a combination of solid-phase extraction of 8-hydroxyquinoline (8HQ), for speciation and preconcentration of Cr(III) and Cr(VI) in river water, and the direct determination of these species using a flow injection system with chemiluminescence detection (FI-CL) and a 4-diethylamino phenyl hydrazine (DEAPH)-hydrogen peroxide system. At different pH, the two forms of chromium [Cr(III) and Cr(VI)] have different exchange capacities for 8HQ, therefore two columns were constructed; the pH of column 1 was adjusted to pH 3 for retaining Cr(III) and column 2 was adjusted to pH 1 for retaining of Cr(VI). The sorbed Cr(III) and Cr(VI) species were eluted from columns using 3.0 ml of 0.1 N of HCl and 3.0 ml of 0.1 N of NaOH, respectively. The flow injection-chemiluminescence (FI-CL) method is based on light emitted due to the oxidation of DEAPH by the H2 O2 in the presence of Cr(III), which catalyzes the reaction. The flow cell is a transparent coiled tube made from glass (2.0 × 4.0, inner and outer diameter) and located close to the photodetector. The flow parameters: flow rate, sample volume, flow cell length, and distance to the CL detector were studied and optimized. Under optimum flow conditions, the Cr(III) concentration can be determined over the range 5-350 μg L-1 with a limit of detection of 1.2 μg L-1 , as the Cr(III) concentration is proportional to the intensity of the CL signal. The relative standard deviations (%) for 10 and 50 μg L-1 Cr(III) were 1.2% and 3.2%, respectively. The effects of Al(III), Cd(II), Zn(II), Hg(II), Pb(II), Co(II), Cu(II), Ni(II), Mn(II), Ca(II), and Fe(III) were investigated. The proposed method is highly selective and sensitive, enabling a rapid determination of the Cr(III) amount in the presence of other interfering metals. Finally, the FI-CL method was examined in five river water samples with excellent recoveries.
Collapse
Affiliation(s)
- Aktham N Jasim
- College of Basic Education, Science Department, Al - Mustansiryah University, Baghdad, Iraq
| | - Azhar Kamel
- College of Pharmacy, Al-Bayan University, Baghdad, Iraq
| | - Nagham S Al-Awadi
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
5
|
Rivas MV, Arenas Muñetón MJ, Bordoni AV, Lombardo MV, Spagnuolo CC, Wolosiuk A. Revisiting carboxylic group functionalization of silica sol-gel materials. J Mater Chem B 2023; 11:1628-1653. [PMID: 36752739 DOI: 10.1039/d2tb02279f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The carboxylic chemical group is a ubiquitous moiety present in amino acids, a ligand for transition metals, a colloidal stabilizer, and a weak acidic ion-exchanger in polymeric resins and given this property, it is attractive for responsive materials or nanopore-based gating applications. As the number of uses increases, subtle requirements are imposed on this molecular group when anchored to various platforms for the functioning of an integrated chemical system. In this context, silica stands as an inert and multipurpose platform that enables the anchoring of multiple chemical entities combined through several orthogonal synthesis methods on the interface. Surface chemical modification relies on the use of organoalkoxysilanes that must meet the demand of tuned chemical properties; this, in turn, urges for innovative approaches for having an improved, but simple, organic toolbox. Starting from commonly available molecular precursors, several approaches have emerged: hydrosilylation, click thiol-ene additions, the use of carbodiimides or the reaction between cyclic anhydrides and anchored amines. In this review, we analyze the importance of the COOH groups in the area of materials science and the commercial availability of COOH-based silanes and present new approaches for obtaining COOH-based organoalkoxide precursors. Undoubtedly, this will attract widespread interest for the ultimate design of highly integrated chemical platforms.
