1
|
Tarantini A, Jamet-Anselme E, Lam S, Haute V, Suhard D, Valle N, Chamel-Mossuz V, Bouvier-Capely C, Phan G. Ex vivo skin diffusion and decontamination studies of titanium dioxide nanoparticles. Toxicol In Vitro 2024; 101:105918. [PMID: 39142447 DOI: 10.1016/j.tiv.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/23/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
This study aims to adapt an experimental model based on Franz diffusion cells and porcine skin explants to characterize the diffusion of TiO2 NPs and to compare the efficacy of different cleansing products, soapy water and a calixarene cleansing nanoemulsion compared with pure water, as a function of the time of treatment. While TiO2 NPs tend to form agglomerates in aqueous solutions, a diffusion through healthy skin was confirmed as particles were detected in the receptor fluid of Franz cells using sp-ICP-MS. In the absence of treatment, SIMS images showed the accumulation of TiO2 agglomerates in the stratum corneum, the epidermis, the dermis, and around hair follicles. Decontamination assays showed that the two products tested were comparably effective in limiting Ti penetration, whatever the treatment time. However, only calixarene nanoemulsion was statistically more efficient than water in retaining TiO2 in the donor compartment (>89%), limiting retention inside the skin (<1%) and preventing NP diffusion through the skin (<0.13%) when treatments were initiated 30 min after skin exposure. When decontamination was delayed from 30 min to 6 h, the amount of Ti diffusing and retained in the skin increased. This study demonstrates that TiO2 NPs may diffuse through healthy skin after exposure. Thus, effective decontamination using cleansing products should be carried out as soon as possible.
Collapse
Affiliation(s)
- Adeline Tarantini
- Univ. Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), Grenoble, France
| | | | - Sabine Lam
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiochimie, Spéciation et Imagerie, IBISA-Paradis Platform, Fontenay-aux-Roses, France
| | - Vincent Haute
- Univ. Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), Grenoble, France
| | - David Suhard
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiochimie, Spéciation et Imagerie, IBISA-Paradis Platform, Fontenay-aux-Roses, France
| | - Nathalie Valle
- Luxembourg Institute of Science and Technology, Luxembourg
| | - Véronique Chamel-Mossuz
- Univ. Grenoble Alpes, CEA, Nanosafety Plateform (PNS), Laboratory of Medical Biology (LBM), Grenoble, France
| | - Céline Bouvier-Capely
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiochimie, Spéciation et Imagerie, IBISA-Paradis Platform, Fontenay-aux-Roses, France
| | - Guillaume Phan
- Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiochimie, Spéciation et Imagerie, IBISA-Paradis Platform, Fontenay-aux-Roses, France.
| |
Collapse
|
2
|
Arputharaj E, Singh S, Huang YH, Wu YR, Perumal K, Periyasami G, Chao YY, Dahms HU, Huang YL. Switchable metal extractant integrated miniaturized 3D-printed device: A semi-online multi-metal separation system for matrix-free ICP-MS analysis. Anal Chim Acta 2024; 1310:342672. [PMID: 38811131 DOI: 10.1016/j.aca.2024.342672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/21/2024] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND This study tackles the critical challenges in metal analysis by presenting an innovative miniaturized metal extraction device prototype. This device features a functional nanocomposite (FNC) enhanced 3D-printed polylactic acid (PLA) metal extractant (FNC@3D PLA). The research is motivated by the constraints of traditional solid-phase extraction (SPE) methods, specifically their limitations in handling competitive metal ion environments and matrix interference during inductively coupled plasma mass spectrometry (ICP-MS) analysis. The designed prototype aims to overcome these challenges and enhance the extraction efficiency of diverse metals. RESULTS The FNC, designed to incorporate various functional groups critical for metal ion extraction efficiency, was meticulously engineered through the reaction of acid-treated and delaminated graphitic carbon nitride nanosheets (Thiol-gCN NSs) with 3-mercaptopropyl trimethoxysilane (MPTMS). The competitive metal ion extraction efficiency of FNC@3D PLA was demonstrated, showcasing notable limit of detection values of 3.2 ± 0.7 ng mL-1 and 8.57 ± 3.05 ng mL-1 for Cu and Ag, respectively. Furthermore, the miniaturized 3D-printed metal-preconcentration setup incorporating FNC@3D PLA exhibited favorable intraday relative standard deviation (RSD) percentage (%) values ranging from 1.23 to 8.6 for both Cu and Ag. Interday RSD % between 1.41 and 8.14 were observed under spiked real urine sample conditions. The sustainability and robustness of the proposed approach were underscored by substantial recovery % values exhibited by FNC@3D PLA, even after eight consecutive regeneration processes. SIGNIFICANCE This study significantly contributes to the advancement of analytical methodologies by providing a reliable and efficient platform for metal extraction and preconcentration in practical metal analysis applications. Developed FNC@3D PLA system demonstrates its potential to address the challenges associated with SPE in metal analysis, especially in complex sample matrices. We believe implications of this research can be extended to various fields, from environmental monitoring to clinical diagnostics, where accurate and reliable metal analysis is paramount.
