1
|
Feng Y, Zhu X, Wang Y. Application of spectroscopic technology with machine learning in Chinese herbs from seeds to medicinal materials: The case of genus Paris. J Pharm Anal 2025; 15:101103. [PMID: 40034863 PMCID: PMC11874543 DOI: 10.1016/j.jpha.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 03/05/2025] Open
Abstract
To ensure the safety and efficacy of Chinese herbs, it is of great significance to conduct rapid quality detection of Chinese herbs at every link of their supply chain. Spectroscopic technology can reflect the overall chemical composition and structural characteristics of Chinese herbs, with the multi-component and multitarget characteristics of Chinese herbs. This review took the genus Paris as an example, and applications of spectroscopic technology with machine learning (ML) in supply chain of the genus Paris from seeds to medicinal materials were introduced. The specific contents included the confirmation of germplasm resources, identification of growth years, cultivar, geographical origin, and original processing and processing methods. The potential application of spectroscopic technology in genus Paris was pointed out, and the prospects of combining spectroscopic technology with blockchain were proposed. The summary and prospects presented in this paper will be beneficial to the quality control of the genus Paris in all links of its supply chain, so as to rationally use the genus Paris resources and ensure the safety and efficacy of medication.
Collapse
Affiliation(s)
- Yangna Feng
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Science, Kunming, 650200, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xinyan Zhu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Science, Kunming, 650200, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Science, Kunming, 650200, China
| |
Collapse
|
2
|
Gagaille MP, Leclerc V, Allard J, Marty F, Treguier B, Bonnet M, Pons-Kerjean N. Qualification and impact of a video-assisted control system in a chemotherapy compounding unit. Eur J Hosp Pharm 2024; 31:577-582. [PMID: 37076270 PMCID: PMC11672328 DOI: 10.1136/ejhpharm-2023-003692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/14/2023] [Indexed: 04/21/2023] Open
Abstract
OBJECTIVES Anticancer drug preparation control is essential to ensure quality and patient safety. Drugcam (Eurekam Company) is a digital video-assisted control system based on artificial intelligence methods to identify vials used and volumes withdrawn. As for any control system, qualification is required before use in a chemotherapy compounding unit (CCU). METHODS We conducted an operational qualification (sensitivity, specificity and accuracy assessment of vials and volumes recognition and quantitative analysis of measured volumes) and a performance qualification (comparison with visual control) of Drugcam in our CCU, as well as an impact study on compounding time and compound supply time. RESULTS Sensitivity, specificity and accuracy of vials (94%, 98% and 96%, respectively) and volumes (86%, 96% and 91%, respectively) recognition are satisfactory. It depends on both the object presented and the camera tested. False positives, which could lead to release of non-compliant preparation, were detected. Volume reading errors may exceed the tolerance threshold of ±5% for small volumes. Drugcam did not significantly lengthen compounding time and compound supply time. CONCLUSIONS No recommendations for a qualification method of this new type of control equipment exist. However, a qualification process is essential to understand tool limitations and integrate them into the CCU risk management system. Drugcam enables anticancer drug preparation to be secure and is also useful for initial and continuous staff training.
Collapse
|
3
|
Rayyad A, Makki AA, Chourpa I, Massot V, Bonnier F. Quantification of clinical mAb solutions using Raman spectroscopy: Macroscopic vs microscopic analysis. Talanta 2022; 250:123692. [PMID: 35777345 DOI: 10.1016/j.talanta.2022.123692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
Raman Spectroscopy is well emerged in the field of Analytical Quality Control (AQC) as a rapid and cost-effective technique useful in many applications. The advantage of Raman spectroscopy is the non-invasiveness of measurements that enablesto analyse samples directly in its container. In this study, the potential of Raman spectroscopy was investigated for analysis of clinical preparations of mAbs. Three commercial formulations of monoclonal antibodies (mAbs) Avastin®, Ontruzant® and Tecentriq® corresponding to Bevacizumab (BVC), Trastuzumab (TRS) and Atezolizumab (ATZ) respectively, were analysed in quartz cuvette in macroscopic analysis and through the wall of perfusion bags in microscopic analysis. The spectra have been compared to those of excipients (trehalose and sucrose) and of γ-Globulin, in order to investigate the origin of Raman bands. As expected, Raman spectra were a combination of bands from monoclonal antibodies and correspoding excipients found in formulas. For quantitative analysis of the solutions, models have been constructed using Partial Least Square Regression (PLSR) with Leave K-Out Cross Validation (LKOCV). The quantification performance was comparable for both macroscopic and microscopic analysis, in terms of error and linearity. The results are thus promising for future AQC in situ, in perfusion bags.
