1
|
Zhang J, Wang D, Li Y, Liu L, Liang Y, He B, Hu L, Jiang G. Application of three-dimensional printing technology in environmental analysis: A review. Anal Chim Acta 2023; 1281:341742. [PMID: 38783729 DOI: 10.1016/j.aca.2023.341742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 05/25/2024]
Abstract
The development of environmental analysis devices with high performance is essential to assess the potential risks of environmental pollutants. However, it is still challenging to develop environmental analysis equipment with miniaturization, portability, and high sensitivity based on traditional processing techniques. In recent years, the popularity of 3D printing technology (3DP) with high precision, low cost, and unlimited design freedom has provided opportunities to solve the existing challenges of environmental analysis. 3D printing has brought solutions to promote the high performance and versatility of environmental analysis equipment by optimizing printing materials, enhancing equipment structure, and integrating multidisciplinary technology. In this paper, we comprehensively review the latest progress in 3D printing in various aspects of environmental analysis procedures, including but not limited to sample collection, pretreatment, separation, and detection. We highlight their advantages and challenges in determining various environmental contaminants through passive sampling, solid-phase extraction, chromatographic separation, and mass spectrometry detection. The manufacturing of 3D-printed environmental analysis devices is also discussed. Finally, we look forward to their development prospects and challenges.
Collapse
Affiliation(s)
- Junpeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dingyi Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingying Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| |
Collapse
|
2
|
Wang MW, Su CK. Tuning the fabrication of knotted reactors via 3D printing techniques and materials. Anal Chim Acta 2023; 1263:341295. [PMID: 37225338 DOI: 10.1016/j.aca.2023.341295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
Although three-dimensional (3D) printing technologies can customize a diverse range of devices, cross-3D printing technique/material comparisons aimed at optimizing the fabrication of analytical devices have been rare. In this study, we evaluated the surface features of the channels in knotted reactors (KRs) fabricated using fused deposition modeling (FDM) 3D printing [with poly(lactic acid) (PLA), polyamide, and acrylonitrile butadiene styrene filaments], and digital light processing and stereolithography 3D printing with photocurable resins. Also, their ability to retain Mn, Co, Ni, Cu, Zn, Cd, and Pb ions was evaluated to achieve the maximal sensitivities of these metal ions. After optimizing the techniques and materials for 3D printing of the KRs, the retention conditions, and the automatic analytical system, we observed good correlations (R > 0.9793) for the three 3D printing techniques in terms of the surface roughnesses of their channel sidewalls with respect to the signal intensities of their retained metal ions. The FDM 3D-printed PLA KR provided the best analytical performance, with the retention efficiencies of the tested metal ions all being greater than 73.9% and with the detection limits of the method ranging from 0.1 to 5.6 ng L-1. We used this analytical method to perform analyses of the tested metal ions in several reference materials (CASS-4, SLEW-3, 1643f, and 2670a). Spike analyses of complicated real samples verified the reliability and applicability of this analytical method, highlighting the possibility of tuning 3D printing techniques and materials to optimize the fabrication of mission-oriented analytical devices.
Collapse
Affiliation(s)
- Man-Wen Wang
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC
| | - Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung City, 402, Taiwan, ROC.
