1
|
Liu M, Zhuang H, Zhang Y, Jia Y. A sandwich FRET biosensor for lysozyme detection based on peptide-functionalized gold nanoparticles and FAM-labeled aptamer. Talanta 2024; 276:126226. [PMID: 38754187 DOI: 10.1016/j.talanta.2024.126226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Lysozyme (LYZ) plays a crucial role in the body's immune defense system. Monitoring LYZ levels can provide valuable insights into the diagnosis and severity assessment of various diseases. Traditionally, antibody-based sandwich assays are employed for LYZ detection, but they are often time-consuming and operationally complicated. In this research, a novel sandwich FRET biosensor was developed, which enables rapid detection of LYZ based on peptide-functionalized gold nanoparticles (pAuNPs) and FAM-labeled aptamer (Apt-FAM). Initially, a mixture of Apt-FAM and pAuNPs resulted in partial quenching of the Apt-FAM fluorescence emission through an inner filter effect (IFE), with negligible energy transfer because of the electrostatic repulsion between the negatively charged pAuNPs and Apt-FAM. The introduction of LYZ into the mixture drove the specific binding of Apt-FAM and pAuNPs to LYZ, facilitating the formation of a pAuNPs-LYZ-aptamer sandwich structure. The formation of this complex drew the pAuNPs and Apt-FAM into close enough proximity to enable FRET to occur, which in turn effectively quenched the fluorescence emission of FAM. The decrease in FAM fluorescence intensity was correlated with the increasing concentration of LYZ. Thus, a sandwich FRET biosensor was successfully developed for LYZ detection with a linear detection range of 0-1.75 μM and a detection limit of 85 nM. Additionally, the biosensor allowed visual detection of LYZ in a 96-well microplate, with a rapid response time of just 15 s. This study introduces a innovative sandwich FRET biosensor that combines aptamer and peptide recognition elements, offering a fast and antibody-free method for protein detection.
Collapse
Affiliation(s)
- Meiqing Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China; State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, 999078, Macau, China.
| | - Hongyuan Zhuang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, China; Department of Clinical Laboratory, Xiamen Children's Hospital (Children's Hospital of Fudan University Xiamen Branch), Xiamen, 361006, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Yanwei Jia
- State-Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, 999078, Macau, China; Faculty of Science and Technology - ECE, University of Macau, 999078, Macau, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, 999078, Macau, China.
| |
Collapse
|
2
|
Kong D, Chen Y, Gu Y, Ding C, Liu C, Shen W, Kee Lee H, Tang S. Sensitive fluorescence detection based on dimeric G-quadruplex combined with enzyme-assisted solid-phase microextraction of streptomycin in honey. Food Chem 2024; 442:138505. [PMID: 38266408 DOI: 10.1016/j.foodchem.2024.138505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Streptomycin (STR), an aminoglycoside antibiotic with the potential to persist in honey and other food products, may induce allergy, toxicity and antibiotic resistance in humans. In this study, we developed a solid-phase microextraction (SPME) biosensor based on a quartz rod that was modified with double-stranded DNA structures consisting of partially complementary G-rich base DNA strand and STR aptamer. The STR isolated by SPME initially bound to the aptamer. Then the remaining double-stranded DNA structures were cleaved by the Nt.BstNBI enzyme, resulting in release of G-quadruplex dimers. The latter formed a complex with thioflain T fluorescent dye, resulting in an amplified fluorescence response. The method exhibited high sensitivity (a limit of detection of 10.84 pM), wide linear range (0.05 nM ∼ 500 nM (with determination coefficient > 0.99)), and simple operation, making it suitable and convenient for STR detection. Successful STR determination in genuine honey samples was demonstrated.