Collapse
Affiliation(s)
- Ayyoub Rayyad
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - Alaa A Makki
- University of Gezira, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, P.O. Box 20, 21111, Wad Madani, Sudan
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200, Tours, France
| | - Victor Massot
- CHU de Tours, Unité de Biopharmacie Clinique Oncologique, Pharmacie, France
| | - Franck Bonnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200, Tours, France.
| |
Collapse
|
4
|
Berge M, Dowek A, Prognon P, Legrand FX, Tfayli A, Minh Mai Lê L, Caudron E. Optimization of experimental conditions by surface enhanced Raman Scattering (SERS) spectroscopy with gold nanoparticles suspensions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120628. [PMID: 34810096 DOI: 10.1016/j.saa.2021.120628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Surface Enhanced Raman Scattering (SERS) spectroscopy is a rapid and innovative analysis technique involving metallic nanoparticles (NPs). The interaction between NPs and norepinephrine gives an exaltation of the Raman signal under certain experimental conditions. The control of the signal exaltation, crucial for sensitive analyses, remains one of the main limitations of this technique. The aim of this work is to optimize the exaltation conditions for an optimal SERS signal at two concentrations of norepinephrine (NOR) and spherical gold NPs in suspension. This first work will fix the optimal experimental conditions essential for the development of robust discriminant and quantitative analysis of catecholamine. Two complete 3-factors 3-levels experiment designs were performed at 20 µg.mL-1 and 100 µg.mL-1 norepinephrine concentrations, each experiment being repeated 3 times. The optimization factors were the process of synthesis (variation of the quantity of gold and citrate used for the three synthesis SA, SB and SC) and HCl (0.3 M, 0.5 M, 0.7 M) as well as the volume ratio of NPs and norepinephrine (0.5, 2, 3.5) for SERS acquisition. Spectral acquisitions were performed with a handheld Raman spectrometer with an excitation source at 785 nm. For each sample, 31 acquisitions were realized during 3 s every 8 s. The optimization parameter was the intensity of the characteristic band of norepinephrine at 1280 cm-1. A total of 5,042 spectra were acquired and the pre-treatment selected for all spectra was asymmetric least square combined to a smoothing of Savistsky Golay (ALS - SG). The optimal contact time between norepinephrine and NPs depends on the experimental conditions and was determined for each experiment according to the mean intensity between the three replicates. After interpretation of the experimental designs, the optimal conditions retained were the quantity of gold corresponding to SA and the HCl concentration 0.7 M for the two concentrations of norepinephrine. Indeed, the optimal volume ratio depend on the NOR concentration.
Collapse
Affiliation(s)
- Marion Berge
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015 Paris, France; Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, 92296 Châtenay-Malabry, France.