| |
Collapse
|
3
|
Barzallo D, Palacio E, March J, Ferrer L. 3D printed device coated with solid-phase extraction resin for the on-site extraction of seven sulfonamides from environmental water samples preceding HPLC-DAD analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
4
|
Glennon KJ, Valdovinos HF, Parsons-Davis T, Shusterman JA, Servis AG, Moody KJ, Gharibyan N. 3D printed field-deployable microfluidic systems for the separation and assay of Pu in nuclear forensics. LAB ON A CHIP 2022; 22:4493-4500. [PMID: 36106574 DOI: 10.1039/d2lc00391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A compact field-deployable microfluidic system has been developed to improve timelines for the rapid analysis of debris in post-detonation nuclear forensics. We used a high-resolution 3D printer to miniaturize typical laboratory-based procedures into a fieldable platform. Microfluidic half-modules were produced for the purification of Pu from excess U, along with a portable alpha chamber for the following isotopic analysis of the Pu stream. A porous PTFE membrane is soaked with a hydrophobic tributyl phosphate (TBP) solution and is placed between two half-modules; separation is performed as a liquid-liquid extraction in an extraction channel across this membrane, where the forward and back-extractions occur within one complete module. Following separation, a 100 μL sampling of the Pu-bearing stream is injected into a small-footprint 3D printed alpha chamber for isotopic assay via alpha spectrometry as part of an online process. In this first demonstration of microfluidic separation coupled with online alpha spectrometry, high extraction yields have been obtained for Pu (98.9 ± 4.0)% and U (97.5 ± 2.5)%. The process uses less than 800 μL of solution with separation chemistry complete within 45 minutes and subsequent alpha spectrometry initiating 25 minutes after separation.
Collapse
Affiliation(s)
- Kevin J Glennon
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Hector F Valdovinos
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Tashi Parsons-Davis
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Jennifer A Shusterman
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Anna G Servis
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Kenton J Moody
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Narek Gharibyan
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| |
Collapse
|
5
|
Miniaturized 3D printed solid-phase extraction cartridges with integrated porous frits. Anal Chim Acta 2022; 1208:339790. [DOI: 10.1016/j.aca.2022.339790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/23/2023]
|
6
|
|
7
|
Wu CY, Chen JR, Su CK. 4D-Printed Temperature-Controlled Flow-Actuated Solid-Phase Extraction Devices. Anal Chem 2021; 93:11497-11505. [PMID: 34241990 DOI: 10.1021/acs.analchem.1c01703] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Four-dimensional printing (4DP) technologies can extend the functionality and applicability of manufactured analytical devices through employing stimuli-responsive materials. In this study, we used a photocurable resin of stimuli-responsive shape-memory polymers and digital light processing three-dimensional printing (3DP) to fabricate a smart sample pretreatment device featuring a solid-phase extraction (SPE) column and a temperature-controlled flow-actuated valve. Through manipulation of the temperatures and flow rates of the sample, eluent, and rinsing streams, we used this 4D-printed SPE device to extract Mn, Co, Ni, Cu, Zn, Cd, and Pb ions from high-salt content samples and remove the sample matrix prior to their determination by inductively coupled plasma mass spectrometry. After optimizing the valve design and operation and the analytical scheme, this device displayed competitive analytical performance-the method detection limits (MDLs) ranged from 0.7 to 22.1 ng L-1 for these metal ions (the MDLs ranged from 0.5 to 18.8 ng L-1 when validating the same printed SPE column using an online automatic system equipped with electric switching valves). Furthermore, we performed analyses of these metal ions in three reference materials (CASS-4, 1643f, and 2670a) and spike analyses of collected samples (seawater, ground water, river water, and human urine) to confirm the reliability and applicability of this analytical method. For the first time, 4DP has been used to fabricate a multi-functional, stimuli-responsive sample pretreatment device displaying analytical performance equal to that of a commercial apparatus. This novel approach builds upon the functionality and diversity of 3DP-enabling devices with the goal of developing more efficient analytical schemes.
Collapse
Affiliation(s)
- Chun-Yi Wu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Jyun-Ran Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| | - Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, R.O.C
| |
Collapse
|
8
|
Zaki SA. Utilization of Titanium Hydroxide Prepared from Rosetta Ilmenite Concentrate as Adsorbent for Uranium Ions from Aqueous Medium. RADIOCHEMISTRY 2021. [DOI: 10.1134/s1066362221030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Cherevko AI, Denisov GL, Nikovskii IA, Polezhaev AV, Korlyukov AA, Novikov VV. Composite Materials Manufactured by Photopolymer 3D Printing with Metal-Organic Frameworks. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s107032842105002x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
New composite materials containing metal-organic framework (MOF-5) particles were manufactured by 3D printing. The optimal composition of the photopolymer formulation and printing conditions ensuring the highest quality of printing were selected. Retention of the metal-organic framework (MOF) structure in the resulting composite objects was demonstrated by powder X-ray diffraction. The distribution of MOF-5 particles over the whole bulk of the 3D product was studied by X-ray computed tomography. In the future, composite materials of this type containing catalytically active MOFs, with their structure and properties being controllable at the micro and macro levels, could find application as catalysts of various chemical processes.