Collapse
Affiliation(s)
- M Verónica Rivas
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina. .,Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - María J Arenas Muñetón
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | - Andrea V Bordoni
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | - M Verónica Lombardo
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | - Carla C Spagnuolo
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Alejandro Wolosiuk
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Tokalıoğlu Ş, Shahir S, Senkal BF, Akgül ET. Speciation of chromium in water samples and lettuce extracts in the Unified bioaccessibility method (UBM) saliva solution by vortex assisted-dispersive solid phase microextraction. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Qadri T, Khan S, Begum I, Ahmed S, Shah ZA, Ali I, Ahmed F, Hussain M, Hussain Z, Rahim S, Shah MR. Synthesis of phenylbenzotriazole derivative stabilized silver nanoparticles for chromium (III) detection in tap water. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Xing X, Ren X, Alharbi NS, Chen C. Biochar-supported Fe/Ni bimetallic nanoparticles for the efficient removal of Cr(VI) from aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Wang X, Wang Y, Wang S, Hou J, Cai L, Fan G. Indirect Competitive ELISA for the Determination of Total Chromium Content in Food, Feed and Environmental Samples. Molecules 2022; 27:1585. [PMID: 35268684 PMCID: PMC8911876 DOI: 10.3390/molecules27051585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: This study aimed to prepare monoclonal antibodies (mAbs) with high immunoreactivity, sensitivity, and specificity for the chelate (Cr(III)-EDTA) of trivalent chromium ion (Cr(III)) and ethylenediamine tetraacetic acid (EDTA). Further, the study established an indirect competitive enzyme-linked immunosorbent assay (icELISA) for detecting the total chromium content in food, feed, and environmental samples. Methods: Hapten Cr(III)-iEDTA was synthesized by chelating Cr(III) with isothiocyanatebenzyl-EDTA (iEDTA). Immunogen Cr(III)-iEDTA-BSA formed by chelating Cr(III)-iEDTA with bovine serum albumin (BSA), and coating antigen Cr(III)-iEDTA-OVA formed by chelating Cr(III)-iEDTA with ovalbumin (OVA) were prepared using the isothiocyanate method and identified by ultraviolet spectra (UV) and inductively coupled plasma optical emission spectrometry (ICP-OES). Balb/c mice were immunized with the Cr(III)-iEDTA-BSA, and the anti Cr(III)-EDTA mAb cell lines were screened by cell fusion. The Cr(III)-EDTA mAbs were prepared by induced ascites in vivo, and their immunological characteristics were assessed. Results: The immunogen Cr(III)-iEDTA-BSA was successfully synthesized, and the molecular binding ratio of Cr(III) to BSA was 15.48:1. Three hybridoma cell lines 2A3, 2A11, and 3D9 were screened, among which 2A3 was the best cell line. The 2A3 secreted antibody was stable after six passages, the affinity constant (Ka) was 2.69 × 109 L/mol, its 50% inhibition concentration (IC50) of Cr(III)-EDTA was 8.64 μg/L, and it had no cross-reactivity (CR%) with other heavy metal ion chelates except for a slight CR with Fe(III)-EDTA (1.12%). An icELISA detection method for Cr(III)-EDTA was established, with a limit of detection (LOD) of 1.0 μg/L and a working range of 1.13 to 66.30 μg/L. The average spiked recovery intra-assay rates were 90% to 109.5%, while the average recovery inter-assay rates were 90.4% to 97.2%. The intra-and inter-assay coefficient of variations (CVs) were 11.5% to 12.6% and 11.1% to 12.7%, respectively. The preliminary application of the icELISA and the comparison with ICP-OES showed that the coincidence rate of the two methods was 100%, and the correlation coefficient was 0.987. Conclusions: The study successfully established an icELISA method that meets the requirements for detecting the Cr(III)-EDTA chelate content in food, feed, and environmental samples, based on Cr(III)-EDTA mAb, and carried out its preliminary practical application.
Collapse
Affiliation(s)
- Xiaofei Wang
- Xinxiang Institute of Engineering, College of Bioengineering, Xinxiang 453700, China; (X.W.); (S.W.)
| | - Yanan Wang
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (Y.W.); (J.H.); (L.C.)
| | - Shuyun Wang
- Xinxiang Institute of Engineering, College of Bioengineering, Xinxiang 453700, China; (X.W.); (S.W.)
| | - Jie Hou
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (Y.W.); (J.H.); (L.C.)
| | - Linlin Cai
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (Y.W.); (J.H.); (L.C.)
| | - Guoying Fan
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453003, China; (Y.W.); (J.H.); (L.C.)