| | - Antoine Dowek
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015 Paris, France; Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, 92296 Châtenay-Malabry, France
| | - Patrice Prognon
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015 Paris, France; Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, 92296 Châtenay-Malabry, France
| | | | - Ali Tfayli
- Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, 92296 Châtenay-Malabry, France
| | - Laetitia Minh Mai Lê
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015 Paris, France; Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, 92296 Châtenay-Malabry, France
| | - Eric Caudron
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015 Paris, France; Université Paris-Saclay, Lipides, Systèmes Analytiques et Biologiques, 92296 Châtenay-Malabry, France
| |
Collapse
|
5
|
Dowek A, Berge M, Prognon P, Legrand FX, Larquet E, Tfayli A, Lê LMM, Caudron E. Discriminative and quantitative analysis of norepinephrine and epinephrine by surface-enhanced Raman spectroscopy with gold nanoparticle suspensions. Anal Bioanal Chem 2021; 414:1163-1176. [PMID: 34718838 DOI: 10.1007/s00216-021-03743-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/27/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique capable of increasing the Raman signal of an analyte using specific nanostructures. The close contact between those nanostructures, usually a suspension of nanoparticles, and the molecule of interest produces an important exaltation of the intensity of the Raman signal. Even if the exaltation leads to an improvement of Raman spectroscopy sensitivity, the complexity of the SERS signal and the numbers of parameters to be controlled allow the use of SERS for detection rather than quantification. The aim of this study was to develop a robust discriminative and quantitative analysis in accordance with pharmaceutical standards. In this present work, we develop a discriminative and quantitative analysis based on the previous optimized parameters obtained by the design of experiments fixed for norepinephrine (NOR) and extended to epinephrine (EPI) which are two neurotransmitters with very similar structures. Studying the short evolution of the Raman signal intensity over time coupled with chemometric tools allowed the identification of outliers and their removal from the data set. The discriminant analysis showed an excellent separation of EPI and NOR. The comparative analysis of the data showed the superiority of the multivariate analysis after logarithmic transformation. The quantitative analysis allowed the development of robust quantification models from several gold nanoparticle batches with limits of quantification of 32 µg/mL for NOR and below 20 µg/mL for EPI even though no Raman signal is observable for such concentrations. This study improves SERS analysis over ultrasensitive detection for discrimination and quantification using a handheld Raman spectrometer.
Collapse
Affiliation(s)
- Antoine Dowek
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015, Paris, France. .,Lipides, Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296, Châtenay-Malabry, France.
| | - Marion Berge
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015, Paris, France.,Lipides, Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Patrice Prognon
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015, Paris, France.,Lipides, Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | | | - Eric Larquet
- Laboratoire de Physique de la Matière Condensée (LPMC), Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Ali Tfayli
- Lipides, Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Laetitia Minh Mai Lê
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015, Paris, France.,Lipides, Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Eric Caudron
- Service de Pharmacie, Hôpital européen Georges Pompidou, APHP.Centre Université-Paris, 20 rue Leblanc, 75015, Paris, France.,Lipides, Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| |
Collapse
|
6
|
Elderderi S, Wils L, Leman-Loubière C, Byrne HJ, Chourpa I, Enguehard-Gueiffier C, Munnier E, Elbashir AA, Boudesocque-Delaye L, Bonnier F. In Situ Water Quantification in Natural Deep Eutectic Solvents Using Portable Raman Spectroscopy. Molecules 2021; 26:molecules26185488. [PMID: 34576961 PMCID: PMC8471915 DOI: 10.3390/molecules26185488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Raman spectroscopy is a label-free, non-destructive, non-invasive analytical tool that provides insight into the molecular composition of samples with minimum or no sample preparation. The increased availability of commercial portable Raman devices presents a potentially easy and convenient analytical solution for day-to-day analysis in laboratories and production lines. However, their performance for highly specific and sensitive analysis applications has not been extensively evaluated. This study performs a direct comparison of such a commercially available, portable Raman system, with a research grade Raman microscope system for the analysis of water content of Natural Deep Eutectic Solvents (NADES). NADES are renewable, biodegradable and easily tunable “green” solvents, outcompeting