Collapse
|
10
|
Su CK. Review of 3D-Printed functionalized devices for chemical and biochemical analysis. Anal Chim Acta 2021; 1158:338348. [PMID: 33863415 DOI: 10.1016/j.aca.2021.338348] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/28/2022]
Abstract
Recent developments in three-dimensional printing (3DP) have attracted the attention of analytical scientists interested in fabricating 3D devices having promising geometric functions to achieve desirable analytical performance. To break through the barrier of limited availability of 3DP materials and to extend the chemical reactivity and functionalities of devices manufactured using conventional 3DP, new approaches are being developed for the functionalization of 3D-printed devices for chemical and biochemical analysis. This Review discusses recent advances in the chemical functionalization schemes used in the main 3DP technologies, including (i) post-printing modification and surface immobilization of reactive substances on printed materials, (ii) pre-printing incorporation of reactive substances into raw printing materials, and (iii) combinations of both strategies, and their effects on the selectivity and/or sensitivity of related analytical methods. In addition, the state of the art of 3D-printed functionalized analytical devices for enzymatic derivatization and sensing, electrochemical sensing, and sample pretreatment applications are also reviewed, highlighting the importance of introducing new functional and functionalized materials to facilitate future 3DP-enabled manufacturing of multifunctional analytical devices.
Collapse
Affiliation(s)
- Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
11
|
Davis JJ, Foster SW, Grinias JP. Low-cost and open-source strategies for chemical separations. J Chromatogr A 2021; 1638:461820. [PMID: 33453654 PMCID: PMC7870555 DOI: 10.1016/j.chroma.2020.461820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, a trend toward utilizing open access resources for laboratory research has begun. Open-source design strategies for scientific hardware rely upon the use of widely available parts, especially those that can be directly printed using additive manufacturing techniques and electronic components that can be connected to low-cost microcontrollers. Open-source software eliminates the need for expensive commercial licenses and provides the opportunity to design programs for specific needs. In this review, the impact of the "open-source movement" within the field of chemical separations is described, primarily through a comprehensive look at research in this area over the past five years. Topics that are covered include general laboratory equipment, sample preparation techniques, separations-based analysis, detection strategies, electronic system control, and software for data processing. Remaining hurdles and possible opportunities for further adoption of open-source approaches in the context of these separations-related topics are also discussed.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Samuel W Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
12
|
Rodríguez-Maese R, Ferrer L, Leal LO. Automatic multicommuted flow systems applied in sample treatment for radionuclide determination in biological and environmental analysis. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 223-224:106390. [PMID: 32883535 DOI: 10.1016/j.jenvrad.2020.106390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
The presence of artificial and natural radioactivity in the environment is currently a topic of great relevance and ecological interest, even in human health issue, due to the increase of different anthropogenic activities. The use of multicommuted flow analysis techniques (e.g. Multi-Syringe Flow Injection Analysis - MSFIA, Lab-On-Valve - LOV and Lab-In-Syringe - LIS) has allowed the automation of radiochemical procedures to separate and preconcentrate radionuclides in environmental and biological samples. In comparison with the manual approach commonly used in routine analysis for radioactivity monitoring, the automation has enabled the development of highly reproducible methodologies with a great analysis frequency. Moreover, during the analytical procedure, the intervention of the analyst is drastically reduced, minimizing the radiological risk. The automation also offers significant advantages such as minimum consumption of time and reagents, reducing the cost and the generation of waste, contributing to the green chemistry. In this review, several multicommuted flow analysis techniques (MSFIA, LOV and LIS) reported in the last decade applied for the development of automatic sample treatment methodologies, used to separate, preconcentrate and quantify 90Sr, 99Tc, natural U and 226Ra in biological and environmental samples are described and critically compared.