Collapse
Affiliation(s)
- Emmanuvel Arputharaj
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shivangi Singh
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hui Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - You-Rong Wu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 170A CBEC, 151 Woodruff Avenue, Columbus, Ohio 43210, USA
| | - Govindasami Periyasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
| | - Yu-Ying Chao
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Yeou-Lih Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; College of Professional Studies, National Pingtung University of Science and Technology, Pingtung, Taiwan; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Revenco D, Hakenová MF, Mestek O, Koplík R. Using Single-Particle Inductively Coupled Plasma Mass Spectrometry to Determine the Changes of Silver Nanoparticles in Bread Induced via Simulated Digestion. Foods 2024; 13:1311. [PMID: 38731682 PMCID: PMC11083480 DOI: 10.3390/foods13091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Silver nanoparticles (AgNPs), widely used in various fields of technology as an antimicrobial agent, represent a new type of environmental pollutant. Through various routes, AgNPs might penetrate into agricultural crops and foodstuffs. It is important to know if AgNPs contained in food persist in digested food and are therefore available for entering the inner organs of the consumer's body. Using the technique of single-particle ICP-MS, we analysed the changes in the number and size distribution of AgNPs added to a sample of bread submitted to in vitro simulated gastrointestinal digestion. The majority of silver, in terms of mass, was transformed from the state of particles to the dissolved state during bread digestion, but the number of particles was reduced by 25% only. The most abundant particle size was reduced from 60 nm to 49 nm. Hence, a substantial part of transformed nanoparticles is still present in food digestate. This means that AgNPs consumed together with food can theoretically enter the inner cells of human body.
Collapse
Affiliation(s)
- Diomid Revenco
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague 6, 166 28 Prague, Czech Republic; (D.R.); (M.F.H.)
| | - Martina Fialová Hakenová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague 6, 166 28 Prague, Czech Republic; (D.R.); (M.F.H.)
| | - Oto Mestek
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28 Prague, Czech Republic;
| | - Richard Koplík
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague 6, 166 28 Prague, Czech Republic; (D.R.); (M.F.H.)
| |
Collapse
|
4
|
Mrvikova I, Hyrslova I, Kana A, Kantorova V, Lampova B, Doskocil I, Krausova G. Selenium enriched bifidobacteria and lactobacilli as potential dietary supplements. World J Microbiol Biotechnol 2024; 40:145. [PMID: 38532224 DOI: 10.1007/s11274-024-03960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
In this study, we tested the ability of lactobacilli and bifidobacteria strains to accumulate and biotransform sodium selenite into various selenium species, including selenium nanoparticles (SeNPs). Selenium tolerance and cytotoxicity of selenized strains towards human adenocarcinoma Caco-2 and HT29 cells were determined for all tested strains. Furthermore, the influence of selenium enrichment on the antioxidant activity of selenized strains and hydrophobicity of the bacterial cell surfaces were evaluated. Both hydrophobicity and antioxidant activity increased significantly in the selenized L. paracasei strain and decreased significantly in the selenized L. helveticus strain. The concentrations of 5 and 10 mg/L Na2SeO3 in the growth media were safer for Caco-2 and HT29 cell growth than higher concentrations. At higher concentrations (30, 50, and 100 mg/L), the cell viability was reduced. All the tested strains showed differences in antioxidant potential and hydrophobicity after selenium enrichment. In addition to selenocystine and selenomethionine, the tested bacterial strains produced significant amounts of SeNPs. Our results show that the tested bacterial strains can accumulate and biotransform inorganic selenium, which allows them to become a potential source of selenium.
