1
|
Flender D, Vilenne F, Adams C, Boonen K, Valkenborg D, Baggerman G. Exploring the dynamic landscape of immunopeptidomics: Unravelling posttranslational modifications and navigating bioinformatics terrain. MASS SPECTROMETRY REVIEWS 2024. [PMID: 39152539 DOI: 10.1002/mas.21905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Immunopeptidomics is becoming an increasingly important field of study. The capability to identify immunopeptides with pivotal roles in the human immune system is essential to shift the current curative medicine towards personalized medicine. Throughout the years, the field has matured, giving insight into the current pitfalls. Nowadays, it is commonly accepted that generalizing shotgun proteomics workflows is malpractice because immunopeptidomics faces numerous challenges. While many of these difficulties have been addressed, the road towards the ideal workflow remains complicated. Although the presence of Posttranslational modifications (PTMs) in the immunopeptidome has been demonstrated, their identification remains highly challenging despite their significance for immunotherapies. The large number of unpredictable modifications in the immunopeptidome plays a pivotal role in the functionality and these challenges. This review provides a comprehensive overview of the current advancements in immunopeptidomics. We delve into the challenges associated with identifying PTMs within the immunopeptidome, aiming to address the current state of the field.
Collapse
Affiliation(s)
- Daniel Flender
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- Health Unit, VITO, Mol, Belgium
| | - Frédérique Vilenne
- Health Unit, VITO, Mol, Belgium
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Charlotte Adams
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, Antwerpen, Belgium
- ImmuneSpec, Niel, Belgium
| | - Dirk Valkenborg
- Data Science Institute, University of Hasselt, Hasselt, Belgium
| | - Geert Baggerman
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
- ImmuneSpec, Niel, Belgium
| |
Collapse
|
2
|
Bongaerts J, De Bundel D, Smolders I, Mangelings D, Vander Heyden Y, Van Eeckhaut A. Improving the LC-MS/MS analysis of neuromedin U-8 and neuromedin S by minimizing their adsorption behavior and optimizing UHPLC and MS parameters. J Pharm Biomed Anal 2023; 228:115306. [PMID: 36868028 DOI: 10.1016/j.jpba.2023.115306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Neuromedin U (NmU) and neuromedin S (NmS) are two closely related neuropeptides belonging to the neuromedin family. NmU usually occurs either as a truncated eight amino acid long peptide (NmU-8) or as an 25 amino acid long peptide, although other molecular forms exist depending on the species considered. NmS, on the other hand, is a 36 amino acid long peptide, sharing the same amidated C-terminal heptapeptide with NmU. Nowadays, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is the preferred analytical technique for peptide quantification, because of its excellent sensitivity and selectivity. However, reaching the required quantification limits for these compounds in biological samples remains an extremely challenging task, especially because of their nonspecific binding (NSB). This study highlights the difficulties that are faced when quantifying larger neuropeptides (23-36 amino acids) compared to smaller ones (< 15 amino acids). The first part of this work aims to solve the adsorption problem for NmU-8 and NmS, by investigating the different steps involved in the sample preparation, i.e. the different solvents applied and the pipetting protocol. The addition of 0.05% plasma as an adsorption competitor was found to be primordial to avoid peptide loss due to NSB. The second part of this work focusses on further improving the sensitivity of the LC-MS/MS method for NmU-8 and NmS, by evaluating some UHPLC-parameters, including the stationary phase, the column temperature and the trapping conditions. For both peptides of interest, the best results were achieved when combining a C18 trap column with a C18 iKey separation device containing a positively charged surface. Column temperatures of 35 and 45 °C for NmU-8 and NmS respectively, resulted in the highest peak areas and S/N ratios, while applying higher column temperatures substantially decreased sensitivity. Moreover, a gradient starting at 20% organic modifier instead of 5% significantly improved the peak shape of both peptides. Finally, some compound-specific MS parameters, i.e. the capillary and the cone voltages, were evaluated. The peak areas increased with a factor 2 and 7 for NmU-8 and NmS respectively and peptide detection in the low picomolar range is now feasible.