Collapse
Affiliation(s)
- Rogelio Rodríguez-Maese
- Environment and Energy Department, Advanced Materials Research Center (CIMAV) S.C., Miguel de Cervantes 120, Chihuahua, Chih. 31136, Mexico
| | - Laura Ferrer
- Environmental Radioactivity Laboratory, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma, Spain
| | - Luz O Leal
- Environment and Energy Department, Advanced Materials Research Center (CIMAV) S.C., Miguel de Cervantes 120, Chihuahua, Chih. 31136, Mexico.
| |
Collapse
|
13
|
Galhoum AA, Eisa WH, El-Tantawy El-Sayed I, Tolba AA, Shalaby ZM, Mohamady SI, Muhammad SS, Hussien SS, Akashi T, Guibal E. A new route for manufacturing poly(aminophosphonic)-functionalized poly(glycidyl methacrylate)-magnetic nanocomposite - Application to uranium sorption from ore leachate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114797. [PMID: 32559874 DOI: 10.1016/j.envpol.2020.114797] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 05/16/2023]
Abstract
A high-energy ball milling of magnetite nanoparticles with amino-phosphonic functionalized poly(glycidyl methacrylate) polymer is used for manufacturing a highly efficient magnetic sorbent for U(VI) sorption from aqueous solutions. The Uranyl ions were adsorbed through the binding with amine and phosphonic groups as confirmed by Fourier Transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The maximum sorption capacity (up to 270 mg U g-1) occurred at pH = 3-4; Langmuir isotherm well describes the sorption process. Small-size particles allow achieving fast uptake (within ≈90 min of contact); and the kinetic profiles are modeled by the pseudo-second order rate equation. Uranium is successfully desorbed from loaded sorbent using 0.25 M NaHCO3 solution: Sorbent can be recycled with minimal decrease in sorption and desorption efficiency for at least 6 cycles. The sorbent is efficiently used for U(VI) recovery from the acidic leachates of U-bearing ores (after precipitation pre-treatment). Sorption capacity approaches 190 mg U g-1 despite the presence of high concentrations of Fe and Si: the sorbent has a marked preference for U(VI) (confirmed by distribution ratios and selectivity coefficients).
Collapse
Affiliation(s)
- Ahmed A Galhoum
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt; Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2, Kajino-chou, Koganei, Tokyo, 184-8584, Japan
| | - Wael H Eisa
- Spectroscopy Department, Physics Division, National Research Centre (NRC), Egypt.
| | | | - Ahmad A Tolba
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt
| | - Zeinab M Shalaby
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt
| | - Said I Mohamady
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt
| | - Sally S Muhammad
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt
| | - Shimaa S Hussien
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo, Egypt
| | - Takaya Akashi
- Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2, Kajino-chou, Koganei, Tokyo, 184-8584, Japan
| | - Eric Guibal
- Institut Mines Telecom - Mines Ales, Polymer Composites and Hybrids, PCH, 6 avenue de Clavières, F-30319, Alès cedex, France
| |
Collapse
|
14
|
Abstract
Abstract
The rapid development of additive technologies in recent years is accompanied by their intensive introduction into various fields of science and related technologies, including analytical chemistry. The use of 3D printing in analytical instrumentation, in particular, for making prototypes of new equipment and manufacturing parts having complex internal spatial configuration, has been proved as exceptionally effective. Additional opportunities for the widespread introduction of 3D printing technologies are associated with the development of new optically transparent, current- and thermo-conductive materials, various composite materials with desired properties, as well as possibilities for printing with the simultaneous combination of several materials in one product. This review will focus on the application of 3D printing for production of new advanced analytical devices, such as compact chromatographic columns for high performance liquid chromatography, flow reactors and flow cells for detectors, devices for passive concentration of toxic compounds and various integrated devices that allow significant improvements in chemical analysis. A special attention is paid to the complexity and functionality of 3D-printed devices.