Collapse
Affiliation(s)
- Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Yitong Chen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Yidan Gu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Chao Ding
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Hian Kee Lee
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Sheng Tang
- School of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China.
| |
Collapse
|
3
|
Zhang C, Chen T, Ying Y, Wu J. Detection of Dopamine Based on Aptamer-Modified Graphene Microelectrode. SENSORS (BASEL, SWITZERLAND) 2024; 24:2934. [PMID: 38733043 PMCID: PMC11086122 DOI: 10.3390/s24092934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
In this paper, a novel aptamer-modified nitrogen-doped graphene microelectrode (Apt-Au-N-RGOF) was fabricated and used to specifically identify and detect dopamine (DA). During the synthetic process, gold nanoparticles were loaded onto the active sites of nitrogen-doped graphene fibers. Then, aptamers were modified on the microelectrode depending on Au-S bonds to prepare Apt-Au-N-RGOF. The prepared microelectrode can specifically identify DA, avoiding interference with other molecules and improving its selectivity. Compared with the N-RGOF microelectrode, the Apt-Au-N-RGOF microelectrode exhibited higher sensitivity, a lower detection limit (0.5 μM), and a wider linear range (1~100 μM) and could be applied in electrochemical analysis fields.
Collapse
Affiliation(s)
| | | | | | - Jing Wu
- School of Science, China University of Geosciences (Beijing), Beijing 100083, China; (C.Z.); (T.C.); (Y.Y.)
| |
Collapse
|
4
|
Tripathi A, Bonilla-Cruz J. Review on Healthcare Biosensing Nanomaterials. ACS APPLIED NANO MATERIALS 2023; 6:5042-5074. [DOI: 10.1021/acsanm.3c00941] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Alok Tripathi
- Department of Chemical and Biochemical Engineering, School of Engineering, Indrashil University, Rajpur 382715, Gujarat India
| | - José Bonilla-Cruz
- Advanced Functional Materials and Nanotechnology Group, Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Subsede Monterrey), Avenida Alianza Norte Autopista Monterrey-Aeropuerto Km 10, PIIT, Apodaca, Nuevo León, México C.P. 66628
| |
Collapse
|
5
|
Lu Q, Zhang S, Ouyang Y, Zhang C, Liu M, Zhang Y, Deng L. Aeromonas salmonicida aptamer selection and construction for colorimetric and ratiometric fluorescence dual-model aptasensor combined with g-C3N4 and G-quadruplex. Talanta 2023; 252:123857. [DOI: 10.1016/j.talanta.2022.123857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
6
|
Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes. J Pharm Biomed Anal 2023; 223:115120. [DOI: 10.1016/j.jpba.2022.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
7
|
Xi H, Jiang H, Juhas M, Zhang Y. Fluorescence detection of the human angiotensinogen protein by the G-quadruplex aptamer. Analyst 2022; 147:4040-4048. [DOI: 10.1039/d2an01057g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic diagram of AGT detection by a G-quadruplex based fluorescent biosensor.
Collapse
Affiliation(s)
- Hui Xi
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Hanlin Jiang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Mario Juhas
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | - Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
8
|
Yan X, Shu Q, Zhao K, Xiao Y, Ai F, Zheng X. Chemiluminescence "signal-on-off" dual signals ratio biosensor based on single-stranded DNA functions as guy wires to detect EcoR V. Talanta 2021; 235:122749. [PMID: 34517617 DOI: 10.1016/j.talanta.2021.122749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/29/2022]
Abstract
Signal output mode is the important part of biosensor. In general, "signal on" and "signal off" are two common output modes. The development of dual signals-based ratio analysis as a powerful diagnostic tool has attracted widespread attention in the biosensor field in recent years. Dual signals ratio sensors with "signal on" and "signal off" are more favored because of their low background signal and better sensitivity and selectivity. In this study, inspired by the idea that EcoR V can cut specific sites of DNA to produce two corresponding fragments, and by using the capturing probe as guy wires, a reliable and sensitive method for EcoR V assay is developed based on the ratio of dual chemiluminescence (CL) signals for the first time. In particular, in the existence of the objective EcoR V, the substrate DNA would be degraded into two double stranded oligonucleotides with blunt ends which include the sequence I and the sequence II, then they can separately compete with two different corresponding capture probes on magnetic beads (MBs). One of capture probe hybridized with the sequence I containing more guanine (G) bases that reacted with the phenylglyoxal (PG) to produce chemical reaction which triggered a positive CL signal output I + CL as "signal-on"; another capture probe is priority to hybridize the sequence II, which triggered the weaker reporter DNA linked with horseradish peroxidase (HRP) probe to fall off the MBs, thereby outputting a negative CL signal I-CL as "signal-off". By comparing the linear relation and the correlation coefficient, the I-CL/I + CL ratio method has better linear relation (0.01-10 U/mL) and higher sensitivity (0.0045 U/mL). In addition, this developed strategy of high selectivity which can directly detect low concentration of target EcoR V in human serum, and thus this dual ratio biosensor might offer a promising detection approach for clinical diagnostics.