Collapse
Affiliation(s)
- Iva Mrvikova
- Department of Microbiology and Technology, Dairy Research Institute Ltd, Prague, Czech Republic
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic
| | - Ivana Hyrslova
- Department of Microbiology and Technology, Dairy Research Institute Ltd, Prague, Czech Republic
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic
| | - Antonin Kana
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, 166 28, Czech Republic
| | - Vera Kantorova
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, 166 28, Czech Republic
| | - Barbora Lampova
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic
| | - Ivo Doskocil
- Department of Microbiology, Nutrition, and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, 165 00, Czech Republic
| | - Gabriela Krausova
- Department of Microbiology and Technology, Dairy Research Institute Ltd, Prague, Czech Republic.
| |
Collapse
|
5
|
Aramendía M, Leite D, Resano J, Resano M, Billimoria K, Goenaga-Infante H. Isotope Dilution Analysis for Particle Mass Determination Using Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry: Application to Size Determination of Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2392. [PMID: 37686900 PMCID: PMC10490542 DOI: 10.3390/nano13172392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023]
Abstract
This paper describes methodology based on the application of isotope dilution (ID) in single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-ToFMS) mode for the mass determination (and sizing) of silver nanoparticles (AgNPs). For this purpose, and considering that the analytical signal in spICP-MS shows a transient nature, an isotope dilution equation used for online work was adapted and used for the mass determination of individual NPs. The method proposed measures NP isotope ratios in a particle-to-particle approach, which allows for the characterization of NP mass (and size) distributions and not only the mean size of the distribution. For the best results to be obtained, our method development (undertaken through the analysis of the reference material NIST RM 8017) included the optimization of the working conditions for the best precision and accuracy in isotope ratios of individual NPs, which had been only reported to date with multicollector instruments. It is shown that the precision of the measurement of these ratios is limited by the magnitude of the signals obtained for each NP in the mass analyzer (counting statistics). However, the uncertainty obtained for the sizing of NPs in this approach can be improved by careful method optimization, where the most important parameters are shown to be the selection of the spike isotopic composition and concentration. Although only AgNPs were targeted in this study, the method presented, with the corresponding adaptations, could be applied to NPs of any other composition that include an element with different naturally available isotopes.
Collapse
Affiliation(s)
- Maite Aramendía
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (D.L.); (M.R.)
| | - Diego Leite
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (D.L.); (M.R.)
| | - Javier Resano
- Department of Computer Sciences and Systems Engineering (DIIS), Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor SN, 50018 Zaragoza, Spain;
| | - Martín Resano
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain; (D.L.); (M.R.)
| | | | | |
Collapse
|
6
|
Bazo A, Aramendía M, Nakadi FV, Resano M. An Approach Based on an Increased Bandpass for Enabling the Use of Internal Standards in Single Particle ICP-MS: Application to AuNPs Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1838. [PMID: 37368268 DOI: 10.3390/nano13121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
This paper proposes a novel approach to implement an internal standard (IS) correction in single particle inductively coupled plasma mass spectrometry (SP ICP-MS), as exemplified for the characterization of Au nanoparticles (NPs) in complex matrices. This approach is based on the use of the mass spectrometer (quadrupole) in bandpass mode, enhancing the sensitivity for the monitoring of AuNPs while also allowing for the detection of PtNPs in the same measurement run, such that they can serve as an internal standard. The performance of the method developed was proved for three different matrices: pure water, a 5 g L-1 NaCl water solution, and another water solution containing 2.5% (m/v) tetramethylammonium hydroxide (TMAH)/0.1% Triton X-100. It was observed that matrix-effects impacted both the sensitivity of the NPs and their transport efficiencies. To circumvent this problem, two methods were used to determine the TE: the particle size method for sizing and the dynamic mass flow method for the determination of the particle number concentration (PNC). This fact, together with the use of the IS, enabled us to attain accurate results in all cases, both for sizing and for the PNC determination. Additionally, the use of the bandpass mode provides additional flexibility for this characterization, as it is possible to easily tune the sensitivity achieved for each NP type to ensure that their distributions are sufficiently resolved.