Collapse
Affiliation(s)
- Pavel N. Nesterenko
- Department of Chemistry , Lomonosov Moscow State University , 1–3 Leninskie Gory , GSP-3 , Moscow , Russian Federation
| |
Collapse
|
15
|
Su CK, Lin JY. 3D-Printed Column with Porous Monolithic Packing for Online Solid-Phase Extraction of Multiple Trace Metals in Environmental Water Samples. Anal Chem 2020; 92:9640-9648. [PMID: 32618186 DOI: 10.1021/acs.analchem.0c00863] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we used a multimaterial three-dimensional printing (3DP) technology and porous composite filaments (Lay-Fomm, Gel-Lay, and Lay-Felt) to fabricate solid phase extraction (SPE) columns for the enhanced extraction of multiple metal ions. When employed as sample pretreatment devices in an automatic flow injection analysis/inductively coupled plasma mass spectrometry (ICP-MS) system, these 3D-printed SPE columns performed the near-complete extractions of Mn, Co, Ni, Cu, Zn, Cd, and Pb ions from natural water samples prior to ICP-MS determination. After optimizing the column fabrication, the extraction conditions, and the automatic analysis system, the column packed with the porous composite Lay-Fomm 40 was found to provide the highest extraction performance-the extraction efficiencies of the listed metal ions were all greater than 99.2%, and the detection limits of the method ranged from 0.3 to 6.7 ng L-1. The detection of these metal ions in several reference materials (CASS-4, SLEW-3, 1640a, and 1643f) validated the reliability of this method; spike analyses of collected water samples (groundwater, river water, and seawater) demonstrated the applicability of the method. The nature of the printing materials enhanced the analytical performance of 3D-printed sample pretreatment devices. Such approaches will be useful to diversify the range of sample preparation schemes and analytical methods enabled by 3DP technologies.
Collapse
Affiliation(s)
- Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Jou-Yu Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC
| |
Collapse
|
16
|
Li F, Ceballos MR, Balavandy SK, Fan J, Khataei MM, Yamini Y, Maya F. 3D Printing in analytical sample preparation. J Sep Sci 2020; 43:1854-1866. [PMID: 32056373 DOI: 10.1002/jssc.202000035] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022]
Abstract
In the last 5 years, additive manufacturing (three-dimensional printing) has emerged as a highly valuable technology to advance the field of analytical sample preparation. Three-dimensional printing enabled the cost-effective and rapid fabrication of devices for sample preparation, especially in flow-based mode, opening new possibilities for the development of automated analytical methods. Recent advances involve membrane-based three-dimensional printed separation devices fabricated by print-pause-print and multi-material three-dimensional printing, or improved three-dimensional printed holders for solid-phase extraction containing sorbent bead packings, extraction disks, fibers, and magnetic particles. Other recent developments rely on the direct three-dimensional printing of extraction sorbents, the functionalization of commercial three-dimensional printable resins, or the coating of three-dimensional printed devices with functional micro/nanomaterials. In addition, improved devices for liquid-liquid extraction such as extraction chambers, or phase separators are opening new possibilities for analytical method development combined with high-performance liquid chromatography. The present review outlines the current state-of-the-art of three-dimensional printing in analytical sample preparation.