existing organic solvents for applications in extraction from biomass, biocatalysis, and nanoparticle synthesis. Water content in NADES is, however, a critical parameter, affecting their properties, optimal use and extraction efficiency. In the present study, portable Raman spectroscopy coupled with Partial Least Squares Regression (PLSR) is investigated for rapid determination of water content in NADES samples in situ, i.e., directly in glassware. Three NADES systems, namely Betaine Glycerol (BG), Choline Chloride Glycerol (CCG) and Glucose Glycerol (GG), containing a range of water concentrations between 0% (w/w) and 28.5% (w/w), were studied. The results are directly compared with previously published studies of the same systems, using a research grade Raman microscope. PLSR results demonstrate the reliability of the analysis, surrendering R2 values above 0.99. Root Mean Square Errors Prediction (RMSEP) of 0.6805%, 0.9859% and 1.2907% w/w were found for respectively unknown CCG, BG and GG samples using the portable device compared to 0.4715%, 0.3437% and 0.7409% w/w previously obtained by analysis in quartz cuvettes with a Raman confocal microscope. Despite the relatively higher values of RMSEP observed, the comparison of the percentage of relative errors in the predicted concentration highlights that, overall, the portable device delivers accuracy below 5%. Ultimately, it has been demonstrated that portable Raman spectroscopy enables accurate quantification of water in NADES directly through glass vials without the requirement for sample withdrawal. Such compact instruments provide solvent and consumable free analysis for rapid analysis directly in laboratories and for non-expert users. Portable Raman is a promising approach for high throughput monitoring of water content in NADES that can support the development of new analytical protocols in the field of green chemistry in research and development laboratories but also in the industry as a routine quality control tool.
Collapse
Affiliation(s)
- Suha Elderderi
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.); (E.M.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, P.O. Box 20, Wad Madani 21111, Sudan
| | - Laura Wils
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (C.L.-L.); (C.E.-G.); (L.B.-D.)
| | - Charlotte Leman-Loubière
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (C.L.-L.); (C.E.-G.); (L.B.-D.)
| | - Hugh J. Byrne
- FOCAS Research Institute, TU Dublin-City Campus, Dublin 8, Ireland;
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.); (E.M.)
| | - Cécile Enguehard-Gueiffier
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (C.L.-L.); (C.E.-G.); (L.B.-D.)
| | - Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.); (E.M.)
| | - Abdalla A. Elbashir
- Department of Chemistry, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum 11115, Sudan;
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Leslie Boudesocque-Delaye
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (C.L.-L.); (C.E.-G.); (L.B.-D.)
| | - Franck Bonnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.); (E.M.)
- Correspondence:
| |
Collapse
|
7
|
Lee Y, Kim J, Han J, Jeong H, Woo YA, Chung H. Axially slanted laser illumination scheme for direct and accurate Raman spectroscopic determination of gemcitabine concentration in freeze-dried gemcitabine injection powder housed in a glass container. Anal Chim Acta 2021; 1175:338746. [PMID: 34330445 DOI: 10.1016/j.aca.2021.338746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/08/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
When Raman spectroscopy is employed for a direct in situ determination of ingredient concentration for a product stored in a glass container, minimization of the interfering glass background in the collected spectrum is demanding to secure a more accurate analysis. To meet this request, an axially slanted illumination (ASI) scheme slantingly irradiating laser on the headspace side of a glass container and positioning a detector beneath the container was demonstrated in this study. This ASI scheme was basically designed to increase the distance between the laser illumination spot and detector location to minimize the number of glass photons reaching the detector. The analytical utility of the scheme was evaluated for the determination of gemcitabine concentration (42.9-58.2 wt%) in the gemcitabine injection powder housed in a glass container. Using the ASI scheme, the spectral features of the gemcitabine powder became distinct with only a weak underlying glass background signal. For comparative purpose, when an axially perpendicular offset (APO) scheme perpendicularly irradiating laser on the side wall where the sample was filled was used, the magnitude of glass background was higher, and the most intense gemcitabine peak was largely buried in the glass peak. The accuracy for determination of gemcitabine concentration using the ASI scheme was superior with an error of 0.20 wt%, while 0.33 wt% with employing the APO scheme. Overall, this study demonstrates that the ASI scheme is a potentially versatile Raman spectroscopic tool for fast non-sampling analysis of other products stored in a glass container.