| |
Collapse
|
10
|
Faiz F, Qiao JQ, Lian HZ, Mao L, Cui XB. A combination approach using two functionalized magnetic nanoparticles for speciation analysis of inorganic arsenic. Talanta 2022; 237:122939. [PMID: 34736670 DOI: 10.1016/j.talanta.2021.122939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Mercapto- and amino-functionalized magnetic nanoparticles, Fe3O4@SiO2@MPTMS (SMNPs-MPTMS) and Fe3O4@SiO2@APTES (SMNPs-APTES), have been applied as magnetic solid-phase extraction (MSPE) sorbents to directly extract arsenite (As(III)) and arsenate (As(V)) respectively, followed by inductively coupled plasma-mass spectrometry (ICP-MS) detection. Various MSPE parameters were optimized including dose of magnetic adsorbent, pH of sample solution, loading and elution conditions of analytes, adsorption capacity and reusability of SMNPs-MPTMS and SMNPs-APTES for As(III) and As(V) respectively. Under the optimized MSPE conditions, this combined scheme possesses excellent selectivity and strong anti-interference ability without any oxidation or reduction prior to capture of these two species. It is found that with a 25-fold enrichment factor, the limits of detection of As(III) and As(V) were 23.5 and 10.5 ng L-1, respectively. To verify the reliability of the proposed protocol, a certified reference material of environmental water was analyzed, and the results for inorganic arsenic species were in close agreement with the certified values. The applicability of the combination strategy for speciation analysis of inorganic arsenic was evaluated in spiked tap, river, lake and rain water samples. Good recoveries of 89%-96% and 90%-102% were achieved for As(III) and As(V), respectively, with the relative standard deviation ranges of 3.2%-8.0% and 2.5%-7.6%. Through the characterization of functionalized magnetic nanoparticles and the optimization of MSPE experiment, it is confirmed that the existence of mercapto and amino groups on SMNPs-MPTMS and SMNPs-APTES sorbents are responsible for the extraction of As(III) and As(V), respectively, via coordination and electrostatic interactions.
Collapse
Affiliation(s)
- Faisal Faiz
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Jun-Qin Qiao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China.
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiao-Bing Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
11
|
Elemental Speciation Analysis in Environmental Studies: Latest Trends and Ecological Impact. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212135. [PMID: 34831893 PMCID: PMC8623758 DOI: 10.3390/ijerph182212135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Speciation analysis is a key aspect of modern analytical chemistry, as the toxicity, environmental mobility, and bioavailability of elemental analytes are known to depend strongly on an element’s chemical species. Henceforth, great efforts have been made in recent years to develop methods that allow not only the determination of elements as a whole, but also each of its separate species. Environmental analytical chemistry has not ignored this trend, and this review aims to summarize the latest methods and techniques developed with this purpose. From the perspective of each relevant element and highlighting the importance of their speciation analysis, different sample treatment methods are introduced and described, with the spotlight on the use of modern nanomaterials and novel solvents in solid phase and liquid-liquid microextractions. In addition, an in-depth discussion of instrumental techniques aimed both at the separation and quantification of metal and metalloid species is presented, ranging from chromatographic separations to electro-chemical speciation analysis. Special emphasis is made throughout this work on the greenness of these developments, considering their alignment with the precepts of the Green Chemistry concept and critically reviewing their environmental impact.
Collapse
|
12
|
Zhang Y, Zhang L. Designed multifunctional ratiometric fluorescent probe for directly detecting fluoride ion/ dichromate and indirectly monitoring urea. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126271. [PMID: 34119981 DOI: 10.1016/j.jhazmat.2021.126271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
UiO-66-NH2@eosin Y composite was obtained by confining eosin Y (EY) into the cavities of Zr-MOF and could emit two fluorescence peaks at 453 and 543 nm at an excitation wavelength of 355 nm. This multi-responsive and multifunctional ratiometric fluorescent nanoprobe not only enable directly distinct detection of F-/Cr2O72- with ultra-high selectivity and sensitivity, but also could indirectly monitor the concentration of urea based on unique enzymatic hydrolysis reaction. The multifunctional probe was utilized for fluorescence labeling F-/Cr2O72- in sweat latent fingerprint through an environmentally friendly powder strategy and exhibited obvious luminescence visualization changes. Notably, the corresponding portable on-line test strips of probe for detection of F- and Cr2O72- were made for monitoring the levels of F- and Cr2O72-. Furthermore, the probe was applied to evaluate the degrees of F-/Cr2O72- in HepG-2 cell and urea in serum with superior results,which indicate the potential application of the as-synthesized UiO-66-NH2@EY as multifunctional probe for the detection of F-, Cr2O72- and urea in biological samples. Finally, in order to extend the device-based applications of probe, an AND-OR-coupled molecular logic gate was put on agenda.