Collapse
Affiliation(s)
- Jana Bongaerts
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium; Vrije Universiteit Brussel (VUB), Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Dimitri De Bundel
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Ilse Smolders
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Debby Mangelings
- Vrije Universiteit Brussel (VUB), Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Yvan Vander Heyden
- Vrije Universiteit Brussel (VUB), Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Ann Van Eeckhaut
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
3
|
de Kleijne VH, Heijboer AC, de Jonge R, Ackermans MT. Supercharging reagents in LC-MS/MS hormone analyses: Enhancing ionization, not limit of quantification. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1204:123337. [PMID: 35709668 DOI: 10.1016/j.jchromb.2022.123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
One of the critical steps during LC-MS/MS hormone analyses that affects the sensitivity of the assay is the ionization process. Enhancing ionization efficiencies by the addition of supercharging reagents might be one way to improve sensitivity and reduce the limit of quantification (LOQ). Therefore, we investigated whether the addition of the supercharging reagents m-nitrobenzyl alcohol (m-NBA), sulfolane, propylene carbonate, and o-nitroanisole (o-NA) increased ionization efficiency and improved assay LOQ of insulin, oxytocin, sex steroids, and corticosteroids in test solutions. Additionally, the influence of the supercharging reagents was tested in serum samples after sample pretreatment to determine whether ionization would be enhanced similarly in routine analyses and, subsequently, lead to improved sensitivity. The screening experiments showed that the impact of the supercharging reagents varied for each hormone; although the addition of m-NBA increased the signal of all hormones, the other reagents only enhanced ionization efficiencies for some hormones. While the addition of 0.05 v/v% m-NBA and 0.05 v/v% o-NA did result in an increase in peak area in both test solutions and serum samples, it did not significantly improve the signal-to-noise ratio, as a simultaneous increase in noise was observed. In conclusion, even though supercharging reagents can enhance ionization efficiencies of hormones significantly, the addition of these reagents does not result in an improved LOQ for hormone measurements with LC-MS/MS.
Collapse
Affiliation(s)
- Vera H de Kleijne
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.
| | - Annemieke C Heijboer
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Robert de Jonge
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Boelelaan 1117, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Mariëtte T Ackermans
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Endocrine Laboratory, Meibergdreef 9, Amsterdam, The Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Challen B, Cramer R. Advances in ionisation techniques for mass spectrometry-based omics research. Proteomics 2022; 22:e2100394. [PMID: 35709387 DOI: 10.1002/pmic.202100394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Omics analysis by mass spectrometry (MS) is a vast field, with proteomics, metabolomics and lipidomics dominating recent research by exploiting biological MS ionisation techniques. Traditional MS ionisation techniques such as electrospray ionisation have limitations in analyte-specific sensitivity, modes of sampling and throughput, leading to many researchers investigating new ionisation methods for omics research. In this review, we examine the current landscape of these new ionisation techniques, divided into the three groups of (electro)spray-based, laser-based and other miscellaneous ionisation techniques. Due to the wide range of new developments, this review can only provide a starting point for further reading on each ionisation technique, as each have unique benefits, often for specialised applications, which promise beneficial results for different areas in the omics world.
Collapse
Affiliation(s)
- Bob Challen
- Department of Chemistry, University of Reading, Whiteknights, Reading, UK
| | - Rainer Cramer
- Department of Chemistry, University of Reading, Whiteknights, Reading, UK
| |
Collapse
|
5
|
Mass spectrometry based metabolomics of volume-restricted in-vivo brain samples: Actual status and the way forward. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Bongaerts J, Segers K, Van Oudenhove L, Van Wanseele Y, Van Hulle M, De Bundel D, Mangelings D, Smolders I, Vander Heyden Y, Van Eeckhaut A. A comparative study of UniSpray and electrospray sources for the ionization of neuropeptides in liquid chromatography tandem mass spectrometry. J Chromatogr A 2020; 1628:461462. [PMID: 32822992 DOI: 10.1016/j.chroma.2020.461462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 01/21/2023]
Abstract
Despite the extensive use of electrospray ionization (ESI) for the quantification of neuropeptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS), poor ionization and transmission efficiency are described for this ionization interface. A new atmospheric pressure ionization source, named UniSpray, was recently developed and commercialized. In this study, the LC-MS performance of this new ionization interface is evaluated and compared with ESI for the quantification of seven neuropeptides. Besides comparison of signal intensities and charge state distributions, also signal-to-noise (S/N) ratios and accuracy and precision were assessed. Additionally, matrix effects of human precipitated plasma and rat microdialysate were evaluated as well as the effect of three supercharging agents on the ionization of the seven neuropeptides. UniSpray ionization resulted in signal intensities four to eight times higher at the optimal capillary/impactor voltage for all seven neuropeptides. S/N values at the other hand only increased by not more than a twofold when the UniSpray source was used. Moreover, UniSpray ionization resulted in a shift towards lower charge states for some neuropeptides. Evaluation of the matrix effects by a post-column infusion set-up resulted in different infusion profiles between ESI and UniSpray. The charge state distributions of the neuropeptides obtained with UniSpray are highly comparable with ESI. Finally, the effect of the supercharging agents on the ionization of the neuropeptides tends to be peptide-dependent with both ionization sources.
Collapse
Affiliation(s)
- Jana Bongaerts
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Karen Segers
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium; Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | - Yannick Van Wanseele
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Debby Mangelings
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling (FABI), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Ann Van Eeckhaut
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information (FASC), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|