Collapse
Affiliation(s)
- Yoonjeong Lee
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jaejin Kim
- Chong Kun Dang Pharmaceuticals, Chungcheongnam-do, 330-831, Republic of Korea
| | - Janghee Han
- Chong Kun Dang Pharmaceuticals, Chungcheongnam-do, 330-831, Republic of Korea
| | - Haeseong Jeong
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Young-Ah Woo
- Chong Kun Dang Pharmaceuticals, Chungcheongnam-do, 330-831, Republic of Korea.
| | - Hoeil Chung
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Makki AA, Elderderi S, Massot V, Respaud R, Byrne HJ, Tauber C, Bertrand D, Mohammed E, Chourpa I, Bonnier F. In situ Analytical Quality Control of chemotherapeutic solutions in infusion bags by Raman spectroscopy. Talanta 2021; 228:122137. [PMID: 33773705 DOI: 10.1016/j.talanta.2021.122137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/04/2023]
Abstract
Analytical Quality Control (AQC) in centralised preparation units of oncology centers is a common procedure relying on the identification and quantification of the prepared chemotherapeutic solutions for safe intravenous administration to patients. Although the use of Raman spectroscopy for AQC has gained much interest, in most applications it remains coupled to a flow injection analyser (FIA) requiring withdrawal of the solution for analysis. In addition to current needs for more rapid and cost-effective analysis, the risk of exposure of clinical staff to the toxic molecules during daily handling is a serious concern to address. Raman spectroscopic analysis, for instance by Confocal Raman Microscopy (CRM), could enable direct analysis (non-invasive) for AQC directly in infusion bags. In this study, 3 anticancer drugs, methotrexate (MTX), 5-fluorouracil (5-FU) and gemcitabine (GEM) have been selected to highlight the potential of CRM for withdrawal free analysis. Solutions corresponding to the clinical range of each drug were prepared in 5% glucose and data was collected from infusion bags placed under the Raman microscope. Firstly, 100% discrimination has been obtained by Partial Least Squares Discriminant Analysis (PLS-DA) confirming that the identification of drugs can be performed. Secondly, using Partial Least Squares Regression (PLSR), quantitative analysis was performed with mean % error of predicted concentrations of respectively 3.31%, 5.54% and 8.60% for MTX, 5-FU and GEM. These results are in accordance with the 15% acceptance criteria used for the current clinical standard technique, FIA, and the Limits of Detection for all drugs were determined to be substantially lower than the administered range, thus highlighting the potential of confocal Raman spectroscopy for direct analysis of chemotherapeutic solutions.
Collapse
Affiliation(s)
- Alaa A Makki
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 Avenue Monge, 37200, Tours, France; University of Gezira, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, P.O. Box 20, 21111, Wad Madani, Sudan
| | - Suha Elderderi
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 Avenue Monge, 37200, Tours, France; University of Gezira, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, P.O. Box 20, 21111, Wad Madani, Sudan
| | - Victor Massot
- CHU de Tours, Unité de Biopharmacie Clinique Oncologique, Pharmacie, France
| | - Renaud Respaud
- Université de Tours, UMR 1100, CHRU de Tours, Service de Pharmacie, F-37032, Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Kevin Street, Dublin 8, Ireland
| | - Clovis Tauber
- Université de Tours, INSERM UMR 1253 IBrain, 37000, Tours, France
| | | | - Elhadi Mohammed
- University of Gezira, Faculty of Pharmacy, Medicinal and Aromatic Plants Research Center (MAPRC), P.O. Box 20, 21111, Wad Madani, Sudan
| | - Igor Chourpa
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 Avenue Monge, 37200, Tours, France
| | - Franck Bonnier
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 Avenue Monge, 37200, Tours, France.