Collapse
Affiliation(s)
- Yaqiong Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, Liaoning 110036, People's Republic of China.
| |
Collapse
|
13
|
Shishov A, Terno P, Bulatov A. Deep eutectic solvent decomposition-based microextraction for chromium determination in aqueous environments by atomic absorption spectrometry with electrothermal atomization. Analyst 2021; 146:5081-5088. [PMID: 34296719 DOI: 10.1039/d1an00924a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive, rapid, and simple procedure for the determination of traces of chromium species in natural and waste waters after microextraction using a quasi-hydrophobic deep eutectic solvent based on tetrabutylammonium bromide and hexanoic acid was developed for the first time. In the developed procedure, the deep eutectic solvent played the role of a source of dispersive agent, chelating agent, and extraction solvent. During mixing the aqueous phase with the quasi-hydrophobic deep eutectic solvent, dissolution and dissociation of tetrabutylammonium bromide took place. Tetrabutylammonium bromide acted as a dispersive agent for the hexanoic acid emulsion formation and as an agent for the formation of an ion-association complex with Cr(vi) in an aqueous phase followed by its extraction in hexanoic acid. The organic phase containing Cr(vi) complexes was analyzed by atomic absorption spectrometry with electrothermal atomization. The enrichment factor value was 53, the extraction recovery was 89%, and the limit of detection calculated from a blank test, based on 3σ, was 5.0 ng L-1. The values of intra-day RSD and inter-day RSD were 3.9% and 5.0%, respectively.
Collapse
Affiliation(s)
- Andrey Shishov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| | - Pavel Terno
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| | - Andrey Bulatov
- Department of Analytical Chemistry, Institute of Chemistry, Saint Petersburg State University, SPbSU, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
| |
Collapse
|
14
|
Ultrasound-assisted supramolecular solvent dispersive liquid-liquid microextraction for preconcentration and determination of Cr(VI) in waters and total chromium in beverages and vegetables. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115556] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Losev VN, Didukh-Shadrina SL, Orobyeva AS, Metelitsa SI, Samoilo AS, Zhizhaev AM, Trofimchuk AK. Effective separation of chromium species in technological solutions using amino-immobilized silica prior to their determination. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124383. [PMID: 33199147 DOI: 10.1016/j.jhazmat.2020.124383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
Amino-immobilized (poly(4,9-dioxadodecane-1,12-guanidine, polydiallyldimethylammonium, hexadimethrin bromide, polyhexamethylene guanidine) silicas were proposed for chromium speciation for the first time. Adsorbents surface was characterized by TGA-DSC, FT-IR, CHN, XRD and SEM analysis. Polyamines were strongly fixed on the silica surface and were not washed off with solutions of 3М HNO3 and 20 g L-1 NaCl. Аmino-immobilized silica quantitatively removed (R ≥ 99%) Cr(VI) from solutions at pH 4-7. Cr(III) was not recovered in this pH range, which makes it possible to separate Cr(VI) from Cr(III). The separation factor (КCr(VI)/Cr(III)) was ≥ 1∙104. Silica-based adsorbents layer-by-layer immobilized with polyamines and 2-(1,8-dihydroxy-3,6-disulfo-2-naphthylazo)benzenearsonic acid were proposed for quantitative removal of Cr(III) from aqueous solutions with pH 4-6 at 90 °C. A system of sequentially connected columns filled with selective adsorbents was used to separate the chromium species in stream at рН= 5 and a flow rate of 1 mL min-1. Chromium was determined after its elution with 5 mL of 2 M HNO3 at a flow rate of 1 mL min-1 using ICP-OES or ICP-MS. The pre-concentration factors for Cr(VI) and Cr(III) was 60. A two-column system was used for chromium speciation in technological solutions. The efficiency of chromium speciation was confirmed by state standard procedure.
Collapse
Affiliation(s)
- Vladimir N Losev
- Scientific Research Engineering Center "Kristall", Siberian Federal University, Svobodny 79, Krasnoyarsk 660041, Russian Federation
| | - Svetlana L Didukh-Shadrina
- Scientific Research Engineering Center "Kristall", Siberian Federal University, Svobodny 79, Krasnoyarsk 660041, Russian Federation.