Collapse
Affiliation(s)
- Antonio Bazo
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Maite Aramendía
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Flávio V Nakadi
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Martín Resano
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
7
|
Zhang C, Zhang Q, Zhao Y, Dong D, Huang L. Determination of Titanium (IV) Oxide Nanoparticles Released from Textiles by Single Particle – Inductively Coupled Plasma – Mass Spectrometry (SP-ICP-MS). ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2195186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Chaoying Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Qin Zhang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yingchun Zhao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Dianquan Dong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Longjiang Huang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Determination of metallic nanoparticles in air filters by means single particle inductively coupled plasma mass spectrometry. Talanta 2023; 252:123818. [DOI: 10.1016/j.talanta.2022.123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
|
9
|
Microwave Digestion and ICP-MS Determination of Major and Trace Elements in Waste Sm-Co Magnets. METALS 2022. [DOI: 10.3390/met12081308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this article, inductively coupled plasma mass-spectrometry (ICP-MS) and inductively coupled plasma optical-emission spectrometry (ICP-OES) were used for the development of an analytical procedure for analysis of the waste of Sm-Co magnets. Experimental parameters related to microwave digestion processes and acid concentrations were optimized. Microwave digestion was carried out in mixtures of HF, HCl, HNO3 and H2SO4. The complete dissolution of the samples occurred in the system: 10 mL H2O, 2 mL HNO3, 10 mL HCl and 1 mL H2SO4. The dependence of the matrix effect on the ICP-MS analysis of waste Sm-Co magnets was studied and optimal instrumental parameters were investigated (nebulizer gas flow, sampling depth and potential at the extractor lens). The optimal conditions were a nebulizer gas flow of 0.85–0.90 L/min, a sampling depth of 101, potential at the extractor lens of −400 V and a sample flow rate of 50 rpm. A recovery test and inter-method experiments were performed to verify the accuracy of the proposed method.
Collapse
|
10
|
Aramendía M, García-Mesa JC, Alonso EV, Garde R, Bazo A, Resano J, Resano M. A novel approach for adapting the standard addition method to single particle-ICP-MS for the accurate determination of NP size and number concentration in complex matrices. Anal Chim Acta 2022; 1205:339738. [DOI: 10.1016/j.aca.2022.339738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/20/2022]
|
11
|
Selenium accumulation and biotransformation in Streptococcus, Lactococcus, and Enterococcus strains. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Resano M, Aramendía M, García-Ruiz E, Bazo A, Bolea-Fernandez E, Vanhaecke F. Living in a transient world: ICP-MS reinvented via time-resolved analysis for monitoring single events. Chem Sci 2022; 13:4436-4473. [PMID: 35656130 PMCID: PMC9020182 DOI: 10.1039/d1sc05452j] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
After 40 years of development, inductively coupled plasma-mass spectrometry (ICP-MS) can hardly be considered as a novel technique anymore. ICP-MS has become the reference when it comes to multi-element bulk analysis at (ultra)trace levels, as well as to isotope ratio determination for metal(loid)s. However, over the last decade, this technique has managed to uncover an entirely new application field, providing information in a variety of contexts related to the individual analysis of single entities (e.g., nanoparticles, cells, or micro/nanoplastics), thus addressing new societal challenges. And this profound expansion of its application range becomes even more remarkable when considering that it has been made possible in an a priori simple way: by providing faster data acquisition and developing the corresponding theoretical substrate to relate the time-resolved signals thus obtained with the elemental composition of the target entities. This review presents the underlying concepts behind single event-ICP-MS, which are needed to fully understand its potential, highlighting key areas of application (e.g., single particle-ICP-MS or single cell-ICP-MS) as well as of future development (e.g., micro/nanoplastics).