| |
Collapse
|
9
|
Elderderi S, Wils L, Leman-Loubière C, Henry S, Byrne HJ, Chourpa I, Munnier E, Elbashir AA, Boudesocque-Delaye L, Bonnier F. Comparison of Raman and attenuated total reflectance (ATR) infrared spectroscopy for water quantification in natural deep eutectic solvent. Anal Bioanal Chem 2021; 413:4785-4799. [PMID: 34061244 DOI: 10.1007/s00216-021-03432-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 01/31/2023]
Abstract
Natural deep eutectic solvents (NADES) are ionic solutions, of great interest for extraction from biomass, biocatalysis, and nanoparticle synthesis. They are easily synthesised and eco-friendly, have low volatility and high dissolution power, and are biodegradable. However, water content in NADES is a critical parameter, affecting their optimal use and extraction efficiency. Vibrational spectroscopic techniques are rapid, label-free, non-destructive, non-invasive, and cost-effective analytical tools that can probe the molecular composition of samples. A direct comparison between a previous study using attenuated total reflectance infrared (ATR-IR) spectroscopy for water quantification in NADES and the same investigation performed with Raman spectroscopy is presently reported. Three NADES systems, namely betaine-glycerol (BG), choline chloride-glycerol (CCG), and glucose-glycerol (GG), containing a range of water concentrations between 0% (w/w) and 40% (w/w), have been analysed with Raman spectroscopy coupled to partial least squares regression multivariate analysis. The values of root mean square error of cross-validation (RMSECV) obtained from analysis performed on the pre-processed spectra over the full spectral range (150-3750 cm-1) are respectively 0.2966% (w/w), 0.4703% (w/w), and 0.2351% (w/w) for BG, GG, and CCG. While the direct comparison to previous ATR-IR results shows essentially similar outcomes for BG, the RMSECV is 33.14% lower and 65.84% lower for CG and CCG. Furthermore, mean relative errors obtained with Raman spectroscopy, and calculated from a set of samples used as independent samples, were 1.452% (w/w), 1.175% (w/w), and 1.188% (w/w). Ultimately, Raman spectroscopy delivered performances for quantification of water in NADES with similar accuracy to ATR-IR. The present demonstration clearly highlights the potential of Raman spectroscopy to support the development of new analytical protocols in the field of green chemistry.
Collapse
Affiliation(s)
- Suha Elderderi
- Faculté de pharmacie, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, 31 avenue Monge, 37200, Tours, France
- Faculty of Pharmacy, University of Gezira, 21111, Wad Madani, Gezira, Sudan
| | - Laura Wils
- Faculté de pharmacie, EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 avenue Monge, 37200, Tours, France
| | - Charlotte Leman-Loubière
- Faculté de pharmacie, EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 avenue Monge, 37200, Tours, France
| | - Sandra Henry
- Faculté de pharmacie, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, 31 avenue Monge, 37200, Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Dublin 8, Ireland
| | - Igor Chourpa
- Faculté de pharmacie, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, 31 avenue Monge, 37200, Tours, France
| | - Emilie Munnier
- Faculté de pharmacie, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, 31 avenue Monge, 37200, Tours, France
| | - Abdalla A Elbashir
- Faculty of Science, Department of Chemistry, University of Khartoum, 11115, Khartoum, Sudan
| | - Leslie Boudesocque-Delaye
- Faculté de pharmacie, EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 avenue Monge, 37200, Tours, France
| | - Franck Bonnier
- Faculté de pharmacie, EA 6295 Nanomédicaments et Nanosondes, Université de Tours, 31 avenue Monge, 37200, Tours, France.