| | - Anastasya S Orobyeva
- Scientific Research Engineering Center "Kristall", Siberian Federal University, Svobodny 79, Krasnoyarsk 660041, Russian Federation
| | - Sergey I Metelitsa
- Scientific Research Engineering Center "Kristall", Siberian Federal University, Svobodny 79, Krasnoyarsk 660041, Russian Federation
| | - Alexander S Samoilo
- Scientific Research Engineering Center "Kristall", Siberian Federal University, Svobodny 79, Krasnoyarsk 660041, Russian Federation
| | - Anatoly M Zhizhaev
- Laboratory of Physic-Chemical Methods of Material Research, Institute of Chemistry and Chemical Technology SB RAS Federal Research Center "Krasnoyarsk Science Center SB RAS", Aсademgorodok 50/24, Krasnoyarsk 660036, Russian Federation
| | - Anatoly K Trofimchuk
- Department of Inorganic Chemistry, Taras Shevchenko National University, Kyiv 01033, Ukraine
| |
Collapse
|
16
|
Chen S, Liu Y, Yan J, Wang C, Lu D. Fibrous g-C3N4@Tio2 Nanocomposites-Based Dispersive Micro-Solid Phase Extraction for Chromium Speciation in Cow Milk by ICP-MS after Digestion Treatment with Artificial Gastric Juice. J AOAC Int 2021; 104:129-136. [PMID: 33078194 DOI: 10.1093/jaoacint/qsaa118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Chromium is an interesting element because its toxicity depends on its speciation. Thus, knowledge of Cr speciation in cow milk is essential to human health. OBJECTIVE This study aims to achieve real bioaccessible species in cow milk, including Cr(III), Cr(VI), residual, digestible, and total Cr. METHODS Samples were treated with artificial gastric juice, followed by dispersive micro-solid phase extraction (DMSPE) combined with ICP-MS for Cr speciation. Fibrous g-C3N4@TiO2 nanocomposites (FGCTNCs) were used as a novel adsorbent for DMSPE. RESULTS The method detection limits were 110 pg/g (Cr(III)) and 260 pg/g (Cr(VI)) for milk powder (0.1 g), and 5.1 pg/g (Cr(III)) and 13 pg/g (Cr(VI)) for liquid cow milk (2 mL). The relative standard deviations (RSDs), obtained by analyzing the standard solutions containing 1.0 ng/mL of the analytes in sequence for nine times, were 4.3% and 5.1% for Cr(III) and Cr(VI), respectively. Linearity was observed over the range of 4 magnitude orders with correlation coefficients better than 0.9961. The enrichment factor of 100 was obtained. The majority of Cr in the samples was transferred into digestion solution. The content of Cr(III) is much higher than that of Cr(VI) in the digestion solution. CONCLUSIONS This method has the advantages of reduced solvent consumption, less adsorbent dosage, and high extraction efficiency. It may become a valuable strategy for elemental species in food samples. HIGHLIGHTS The samples were treated with artificial gastric juice to avoid the inter-conversion of species. FGCTNCs exhibit the merits of N-rich functional groups and selective adsorption for the analytes.
Collapse
Affiliation(s)
- Shizhong Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P.R. China
| | - Yuxiu Liu
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P.R. China
| | - Juntao Yan
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P.R. China
| | - Chunlei Wang
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P.R. China
| | - Dengbo Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, P.R. China
| |
Collapse
|
17
|
Sun YL, Zhao LY, Lian HZ, Mao L, Cui XB. Carboxyl-functionalized hybrid monolithic column prepared by "thiol-ene" click reaction for noninvasive speciation analysis of chromium with inductively coupled plasma-mass spectrometry. Anal Chim Acta 2020; 1137:85-93. [PMID: 33153612 DOI: 10.1016/j.aca.2020.08.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 11/30/2022]
Abstract
A novel carboxyl-functionalized hybrid monolithic column was developed based on "thiol-ene" click reaction via "one-pot" by choosing mercaptosuccinic acid, γ-methyl methacrylate trimethoxysilane and tetramethoxysilane as reaction monomers. The design of the hybrid monolithic column was assisted by the comparison in computational simulation with existing carboxyl-functionalized materials. The characterization by scanning electron microscopy, energy dispersive X-ray spectroscopy, N2 adsorption-desorption measurement, Fourier-transform infrared spectroscopy and elemental analysis showed that the carboxyl-functionalized material has the advantages of good permeability and high mechanical strength. Then, we used the prepared carboxyl-hybrid monolith column as solid phase microextraction adsorbent for separation of trace inorganic chromium species. Under pH 4.5, the hybrid monolith column can selectively enrich Cr(III) without adsorbing Cr(VI) and afterwards, Cr(III) can be eluted by 1.0 mol L-1 HCl. The chromium speciation separation method based on carboxyl-hybrid monolith column followed by inductively coupled plasma-mass spectrometry possessed the merits of facile preparation, low cost, simple and mild extraction condition, and sensitive detection, which has been successfully applied to the separation, enrichment and detection of inorganic chromium in environmental waters.
Collapse
Affiliation(s)
- Yue-Lun Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Ling-Yu Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China
| | - Hong-Zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing, 210023, China.