Collapse
Affiliation(s)
- M Resano
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - M Aramendía
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
- Centro Universitario de la Defensa de Zaragoza Carretera de Huesca s/n 50090 Zaragoza Spain
| | - E García-Ruiz
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - A Bazo
- Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - E Bolea-Fernandez
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit Campus Sterre, Krijgslaan 281-S12 9000 Ghent Belgium
| | - F Vanhaecke
- Ghent University, Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit Campus Sterre, Krijgslaan 281-S12 9000 Ghent Belgium
| |
Collapse
|
13
|
Huang Y, Lum JTS, Leung KSY. An integrated ICP-MS-based analytical approach to fractionate and characterize ionic and nanoparticulate Ce species. Anal Bioanal Chem 2022; 414:3397-3410. [PMID: 35129641 DOI: 10.1007/s00216-022-03958-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
Cerium dioxide nanoparticles (CeO2 NPs) are widely used in various fields, leading to concern about their effect on human health. When conducting in vivo investigations of CeO2 NPs, the challenge is to fractionate ionic Ce and CeO2 NPs and to characterize CeO2 NPs without changing their properties/state. To meet this challenge, we developed an integrated inductively coupled plasma-mass spectrometry (ICP-MS)-based analytical approach in which ultrafiltration is used to fractionate ionic and nanoparticulate Ce species while CeO2 NPs are characterized by single particle-ICP-MS (sp-ICP-MS). We used this technique to compare the effects of two sample pretreatment methods, alkaline and enzymatic pretreatments, on ionic Ce and CeO2 NPs. Results showed that enzymatic pretreatment was more efficient in extracting ionic Ce or CeO2 NPs from animal tissues. Moreover, results further showed that the properties/states of all ionic and nanoparticulate Ce species were well preserved. The rates of recovery of both species were over 85%; the size distribution of CeO2 NPs was comparable to that of original NPs. We then applied this analytical approach, including the enzymatic pretreatment and ICP-MS-based analytical techniques, to investigate the bioaccumulation and biotransformation of CeO2 NPs in mice. It was found that the thymus acts as a "holding station" in CeO2 NP translocation in vivo. CeO2 NP biotransformation was reported to be organ-specific. This is the first study to evaluate the impact of enzymatic and alkaline pretreatment on Ce species, namely ionic Ce and CeO2 NPs. This integrated ICP-MS-based analytical approach enables us to conduct in vivo biotransformation investigations of CeO2 NPs.
Collapse
Affiliation(s)
- Yingyan Huang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
| | - Judy Tsz-Shan Lum
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China.
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, People's Republic of China.
| |
Collapse
|
14
|
Determination of silver nanoparticles in cosmetics using single particle ICP-MS. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01763-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Degueldre C. Single virus inductively coupled plasma mass spectroscopy analysis: A comprehensive study. Talanta 2021; 228:122211. [PMID: 33773712 DOI: 10.1016/j.talanta.2021.122211] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/18/2022]
Abstract
The characterisation of individual nanoparticles by single particle ICP-MS (SP-ICP-MS) has paved the way for the analysis of smallest biological systems. This study suggests to adapting this method for single viruses (SV) identification and counting. With high resolution multi-channel sector field (MC SF) ICP-MS records in SV detection mode, the counting of master and key ions can allow analysis and identification of single viruses. The counting of 2-500 virial units can be performed in 20 s. Analyses are proposed to be carried out in Ar torch for master ions: 12C+, 13C+, 14N+, 15N+, and key ions 31P+, 32S+, 33S+ and 34S+. All interferences are discussed in detail. The use of high resolution SF ICP-MS is recommended while options with anaerobic/aerobic atmospheres are explored to upgrade the analysis when using quadrupole ICP-MS. Application for two virus types (SARS-COV2 and bacteriophage T5) is investigated using time scan and fixed mass analysis for the selected virus ions allowing characterisation of the species using the N/C, P/C and S/C molar ratio's and quantification of their number concentration.