| |
Collapse
|
10
|
Kranenburg RF, Verduin J, de Ridder R, Weesepoel Y, Alewijn M, Heerschop M, Keizers PH, van Esch A, van Asten AC. Performance evaluation of handheld Raman spectroscopy for cocaine detection in forensic case samples. Drug Test Anal 2021; 13:1054-1067. [PMID: 33354929 PMCID: PMC8248000 DOI: 10.1002/dta.2993] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 01/08/2023]
Abstract
Handheld Raman spectroscopy is an emerging technique for rapid on-site detection of drugs of abuse. Most devices are developed for on-scene operation with a user interface that only shows whether cocaine has been detected. Extensive validation studies are unavailable, and so are typically the insight in raw spectral data and the identification criteria. This work evaluates the performance of a commercial handheld Raman spectrometer for cocaine detection based on (i) its performance on 0-100 wt% binary cocaine mixtures, (ii) retrospective comparison of 3,168 case samples from 2015 to 2020 analyzed by both gas chromatography-mass spectrometry (GC-MS) and Raman, (iii) assessment of spectral selectivity, and (iv) comparison of the instrument's on-screen results with combined partial least square regression (PLS-R) and discriminant analysis (PLS-DA) models. The limit of detection was dependent on sample composition and varied between 10 wt% and 40 wt% cocaine. Because the average cocaine content in street samples is well above this limit, a 97.5% true positive rate was observed in case samples. No cocaine false positives were reported, although 12.5% of the negative samples were initially reported as inconclusive by the built-in software. The spectral assessment showed high selectivity for Raman peaks at 1,712 (cocaine base) and 1,716 cm-1 (cocaine HCl). Combined PLS-R and PLS-DA models using these features confirmed and further improved instrument performance. This study scientifically assessed the performance of a commercial Raman spectrometer, providing useful insight on its applicability for both presumptive detection and legally valid evidence of cocaine presence for law enforcement.
Collapse
Affiliation(s)
- Ruben F. Kranenburg
- Forensic LaboratoryDutch National Police, Unit AmsterdamAmsterdamThe Netherlands
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Joshka Verduin
- Forensic LaboratoryDutch National Police, Unit AmsterdamAmsterdamThe Netherlands
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Renee de Ridder
- Forensic LaboratoryDutch National Police, Unit AmsterdamAmsterdamThe Netherlands
| | - Yannick Weesepoel
- Wageningen Food Safety ResearchWageningen University and ResearchWageningenThe Netherlands
| | - Martin Alewijn
- Wageningen Food Safety ResearchWageningen University and ResearchWageningenThe Netherlands
| | | | - Peter H.J. Keizers
- National Institute of Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | | | - Arian C. van Asten
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
- Co van Ledden Hulsebosch Center (CLHC), Amsterdam Center for Forensic Science and MedicineAmsterdamThe Netherlands
| |
Collapse
|
11
|
Quality control of cytostatic drug preparations-comparison of workflow and performance of Raman/UV and high-performance liquid chromatography coupled with diode array detection (HPLC-DAD). Anal Bioanal Chem 2021; 413:2587-2596. [PMID: 33624127 DOI: 10.1007/s00216-021-03223-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/11/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
Abstract
The drugs used for treatment during chemotherapy are manufactured individually for each patient in specialised pharmacies. Thorough quality control to confirm the identity of the delivered active pharmaceutical ingredient and the final concentration of the prepared application solution is not standardized yet except for optical or gravimetric testing. However, solution stability problems, counterfeit drugs, and erroneous or deliberate underdosage may occur and negatively influence the quality of the product and could cause severe health risks for the patient. To take a step towards analytical quality control, an on-site analytical instrument using Raman and UV absorption spectroscopy was employed and the results were compared to high-performance liquid chromatography coupled to diode array detection. Within the scope of the technology evaluation, the uncertainty of measurement was determined for the analysis of the five frequently used cytostatic drugs 5-fluorouracil, cyclophosphamide, gemcitabine, irinotecan and paclitaxel. The Raman/UV technique (2.0-3.2% uncertainty of measurement; level of confidence: 95%) achieves a combined uncertainty of measurement comparable to HPLC-DAD (1.7-3.2% uncertainty of measurement; level of confidence: 95%) for the substances 5-fluorouracil, cyclophosphamide and gemcitabine. However, the uncertainty of measurement for the substances irinotecan and paclitaxel is three times higher when the Raman/UV technique is used. This is due to the fact that the Raman/UV technique analyses the undiluted sample; therefore, the sample has a higher viscosity and tendency to foam. Out of 136 patient-specific preparations analysed within this study, 96% had a deviation of less than 10% from the target content.