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Xiao-Bing Cui
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
18
|
Selective determination of Cr(Ⅵ) and non-chromatographic speciation analysis of inorganic chromium by chemical vapor generation-inductively coupled plasma mass spectrometry. Talanta 2020; 218:121128. [PMID: 32797885 DOI: 10.1016/j.talanta.2020.121128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
A novel and sensitive method for the selective determination of Cr(VI) and non-chromatographic speciation of Cr(VI) and Cr(III) was developed based on chemical vapor generation (CVG) in KBH4-acid system for sample introduction into an inductively coupled plasma mass spectrometer (ICP-MS) for detection. The CVG of Cr(VI), rather than Cr(III), was found to be remarkably enhanced in the presence of sodium diethylaminodithioformate (DDTC). After the oxidation of Cr(III) to Cr(VI) by KMnO4, the quantitation of Cr(III) could be obtained based on the difference between the concentration of total chromium and that of Cr(VI). Parameters affecting the CVG reaction and determination of Cr(VI) were evaluated in detail, including the concentrations of DDTC, hydrochloric acid and KBH4, the sample flow rate, as well as the length of reaction and transferring tubing. Under optimal conditions, the CVG efficiency and the limit of detection (LOD) of Cr(VI) were found to be 28% and 0.2 ng mL-1, respectively. The relative standard deviations for seven replicate measurements of 20 ng mL-1 of Cr(Ⅵ) was 1.8%. Furthermore, with excess DDTC (100 μg mL-1) added to the test solutions, possible interferences from Cu2+ (up to 400 ng mL-1) could be eliminated. The proposed method was thus successfully applied to the determination of Cr(VI) in three real water samples and one certified reference water sample, as well as two simulated water samples of Cr(VI) and Cr(III), all with satisfactory results. The possible reasons were discussed for the varied degrees of enhancement between Cr(III) and Cr(VI).
Collapse
|
19
|
Zhao M, Zhang C, Yang X, Liu L, Wang X, Yin W, Li YC, Wang S, Fu W. Preparation of highly-conductive pyrogenic carbon-supported zero-valent iron for enhanced Cr(Ⅵ) reduction. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122712. [PMID: 32344363 DOI: 10.1016/j.jhazmat.2020.122712] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/28/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
In this work, electron transfer (ET) moiety of PC was ascertained in chromate (Cr(Ⅵ)) reduction by zero-valent iron supported by pyrogenic carbon (PC) (ZVI/PC) prepared by pyrolysis of hematite (α-Fe2O3)-treated pinewood. X-ray diffraction analysis suggested successive phase transformation of α-Fe2O3→magnetite (Fe3O4)→wustite (FeO)→ZVI (Feo). Raman spectra and Brunauer-Emmett-Teller analysis revealed that ZVI/PC is characterized with more ordered graphitic carbon and greater surface area than pristine PC. Maximal Cr(Ⅵ) removal capacity (pH = 3) as predicted by Langmuir isotherm model were 5.78, 36.12 and 8.39 g kg-1 for PC, ZVI/PC and ZVI, respectively. ZVI/PC maintained significantly greater Cr(Ⅵ) removal capacity than ZVI and PC at pH 3-9, but Cr(Ⅵ) removal dropped rapidly to 6.78 g kg-1 at pH 4 and above. X-ray photoelectron spectroscopy and successive desorption of Cr-laden ZVI/PC and ZVI showed trivalent Cr was the dominant species, suggesting reduction was an important mechanism for Cr(Ⅵ) detoxification. Electrochemical analysis demonstrated that ZVI/PC exhibited greater Tafel corrosion rate and ET quantity, with lower electrical resistance. Besides, Cr(Ⅵ) reduction showed reversal trend with electrical resistance of ZVI/PC. To conclude, ET capacity was closely associated with electrical conductivity of ZVI/PC due to intensified conductive graphitic carbon structure of PC at higher pyrogenic temperatures.
