Xu L, Xue D, Sai J, Zhou L, Pei R, Liu A. Accelerating the peroxidase-like activity of Co
2+ by quinaldic acid: Mechanism and its analytical applications.
Talanta 2021;
239:123080. [PMID:
34809983 DOI:
10.1016/j.talanta.2021.123080]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 01/20/2023]
Abstract
Although enzyme mimics have been widely developed, limited catalytic efficiency is still a bottleneck, especially under neutral condition. Herein, we reported the bioactive quinaldic acid (QA) significantly boosted the peroxidase-like activity of Co2+ in the presence of bicarbonate (HCO3-). With 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonate) (ABTS) as the substrate, the catalytic activity of Co2+ (1 μM) was increased by over 300 times upon adding 100 μM QA. The formed Co2+ complex had much higher turnover number (5.52 min-1) than that of cobalt-based nanozymes (0.011-0.51 min-1) in decomposing H2O2. Based on this system, ultrasensitive colorimetric methods for the detection of Co2+, bicarbonate and urease activity were achieved with limits of detection of 4.6 nM, 40 μM and 0.00125 U/mL, respectively. For the first time, this work established an ultrasensitive method for the detection of urease activity by activating a peroxidase-like mimic with the produced HCO3-.
Collapse