Collapse
Affiliation(s)
- Xiluan Yan
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Qinglei Shu
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Kun Zhao
- School of Resources, Environmental, and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Yipi Xiao
- Department of Orthopedics, Hongdu Traditional Chinese Medicine Hospital, Nanchang, 330031, China
| | - Fanrong Ai
- School of Mechanical and Electrical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xiangjuan Zheng
- College of Chemistry, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
9
|
Zhu Q, Tian D, Guo W, He J. Determination of Hydrogen Peroxide and Silver Ions Using G-Quadruplex/Hemin Catalyzed Luminol Chemiluminescence. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1991365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Qiyong Zhu
- Huainan Engineering Research Center for Fuel Cells, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, China
| | - Dong Tian
- Huainan Engineering Research Center for Fuel Cells, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, China
| | - Wei Guo
- Huainan Engineering Research Center for Fuel Cells, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, China
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Jiahao He
- Huainan Engineering Research Center for Fuel Cells, Anhui Province Key Laboratory of Low Temperature Co-Fired Materials, Huainan Normal University, Huainan, China
| |
Collapse
|
10
|
Khan S, Burciu B, Filipe CDM, Li Y, Dellinger K, Didar TF. DNAzyme-Based Biosensors: Immobilization Strategies, Applications, and Future Prospective. ACS NANO 2021; 15:13943-13969. [PMID: 34524790 DOI: 10.1021/acsnano.1c04327] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since their discovery almost three decades ago, DNAzymes have been used extensively in biosensing. Depending on the type of DNAzyme being used, these functional oligonucleotides can act as molecular recognition elements within biosensors, offering high specificity to their target analyte, or as reporters capable of transducing a detectable signal. Several parameters need to be considered when designing a DNAzyme-based biosensor. In particular, given that many of these biosensors immobilize DNAzymes onto a sensing surface, selecting an appropriate immobilization strategy is vital. Suboptimal immobilization can result in both DNAzyme detachment and poor accessibility toward the target, leading to low sensing accuracy and sensitivity. Various approaches have been employed for DNAzyme immobilization within biosensors, ranging from amine and thiol-based covalent attachment to non-covalent strategies involving biotin-streptavidin interactions, DNA hybridization, electrostatic interactions, and physical entrapment. While the properties of each strategy inform its applicability within a proposed sensor, the selection of an appropriate strategy is largely dependent on the desired application. This is especially true given the diverse use of DNAzyme-based biosensors for the detection of pathogens, metal ions, and clinical biomarkers. In an effort to make the development of such sensors easier to navigate, this paper provides a comprehensive review of existing immobilization strategies, with a focus on their respective advantages, drawbacks, and optimal conditions for use. Next, common applications of existing DNAzyme-based biosensors are discussed. Last, emerging and future trends in the development of DNAzyme-based biosensors are discussed, and gaps in existing research worthy of exploration are identified.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Brenda Burciu
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
11
|
Xu Q, Liu K, Jin J, Zhang X. Binding-induced output of catalyst DNA for efficient payload of DNAzyme on magnetic beads by catalyzed hairpin assembly. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Recent applications of quantum dots in optical and electrochemical aptasensing detection of Lysozyme. Anal Biochem 2021; 630:114334. [PMID: 34384745 DOI: 10.1016/j.ab.2021.114334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
Lysozyme (Lyz) is a naturally occurring enzyme that operates against Gram-positive bacteria and leads to cell death. This antimicrobial enzyme forms the part of the innate defense system of nearly all animals and exists in their somatic discharges such as milk, tears, saliva and urine. Increased Lyz level in serum is an important indication of several severe diseases and so, precise diagnosis of Lyz is an urgent need in biosensing assays. Up to know, various traditional and modern techniques have been introduced for Lyz determination. Although the traditional methods suffer from some significant limitations such as time-consuming, arduous, biochemical screening, bacterial colony isolation, selective enrichment and requiring sophisticated instrumentation or isotope labeling, some new modern approaches like aptamer-based biosensors (aptasensors) and quantum dot (QD) nanomaterials are the main goal in Lyz detection. Electrochemical and optical sensors have been highlighted because of their adaptability and capability to decrease the drawbacks of common methods. Using an aptamer-based biosensor, sensor selectivity is enhanced due to the specific recognition of the analyte. Thereby, in this review article, the recent advances and achievements in electrochemical and optical aptasensing detection of Lyz based on different QD nanomaterials and detection methods have been discussed in detail.