Collapse
Affiliation(s)
- Feng Li
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences. Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Melisa Rodas Ceballos
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences. Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Sepideh Keshan Balavandy
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences. Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Jingxi Fan
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences. Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Yadollah Yamini
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences. Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
17
|
Rodas Ceballos M, Estela JM, Cerdà V, Ferrer L. Flow-through magnetic-stirring assisted system for uranium(VI) extraction: First 3D printed device application. Talanta 2019; 202:267-273. [PMID: 31171180 DOI: 10.1016/j.talanta.2019.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/28/2019] [Accepted: 05/03/2019] [Indexed: 01/31/2023]
Abstract
A 3D printed solid-phase extraction (SPE) device for uranium(VI) extraction has been fabricated using stereolithographic 3D printing. The 3D printed device is shaped as a stirred reactor chamber containing a network of small cubes, which were impregnated with TEVA resin for the extraction of U(VI) from water matrices without doing any previous pretreatment. A flow-through system was combined with off-line ICP-MS detection for the accurate and rapid determination of U(VI) at trace levels. The automatic system was satisfactorily optimized using experimental design, obtaining 0.03 and 0.09 ng U(VI) of detection and quantification limits, respectively, and a durability of 11 consecutive extractions. The reliability of the proposed system was confirmed through the analysis of a reference water material (CSN/CIEMAT 2011), and to water samples (tap, mineral and groundwater) by addition/recovery assays obtaining recoveries between 95 and 106%. This study present for the first time the design of a 3D printing SPE device impregnated with TEVA resin for the on-line extraction of U(VI), showing that 3D printing is a powerful tool for simplifying the construction of complex experimental devices and its operation in analytical procedures for pretreatment applications in water matrices.
Collapse
Affiliation(s)
- Melisa Rodas Ceballos
- Environmental Radioactivity Laboratory (LaboRA), University of the Balearic Islands, 07122, Palma de Mallorca, Spain; Sciware Systems, Spin-Off UIB-004, 07193, Bunyola, Spain
| | - José Manuel Estela
- Environmental Analytical Chemistry Laboratory (LQA(2)), University of the Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Víctor Cerdà
- Environmental Analytical Chemistry Laboratory (LQA(2)), University of the Balearic Islands, 07122, Palma de Mallorca, Spain
| | - Laura Ferrer
- Environmental Radioactivity Laboratory (LaboRA), University of the Balearic Islands, 07122, Palma de Mallorca, Spain.
| |
Collapse
|
18
|
Calderilla C, Maya F, Cerdà V, Leal LO. Direct photoimmobilization of extraction disks on "green state" 3D printed devices. Talanta 2019; 202:67-73. [PMID: 31171229 DOI: 10.1016/j.talanta.2019.04.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/04/2023]
Abstract
Post-curing is essential to improve the mechanical properties of 3D printed parts fabricated by stereolithography (SLA), since right after 3D printing they remain in a "green state". It means that the 3D printed parts have reached their final shape, but the polymerization reaction has not been yet completed. Herein, we take advantage of the tacky partially polymerized surface of "green state" SLA 3D printed parts to immobilize extraction disks and miniature magnets, which after UV post-curing, become permanently attached to the 3D printed part resulting in a rotating-disk sorptive extraction device (RDSE). The developed "stick & cure" procedure is reagent-free and does not require any additional preparation time, specialized skills, or instrumentation. As proof of concept, 3D printed RDSE devices with immobilized chelating disks have been applied to the simultaneous extraction of 14 trace metals prior to ICP-OES determination, featuring LODs between 0.03 and 1.27 μg L-1, and an excellent device-to-device reproducibility (n = 5, RSD = 2.7-8.3%). The developed method was validated using certified wastewater and soil reference samples, and satisfactory spiking recoveries were obtained in the analysis of highly polluted solid waste treatment plant leachates (89-110%). In addition, exploiting the versatility of 3D printing, nine RDSE devices with different shapes were fabricated. Their performance was evaluated and compared for the fast extraction of the highly toxic Cr (VI) as its 1,5-diphenylcarbazide complex in reversed-phase mode, showing different extraction performance on depending on the shape of the 3D printed RDSE device.
Collapse
Affiliation(s)
- Carlos Calderilla
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma de Mallorca, Spain; Environment and Energy Department, Advanced Materials Research Center, Miguel de Cervantes 120, 31136, Chihuahua, Mexico
| | - Fernando Maya
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma de Mallorca, Spain; Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart, TAS, 7001, Australia.
| | - Víctor Cerdà
- Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Luz O Leal
- Environment and Energy Department, Advanced Materials Research Center, Miguel de Cervantes 120, 31136, Chihuahua, Mexico
| |
Collapse
|