Collapse
|
12
|
Makki AA, Massot V, Byrne HJ, Respaud R, Bertrand D, Mohammed E, Chourpa I, Bonnier F. Understanding the discrimination and quantification of monoclonal antibodies preparations using Raman spectroscopy. J Pharm Biomed Anal 2020; 194:113734. [PMID: 33243491 DOI: 10.1016/j.jpba.2020.113734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/19/2022]
Abstract
The use of Raman spectroscopy for analytical quality control of anticancer drug preparations in clinical pharmaceutical dispensing units is increasing in popularity, notably supported by commercially available, purpose designed instruments. Although not legislatively compulsory, analytical methods are frequently used post-preparation to verify the accuracy of a preparation in terms of identity and quantity of the drug in solution. However, while the rapid, cost effective and label free analysis achieved with Raman spectroscopy is appealing, it is important to understand the molecular origin of the spectral contributions collected from the solution of actives and excipients, to evaluate the strength and limitation for the technique, which can be used to identify and quantify either the prescribed commercial formulation, and/or the active drug itself, in personalised solutions. In the current study, four commercial formulations, Erbitux®, Truxima®, Ontruzant® and Avastin® of monoclonal antibodies (mAbs), corresponding respectively to cetuximab, rituximab, trastuzumab and bevacizumab have been used to highlight the key role of excipients in discrimination and quantification of the formulations. It is demonstrated that protein based anticancer drugs such as mAbs have a relatively weak Raman response, while excipients such as glycine, trehalose or histidine contribute significantly to the spectra. Multivariate analysis (partial least square regression and partial least square discriminant analysis) further demonstrates that the signatures of the mAbs themselves are not prominent in mathematical models and that those of the excipients are solely responsible for the differentiation of formulation and accurate determination of concentrations. While Raman spectroscopy can successfully validate the conformity of mAbs intravenous infusion solutions, the basis for the analysis should be considered, and special caution should be given to excipient compositions in commercial formulations to ensure reliability and reproducibility of the analysis.
Collapse
Affiliation(s)
- Alaa A Makki
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France; Faculty of Pharmacy, University of Gezira, P.O. Box 20, 21111 Wad Madani, Sudan
| | - Victor Massot
- Unité de Biopharmacie Clinique Oncologique, Pharmacie, CHU de Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Kevin Street, Dublin 8, Ireland
| | - Renaud Respaud
- Université de Tours, UMR 1100, CHRU de Tours, Service de Pharmacie, F-37032 Tours, France
| | | | - Elhadi Mohammed
- Faculty of Pharmacy, University of Gezira, P.O. Box 20, 21111 Wad Madani, Sudan
| | - Igor Chourpa
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France
| | - Franck Bonnier
- Université de Tours, EA 6295 Nanomédicaments et Nanosondes, 31 avenue Monge, 37200 Tours, France.
| |
Collapse
|
13
|
Yang W, Knorr F, Popp J, Schie IW. Development and evaluation of a hand-held fiber-optic Raman probe with an integrated autofocus unit. OPTICS EXPRESS 2020; 28:30760-30770. [PMID: 33115070 DOI: 10.1364/oe.401207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/22/2020] [Indexed: 05/23/2023]
Abstract
Current implementations of fiber-optic Raman spectroscopy probes are frequently based on non-contact probes with a fixed focus and thus and have to precisely maintain the probe-to-sample distance to ensure a sufficient signal collection. We propose and experimentally demonstrate a novel hand-held fiber-optic Raman probe design, which is based on a liquid lens autofocusing unit, combined with a distance sensor and an in-house developed algorithm to precisely determine the probe-to-sample distance. The reported probe significantly improves the signal stability even for hand-held operation, while reducing distance-dependent artifacts for the acquisition of Raman spectra and can improve the acquisition of Raman spectra in a variety of applications.
Collapse
|