Collapse
|
13
|
Joshi P, Mishra R, Narayan RJ. Biosensing applications of carbon-based materials. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100274] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Li Z, Xu H, Li S, Wu S, Miao X. Zettomole electrochemical HIV DNA detection using 2D DNA-Au nanowire structure, hemin/G-quadruplex and polymerase chain reaction multi-signal synergistic amplification. Anal Chim Acta 2021; 1159:338428. [PMID: 33867042 DOI: 10.1016/j.aca.2021.338428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023]
Abstract
Multi-signal synergistically amplified electrochemical sensing of HIV DNA was proposed based on two-dimensional (2D) DNA-Au nanowire structure coupled with hemin/G-quadruplex and polymerase chain reaction (PCR). In the design, by using target HIV DNA as the template, PCR generated numbers of double-stranded DNA (dsDNA) with free single-stranded DNA (ssDNA) tails on one side and free G-quadruplex sequences on the other side. Then, the ssDNA tails of the PCR products were hybridized with the capture probe (CP) to introduce the hemin/G-quadruplex to the electrode surface as a redox-active reporter and to amplify the electrochemical signal as mimic peroxidase catalysis in the presence of H2O2. Meanwhile, (+)AuNPs were electrostatically adsorbed onto dsDNA surface for the formation of 2D DNA-Au nanowire structure, amplifying the electrochemical signal further as another mimic peroxidase and electric conductor together. By effectively combining these signal amplification processes, ultrasensitive HIV DNA detection was achieved with a detection limit of 1.3 aM, indicating that it has potential application in clinical diagnosis.
Collapse
Affiliation(s)
- Zongbing Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Huanwen Xu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Shiqiang Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Shujie Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| |
Collapse
|
15
|
Melinte G, Selvolini G, Cristea C, Marrazza G. Aptasensors for lysozyme detection: Recent advances. Talanta 2021; 226:122169. [PMID: 33676711 DOI: 10.1016/j.talanta.2021.122169] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Lysozyme is an enzyme existing in multiple organisms where it plays various vital roles. The most important role is its antibacterial activity in the human body; in fact, it is also called "the body's own antibiotic". Despite its proven utility, lysozyme can potentially trigger allergic reactions in sensitive individuals, even in trace amounts. Therefore, lysozyme determination in foods is becoming of paramount importance. Traditional detection methods are expensive, time-consuming and they cannot be applied for fast in-situ quantification. Electrochemical and optical sensors have attracted an increasing attention due to their versatility and ability to reduce the disadvantages of traditional methods. Using an aptamer as the bioreceptor, the sensor selectivity is amplified due to the specific recognition of the analyte. This review is presenting the progresses made in lysozyme determination by means of electrochemical and optical aptasensors in the last five years. A critical overview on the methodologies employed for aptamer immobilization and on the strategies for signal amplification of the assays will be described. Different optical and electrochemical aptasensors will be discussed and compared in terms of analytical performances, versatility and real samples applications.
Collapse
Affiliation(s)
- Gheorghe Melinte
- "Ugo Schiff" Chemistry Department, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI), 50019, Italy; Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Strada Louis Pasteur 4, Cluj-Napoca, 400349, Romania
| | - Giulia Selvolini
- "Ugo Schiff" Chemistry Department, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI), 50019, Italy
| | - Cecilia Cristea
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy, Strada Louis Pasteur 4, Cluj-Napoca, 400349, Romania.
| | - Giovanna Marrazza
- "Ugo Schiff" Chemistry Department, University of Florence, Via della Lastruccia 3, Sesto Fiorentino (FI), 50019, Italy; Istituto Nazionale Biostrutture e Biosistemi (INBB), Unit of Florence, Viale Delle Medaglie D'Oro 305, 00136 Roma, Italy.
| |
Collapse
|
16
|
Pirzada M, Altintas Z. Nanomaterials for Healthcare Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5311. [PMID: 31810313 PMCID: PMC6928990 DOI: 10.3390/s19235311] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|