Collapse
Affiliation(s)
- Mingyue Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Changai Zhang
- School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Xianni Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Li Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China; Joint International Research Laboratory Agriculture & Agri-Product Safety of Ministry Education of China, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Weiqin Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Yuncong C Li
- Soil and Water Sciences Department, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, China; Joint International Research Laboratory Agriculture & Agri-Product Safety of Ministry Education of China, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Weizhang Fu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, PR China.
| |
Collapse
|
20
|
Determination of Chromium in Natural Water by Adsorptive Stripping Voltammetry Using In Situ Bismuth Film Electrode. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2020; 2020:1347836. [PMID: 32508934 PMCID: PMC7244981 DOI: 10.1155/2020/1347836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/07/2020] [Accepted: 04/10/2020] [Indexed: 11/18/2022]
Abstract
Development of adsorptive stripping voltammetry (AdSV) combined with in situ prepared bismuth film electrode (in situ BiFE) on glassy carbon disk surface using diethylenetriamine pentaacetic acid (DTPA) as a complexing agent and NO3− as a catalyst to determine the trace amount of chromium (VI) is demonstrated. According to this method, in the preconcentration step at Edep = −800 mV, the bismuth film is coated on the surface of glassy carbon electrodes simultaneously with the adsorption of complexes Cr(III)-DTPA. In addition to the influencing factors, the stripping voltammetry performance factors such as deposition potential, deposition time, equilibration time, cleaning potential, cleaning time, and technical parameters of differential pulse and square wave voltammetries have been investigated, and the influence of Cr(III), Co(II), Ni(II), Ca(II), Fe(III), SO42−, Cl−, and Triton X has also been investigated. This method gained good repeatability with RSD <4% (n = 9) for the differential pulse adsorptive stripping voltammetry (DP-AdSV) and RSD < 3% (n = 7) for the square wave adsorptive stripping voltammetry (SqW-AdSV), and low limit of detection: LOD = 12.10−9 M ≈ 0.6 ppb (at a deposition potential (Edep) of −800 mV and the deposition time (tdep) of 50 s) and LOD = 2.10−9 M ≈ 0.1 ppb (at Edep = −800 mV and tdep = 160 s) for the DP-AdSV and SqW-AdSV, respectively. This method has been successfully applied to analyze chromium in natural water.
Collapse
|
21
|
Nugraha WC, Nagai H, Ohira SI, Toda K. Semi-continuous Monitoring of Cr(VI) and Cr(III) during a Soil Extraction Process by Means of an Ion Transfer Device and Graphite Furnace Atomic Absorption Spectroscopy. ANAL SCI 2020; 36:617-620. [PMID: 32115464 DOI: 10.2116/analsci.19sbn02] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Electrodialytic separation of Cr(VI) and Cr(III) followed by graphite furnace atomic absorption spectrometry for monitoring of soil extraction was studied. The sensitivity was improved by in-line purification of the solutions and bi-polar pulse cleaning. The detection limit for both Cr(VI) and Cr(III) was 0.01 μg L-1. The system was successfully used to monitor the concentration change during soil extraction with dual solution line filtration. The results demonstrate the difference in concentration changes with the different sources of Cr(VI).
Collapse
Affiliation(s)
- Willy Cahya Nugraha
- Department of Chemistry, Kumamoto University.,Research Unit of Clean Technology, Indonesian Institute of Sciences
| | | | - Shin-Ichi Ohira
- Department of Chemistry, Kumamoto University.,International Research Organization for Advanced Science and Technology, Kumamoto University
| | - Kei Toda
- Department of Chemistry, Kumamoto University
| |
Collapse
|
22
|
Ghiasi A, Malekpour A. Octyl coated cobalt-ferrite/silica core-shell nanoparticles for ultrasonic assisted-magnetic solid-phase extraction and speciation of trace amount of chromium in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104530] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Zhao LY, Fei JJ, Lian HZ, Mao L, Cui XB. Development of a novel amine- and carboxyl-bifunctionalized hybrid monolithic column for non-invasive speciation analysis of chromium. Talanta 2020; 212:120799. [DOI: 10.1016/j.talanta.2020.120799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/08/2023]
|
24
|
Wang J, Ahmad W, Mehedi Hassan M, Zareef M, Viswadevarayalu A, Arslan M, Li H, Chen Q. Landing microextraction sediment phase onto surface enhanced Raman scattering to enhance sensitivity and selectivity for chromium speciation in food and environmental samples. Food Chem 2020; 323:126812. [PMID: 32334303 DOI: 10.1016/j.foodchem.2020.126812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 02/15/2020] [Accepted: 04/13/2020] [Indexed: 01/15/2023]
Abstract