Collapse
Affiliation(s)
- Claude Degueldre
- Engineering Department, Lancaster University, Lancaster, LA1 4YW, UK.
| |
Collapse
|
16
|
Givelet L, Truffier-Boutry D, Noël L, Damlencourt JF, Jitaru P, Guérin T. Optimisation and application of an analytical approach for the characterisation of TiO 2 nanoparticles in food additives and pharmaceuticals by single particle inductively coupled plasma-mass spectrometry. Talanta 2021; 224:121873. [PMID: 33379082 DOI: 10.1016/j.talanta.2020.121873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
This study was designed to optimise an analytical method for characterising TiO2 nanoparticles (NPs) in food additives and pharmaceuticals by inductively coupled plasma-mass spectrometry in single particle mode (spICP-MS). Several parameters, including transport efficiency (TE), were assessed and optimised using the NM-100 reference material. We found that self-aspiration for sample intake and use of the concentration-based method for TE was optimal for characterising TiO2 NPs. No spectral interference was observed with either 49Ti or 48Ti isotopes. The optimised Excel spreadsheet developed for this study not only provided additional parameters but gave results closer to the NM-100 reference value than the ICP-MS software. The method was then applied to the analysis of a selection of food samples and pharmaceuticals. The average diameter of TiO2 particles ranged from 86 to 179 nm in the food samples and from 131 to 197 nm in the pharmaceuticals, while the nanoparticular fraction was between 19 and 68% in food, and between 13 and 45% in pharmaceuticals.
Collapse
Affiliation(s)
- Lucas Givelet
- Anses, Laboratory for Food Safety, F-94701, Maisons-Alfort, France; Univ. Grenoble Alpes, CEA, LITEN, F-38000, Grenoble, France
| | | | - Laurent Noël
- The French Directorate General for Food, Ministry of Agriculture, Agro-16 Food and Forestry, F-75015, Paris, France
| | | | - Petru Jitaru
- Anses, Laboratory for Food Safety, F-94701, Maisons-Alfort, France
| | - Thierry Guérin
- Anses, Laboratory for Food Safety, F-94701, Maisons-Alfort, France.
| |
Collapse
|
17
|
Sánchez-Cachero A, López-Sanz S, Fariñas NR, Ríos Á, Martín-Doimeadios RDCR. A method based on asymmetric flow field flow fractionation hyphenated to inductively coupled plasma mass spectrometry for the monitoring of platinum nanoparticles in water samples. Talanta 2021; 222:121513. [PMID: 33167224 DOI: 10.1016/j.talanta.2020.121513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
An analytical methodology based on asymmetric flow field flow fractionation hyphenated to inductively coupled plasma mass spectrometry (AF4-ICP-MS) has been developed for monitoring citrate coated platinum nanoparticles (PtNPs) of different sizes (5, 30, and 50 nm) in water samples. Several factors have been optimized, such as carrier composition, AF4 separation program, focusing step or cross flow values. Under the optimum conditions, PtNPs can be fractionated in about 30 min in a single run with quantitative recoveries of the membrane (100 ± 7%, n = 5). The optimized method has been successfully applied to study transformations, not only in size but also surface modifications, of PtNPs in synthetic and natural water samples over time. The effect of organic matter was specifically studied, and it was found to be a critical parameter. The analytical strategy followed in this work can be very useful to develop further environmental studies involving PtNPs.
Collapse
Affiliation(s)
- Armando Sánchez-Cachero
- Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - Sara López-Sanz
- Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - Nuria Rodríguez Fariñas
- Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Avda. Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - Rosa Del Carmen Rodríguez Martín-Doimeadios
- Department of Analytical Chemistry and Food Technology, Environmental Sciences Institute (ICAM), University of Castilla-La Mancha, Avda. Carlos III s/n, 45071, Toledo, Spain.
| |
Collapse
|