The current study explores the first full mode liquid microextraction technique coupled with surface-enhanced Raman spectroscopy (SERS), and has been successfully applied for chromium speciation in food and environmental matrices. Herein, chromium as chlorochromate anion [CrO3Cl]- and the cationic rhodamine 6G [RG]+ dye has been extracted in organic phase as a complex ion associate [RG+.CrO3Cl-.nS]org at pH ≤ 1.0. Afterwards, the extracted phase was deposited on the surface of the nano-flower shaped silver nanoparticles substrate and the SERS response was monitored against the reagent blank at 1505 cm-1. Substrate characterizations, reaction mechanism assignment, stoichiometry, speciation, analytical applications, selectivity and validation were performed. The analytical procedure exhibits a detection limit of 0.03 µg L-1 under the optimized experimental conditions. The accuracy of the proposed strategy was validated by inductively coupled plasma optical emission spectrometry method using student's t- and F tests at 95% confidence.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Zareef
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
25
|
Liu X, Liu C, Yang J, Zhang R, Zeng Q, Wang L. Detection and FEM studies of dichromate (Cr2O72−) by allyltriethoxysilane modified nanochannel. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Pakade VE, Tavengwa NT, Madikizela LM. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv 2019; 9:26142-26164. [PMID: 35531021 PMCID: PMC9070541 DOI: 10.1039/c9ra05188k] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022] Open
Abstract
Chromium exists mainly in two forms in environmental matrices, namely, the hexavalent (Cr(vi)) and trivalent (Cr(iii)) chromium. While Cr(iii) is a micronutrient, Cr(vi) is a known carcinogen, and that warrants removal from environmental samples. Amongst the removal techniques reported in the literature, adsorption methods are viewed as superior to other methods because they use less chemicals; consequently, they are less toxic and easy to handle. Mitigation of chromium using adsorption methods has been achieved by exploiting the physical, chemical, and biological properties of Cr(vi) due to its dissolution tendencies in aqueous solutions. Many adsorbents, including synthetic polymers, activated carbons, biomass, graphene oxide, and nanoparticles as well as bioremediation, have been successfully applied in Cr(vi) remediation. Initially, adsorbents were used singly in their natural form, but recent literature shows that more composite materials are generated and applied. This review focused on the recent advances, insights, and project future directions for these adsorbents as well as compare and contrast the performances achieved by the mentioned adsorbents and their variants.
Collapse
Affiliation(s)
- Vusumzi E Pakade
- Department of Chemistry, Vaal University of Technology Private Bag X 021 Vanderbijlpark South Africa
| | - Nikita T Tavengwa
- Department of Chemistry, University of Venda Private Bag X5050 Thohoyandou 0950 South Africa
| | - Lawrence M Madikizela
- Department of Chemistry, Durban University of Technology PO Box 1334 Durban 4000 South Africa
| |
Collapse
|
27
|
Chromium speciation using paper-based analytical devices by direct determination and with electromembrane microextraction. Anal Chim Acta 2019; 1085:98-106. [PMID: 31522736 DOI: 10.1016/j.aca.2019.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 11/23/2022]
Abstract
In this study, we developed and compared three different methods for chromium speciation in water samples using microfluidic paper-based analytical devices (μPADs). In all methods, detection was based on the complexation reaction of Cr(VI) with diphenylcarbazide on the μPADs. Cr(III) ions were oxidized to Cr(VI) by Ce(IV) prior to colorimetric detection on the μPADs. In the first method, oxidization of Cr(III) to Cr(VI) in the solution containing both trivalent and hexavalent chromium was performed using a batch procedure to obtain total chromium. A dual electromembrane extraction (DEME) technique for simultaneous preconcentration and extraction of chromium species and a single electromembrane extraction (SEME) for preconcentration and extraction of Cr(VI)/total chromium [quantified as Cr(VI) content after oxidation of Cr(III) ions to Cr(VI)] were used in the second and third methods, respectively. The electromembrane extraction was based on the electrokinetic migration of cationic Cr(III) and anionic Cr(VI) toward the cathode and anode, respectively, into the two different hollow fibres. Octanol-1 and bis(2-ethylhexyl) phosphate (DEHP) in octanol-1 (0.7% v/v) were the most suitable supported liquid membranes for extraction of Cr(VI) and Cr(III), respectively. Among these methods, SEME showed the lowest limits of detection for both analytes. Under optimized conditions, linear calibrations were obtained for Cr(III) from 3 to 30 μg L-1 and for Cr(VI) from 3 to 70 μg L-1. The detection limits were 1.0 μg L-1 and 0.7 μg L-1 for Cr(III) and Cr(VI), respectively. Our developed method was applied to analyse water samples spiked with different concentrations of Cr(III) and Cr(VI) at the parts-per-billion (ppb) level. The statistical evaluation showed that the proposed method agreed well with the validation method, i.e., inductively coupled plasma atomic emission spectroscopy (ICP-AES).
Collapse
|